
1

Expert Systems, Vol. 21, No. 4, 2004, pp. 183-191

AN EXPERT SYSTEM ON DESIGN OF LIQUID RETAINING STRUCTURES WITH
BLACKBOARD ARCHITECTURE

K.W. Chau

Department of Civil & Structural Engineering, Hong Kong Polytechnic University, Hunghom,
Kowloon, Hong Kong

F. Albermani

Department of Civil Engineering, University of Queensland, Australia

ABSTRACT: The design of liquid retaining structures involves many decisions to be made
by the designer based on rules of thumb, heuristics, judgment, code of practice and previous
experience. Structural design problems are often ill structured and there is a need to develop
programming environments that can incorporate engineering judgment along with
algorithmic tools. Recent developments in artificial intelligence have made it possible to
develop an expert system that can provide expert advice to the user in selection of design
criteria and design parameters. This paper introduces the development of an expert system in
design of liquid retaining structures using blackboard architecture. An expert system shell,
Visual Rule Studio, is employed to facilitate the development of this prototype system. It is a
coupled system combining symbolic processing with the traditional numerical processing.
The expert system developed is based on British Standards Code of Practice BS8007.
Explanations are made to assist inexperienced designers or civil engineering students to learn
how to design liquid retaining structures effectively and sustainably in their design practices.
The use of this expert system in disseminating heuristic knowledge and experience to
practitioners and engineering students is discussed.

INTRODUCTION

Design of liquid retaining structures involves many decisions to be made by the designer
based on rules of thumb, heuristics, judgment, code of practice and previous experience.
Various design parameters to be chosen include configuration, material, loading, etc. A
novice engineer may face many difficulties in the design process.

Advances in computer hardware, computer software and engineering methodologies in the
recent decades have led to an increased use of computers by engineers. Until recently, the
main use of computers by engineers was mainly confined to the number crunching of large
volumes of numerical data. In the realm of structural design, this use has been limited almost
exclusively to algorithmic solutions (Chau & Lee 1991). Structural design problems are often
ill structured. Hence, there is a need to develop programming environments that can
incorporate engineering judgment along with algorithmic tools. (Kitzmiller & Kowalik 1987)

In the past decade, the potential of artificial intelligence (AI) techniques for providing
assistance in the solution of engineering problems has been recognized. Expert systems are
considered suitable for solving problems that demand considerable expertise, judgment or
rules of thumb. As a result of years of research in AI, expert systems have emerged as a most
promising application covering a wide range of applications (Adeli & Hawkins 1991, Chau
1992, 2004a&b, Chau & Anson 2002, Chau & Chen 2001, Chau et al. 2002, Chau & Cheung
2004, Chau & Ng 1996, Chau & Yang 1994, Chau & Zhang 1995, Kumar 1995, Lin &

This is the Pre-Published Version.

2

Albermani 1998, Sriram 1987). Expert systems have developed into practical problem
solving tools that can reach a level of performance comparable to that of a human expert in
some specific problem domains. All these applications can be broadly classified into the
following categories: diagnosis; design; data interpretation; planning; and education. Areas of
early applications of expert systems technology include medical diagnosis, mineral
exploration and chemical spectroscopy. Recent developments in artificial intelligence have
made it possible to develop an expert system that can provide expert advice to the user in
selection of design criteria and design parameters. (Dym & Levitt 1991)

This paper introduces the development of an expert system in design of liquid retaining
structures using blackboard architecture with hybrid knowledge representation techniques
including production rule system and object-oriented approach. An expert system shell,
Visual Rule Studio, is employed to facilitate the development of this prototype system. It is a
coupled system in which AI-based symbolic processing is combined with the traditional
numerical processing. The expert system developed is based on British Standards Code of
Practice BS8007: 1987: Design of concrete structures for retaining aqueous liquids (British
Standards Institution 1987). Explanations are made to assist inexperienced designers or civil
engineering students to learn how to design liquid retaining structures effectively and
sustainably in their design practices. The use of this intelligent tutoring system in
disseminating heuristic knowledge and experience to practitioners and engineering students is
discussed.

KNOWLEDGE ON DESIGN OF LIQUID RETAINING STRUCTURES

Liquid retaining structure is a structure which is designed and constructed to retain aqueous
liquid. It is subject to lateral water pressure and earth pressure when it is located underground.
Most of these structures are constructed by reinforced concrete with design life of 50 years in
Hong Kong. Crack widths are to be checked to ensure impermeability of concrete and
prevention from corrosion of reinforcement.

Normally, two kinds of classification are used regarding liquid retaining structures, i.e.
according to the shape or the location. Based on the shape, it is classified as rectangular,
circular or polygon. Based on its location, it is classified as underground or above ground.

Compared with circular tank structure with the same width, rectangular liquid retaining
structure has larger volume. However, because of stress concentration at corners, rectangular
structures will be more vulnerable to failure. It also has a weaker deflection control. With a
circular tank design, not all the spaces are utilized. Since a circular structure can be
constructed monolithically without any construction joints, it has better strength quality. With
precise structural analysis, circular structure has a better control in deflection, crack width,
bending moment resistance, axial compression resistance, and shear resistance than
rectangular structure. Polygon liquid retaining structure is usually used for aesthetic purposes,
such as a fountain in a garden and the retaining height is usually not very high. Its major
design consideration is on crack width to ensure its impermeability and is seldom used in
industrial or domestic fields.

Underground liquid retaining structure usually has larger base area which cannot easily be
supported by structure above the ground. In some cases, the tank is connected to underground
pipe network system, in order to reduce maintenance cost, it will be constructed underground
to suit the invert level of the pipe network system. The underground structure is mainly

3

subjected to lateral earth pressure or lateral water pressure which is due to the underground
water table. Besides checking structural failure mode, bearing capacity of soil and settlement
of structure also need to be checked. If the soil bearing capacity does not satisfy the
requirement, pile foundation or raft foundation will be required. Liquid retaining structure
above the ground is only subject to liquid pressure due to its own retaining liquid. The
structure can either rest on ground concrete slab immediately or rest on supports which can
be 3-D steel truss, mass concrete blocks, or concrete beam.

There are a great variety of factors affecting the decision in selecting design criteria and
design method. These factors are: dimensions, location, ground condition, support condition,
groundwater conditions, aesthetic properties, design life, exposure condition, usage, roofing,
availability of construction materials.

Liquid retaining structures, like any other engineering structures, should not fail to satisfy any
of its performance criteria. According to the Code of Practice BS8007, the two main classes
of limit state, which should be considered, are ultimate limit state and serviceability limit
state. Ultimate limit state is design against structural failure, including bending moment
check and shear force check. Serviceability limit state is design against deflection and crack
width. Normal crack width control is 0.2mm while, for severe cases, allowable crack width is
0.1mm. For underground liquid retaining structures, serviceability limit state design is used in
checking of bearing capacity of soil. Factors of safety are involved in the design in order to
increase the reliability that the structures will perform satisfactorily.

EXPERT SYSTEM

Expert systems are interactive computer programs that incorporate expertise and provide
advice on a wide range of tasks. They solve a specific complex problem using reasoning
processes that resemble those of human experts, when they solve the same problem. They
tend to mimic the decision making and reasoning processes of human experts by providing
expert advice, answering questions, and justifying their conclusions. An expert system can
contain the purpose of teaching. Only explanations are not sufficient in the system. The
problem should be dealt with by communication between the user and the system. In other
words, the system has to engage the user in a dialogue actively and systematically.

Figure 1 shows the schematic view of an expert system. These systems typically consist of
the following three basic components: knowledge base, context and inference mechanism.
The heart and core of any expert system is the knowledge base, which is usually a collection
of rules, typically in the form of IF..THEN….. The knowledge base is a collection of general
facts, rules of thumb and causal models of the behavior of the problem domain. It contains
the knowledge specific to the domain of the problem to be solved. Other forms of
representations commonly used are logic, frame-based schemes, nets and, more recently, the
object-oriented approach. For expert system developers, rule-based system tends to be more
easily understood and thus accepted. However, because of its modularity, data abstraction
and inheritance characteristics, object-oriented programming will likely subsume other
approaches in the very near future.

The context is a workspace for the problem constructed by the inference mechanism from the
information provided by the user and the knowledge base. It contains facts that reflect the
current state of the problem. The organization of the context depends on the nature of the
problem domain. The context builds up dynamically as a particular problem is being

4

considered. The context is used by the inference mechanism to guide the decision making
process.

The inference mechanism monitors the execution of the program by using the knowledge
base to modify the context. It manipulates the context using the knowledge base. A number
of problem solving strategies exist in current expert systems; such as forward chaining, where
the system works from an initial state of known facts to a goal state.

In addition to the three main modules described above, the system should also be provided
with three other components that are not necessarily part of every expert system but are
desirable in a final product: a graceful user interface, an explanation facility and a knowledge
acquisition module.

The function of the user interface module is to accept a problem description from the user and
to interact with the rest of the system in order to analyze the problem or augment the
capability of the system. It provides an interface between the user and the expert system,
usually as a command language for directing execution. The interface is responsible for
translating the input as specified by the user to the form used by the expert system and for
handling the interaction between the user and the expert system during the decision making
process.

The explanation module provides explanations of the inferences used by the expert system.
This explanation can be a priori – why a certain fact is requested, or a posteriori – how a
conclusion was reached.

The knowledge acquisition module serves as an interface between the experts and the expert
system. It provides a means for entering domain specific knowledge into the knowledge base
and revising this knowledge when necessary.

COMPARISON WITH CONVENTIONAL PROGRAMMING

Conventional programs consist of a set of statements whose order of execution is
predetermined. These programs are very inflexible; updates need considerable effort, because
the programmer has to locate the appropriate place to update in the predefined sequence. The
programmer must ensure completeness, i.e., that the program performs correctly for all
possible combination of conditions, and uniqueness of the solution, i.e., that the output is
unique for every possible input. The user perceives the program as a blackbox, where the
program outputs results for the input provided; he does not have any idea as to why the
program has produced certain results.

An expert system eliminates some of the impediments posed by conventional programs by
making a clear distinction between the knowledge base and the control strategy. This
partitioning allows for incremental addition of knowledge, without manipulating the overall
program structure; the programmer need not guarantee completeness. Further, by ranking
several alternatives either by an evaluation scheme or by the use of inexact inference methods,
several solutions can be provided for a particular set of input conditions, thus relaxing the
uniqueness constraint. The user can also question the results produced by the program
through the explanation module. It is clear that an expert system offers a powerful
programming environment for the development of engineering software, since engineering
involves extensive use of heuristics.

5

BLACKBOARD ARCHITECTURE

The blackboard architecture is intended to support development of systems in domains
characterized by interaction between diverse sources of knowledge and hence provides a
framework for integrating knowledge from several sources. The blackboard serves as a global
data structure which facilitates this interaction. A common analogy may be made to problem-
solving in domains where a number of experts in different areas of specialities co-operate
over the solution which any one of them could never achieve alone. In order to facilitate this
process, they agree to use a blackboard to post (or write) any partial result they can contribute
separately. Each expert takes turns to write on the blackboard and, in case more experts wish
to write simultaneously, the conflict is resolved by some pre-defined strategy.

The blackboard architecture has been successfully used in solving a wide range of tasks, such
as speech recognition, signal processing, and planning. (Engelmore & Morgan 1988) A
blackboard system consists of a number of knowledge sources that communicate through a
blackboard and are controlled by an inference mechanism. Figure 2 shows the architecture of
a blackboard system. The main components of a typical blackboard system are entries,
knowledge sources, blackboard, and inference mechanism.

Entries are the immediate results produced by the system. In a typical system, each entry has
a certainty factor as well as a specification.

The knowledge base consists of a number of knowledge sources (KSs), which contain the
knowledge. These knowledge sources are independent chunks of knowledge and do not
directly communicate with each other. Instead, they participate in the problem solving
process by creating entries in a global database – the blackboard. Knowledge modules look at
the blackboard to see if suitable data is present to trigger their execution. If they are selected,
execution results in new or altered data on the blackboard, which will then trigger other
knowledge modules. Solving a problem using a blackboard architecture is based on
cooperation of the knowledge modules present. Each knowledge source consists of a
condition-action pair. Actions are executed whenever the conditions are satisfied in the
blackboard.

The blackboard or context consists of the information or entries generated by the knowledge
sources during the problem solving process. It is organized into a number of levels each
representing different aspects or stages of the solution process. These levels depict an a priori
plan for the solution of a problem that can be naturally decomposed into a set of levels. Each
level contains objects and attributes that are important to the representation of the problem.
Normally, knowledge sources are specific to certain levels in the blackboard, i.e., the
activation of a certain knowledge sources depends on the entries generated at certain levels in
the blackboard, while the actions of the knowledge source modify entries at some other level.
The main units in the blackboard are hypotheses. The hypotheses are either primary guesses
about particular aspects of the problem or partial solutions. Hypotheses at various levels are
related through structural relationships.

The inference mechanism consists of two main components: the agenda or scheduler, and the
monitor. The agenda keeps track of all the events in the blackboard and calculates the priority
of execution for knowledge sources that were generated as a result of the activation of other
knowledge sources. It is a list of knowledge sources or rules to be executed in the next cycle.

6

Based on the success or failure of a particular rule, new rules may get added on to it or some
may be deleted from it. The basis of giving priorities to the rules on the agenda may vary
from system to system. The monitor takes the element with the highest priority and executes
it. Several problem-solving strategies can be implemented using the monitor.

Because of its modularity, the blackboard architecture enables easy incremental development
of a software system. Developers can integrate different methods of knowledge
representation in a single system because of the modularity of knowledge sources.

KNOWLEDGE REPRESENTATION

Broadly speaking, structural analysis is described as a three-stage process involving:
modeling, solution and evaluation. Before knowledge can be represented in structural
analysis, the type of knowledge involved must be identified and classified. Static knowledge
consists of definitions, axioms and laws. These may be a priori or the result of scientific
investigation. Dynamic knowledge refers to heuristics, which is related to the process of
search or to knowledge based on experience. Dynamic knowledge is not deducible from any
axiom, rather it is generally gained from experience. Dynamic knowledge can also be
described as ‘shallow’, meaning that it cannot provide us with explanations of why certain
decisions should be made. Static knowledge is ‘deep’ in that it is deduced from fundamentals.

There are several approaches for declarative representation of knowledge that are available in
the AI literature, the following three, among others, being the major ones: rule-based
production system, frames and object-oriented programming. A production system is a
collection of rules and is believed to be good at describing heuristic knowledge. A frame
system, on the other hand, is suitable for a complex and rich representation of knowledge,
such as fundamental principles (categorized as static knowledge). Object-oriented
programming concept is used, in which a computer program consists of a number of
independent objects that process jobs by exchanging information they need via messages. To
apply object-oriented program development, data representations for the model must be
specified. There are three steps in the development of an object-oriented program: selection
of classes, specification of the classes, implementation of the classes. Here, the word ‘class’
refers to a description of a set of similar objects; one member object in a class is called an
‘instance’. It seems a good idea to utilize both representations to solve structural design
problems.

USE OF EXPERT SYSTEM SHELL

To facilitate the development of expert systems, expert system programming environments or
shells have been developed. These system shells contain specific representation methods and
inference mechanisms. The knowledge base and explanation facility of the system have been
developed using a commercially available expert system shell called Visual Rule Studio
which is a hybrid application development tool that integrates object-oriented techniques and
expert system technology with traditional, procedural programming (RuleMachine
Corporation 1998). Visual Rule Studio installs as an integral part of Microsoft Visual Basic
6.0 and appears within Visual Basic as an ActiveX Designer. As a part of the Visual Basic
Integrated Development Environment, using a RuleSet in the application is similar to using a
form or other Visual basic Designer.

7

By isolating rules as component objects, separate from objects and application logic, Visual
Rule Studio allows developers to leverage the proven productivity of today’s component
oriented development tools, such as Visual Basic. With Visual Rule Studio, rule development
becomes a natural part of the component architecture development process. The complex and
time consuming problems of integrating multiple development tools and managing
incompatible object models no longer exist. Visual Rule Studio becomes an integrated part of
the Visual Basic development and produces objects that can interact with virtually any
modern development product.

Visual Rule Studio objects are used to encapsulate knowledge structure, procedures, and
values. An object’s structure is defined by its class and attribute declarations within a RuleSet.
Object behavior is tightly bound to attributes in the form of facets, methods, rules, and
demons. Figure 3 shows the structure of Visual Rule Studio components. Each attribute of a
class has a specific attribute type. The Visual Rule Studio attribute types are compound,
multicompound, instance reference, numeric, simple, string, interval, and time. Each attribute
can have many facets associated with it. Facets provide control over how the inference
engines process and use attributes. Each attribute can also have methods associated with it.
Methods establish developer-defined procedures associated with each attribute. The set of
backward-chaining rules that conclude the same attribute is called the attribute’s rule group.
The set of forward-chaining demons that reference the same attribute in their antecedents is
called the attribute’s demon group.

The Visual Rule Studio inference engines control the strategies that determine how, from
where, and in what order a knowledge base draws its conclusions. These inference strategies
model the reasoning processes an expert uses when solving a problem. Visual Rule Studio
supports these types of inferencing strategies: backward chaining, forward chaining and
hybrid chaining. Each of these inferencing strategies acts on specific knowledge base
components. Backward chaining inferencing starts with a specific hypothesis, or set of
hypotheses, called the agenda. In backward chaining, the inference engine works backward
from the agenda, pursuing a hypothesis via its search order strategies, which can be
composed of the session context, the knowledge base rules, WHEN NEEDED methods,
Query Objects, or the default value. Forward chaining inferencing starts with known data or
conditions and determines what can be concluded from that data. Forward chaining uses a
knowledge base’s demons and WHEN CHANGED methods. Hybrid inferencing is a mixed
strategy that combines backward chaining and forward chaining.

EXPERT SYSTEM ON DESIGN OF LIQUID RETAINING STRUCTURES

The system being developed combines expert systems technologies, object-oriented
programming, relational database models and hypertext/graphics in a windowing
environment. It runs under and follows the conventions of Microsoft Windows. In a
windowing system, any types of display windows can be represented as objects, each with its
own private data or information. By defining various types of windows as different classes,
such as checkbox group, hyperregion, promptbox, pushbutton, textbook, etc., they can inherit
common characteristics or/and possess their own special properties.

The knowledge used has been acquired mostly from written documents such as code of
practice, textbooks and design manuals and complemented by experienced engineers
involved with the design of liquid retaining structures. The domain knowledge is translated
into procedures and methods using object-oriented representation. The system can be

8

compiled and encrypted to create a run-only system. This run-only system can be installed on
a microcomputer for office use or on a portable laptop to be used in the field. The user can
always overrule any design options and recommendations provided by the system. In other
words, it plays the role of a knowledgeable assistant only.

The input data provided by the user will be rejected if it is not within the range specified. It
can explain its line of reasoning for obtaining an answer. It provides information about any
individual member in multi-window graphics text display where graphic images are
combined with valuable textual information. This kind of intelligent graphics is extremely
valuable to structural designers because it enhances their confidence in the design provided
by the expert system.

The system offers a state-of-the-art user interface. The use of a mouse or other pointing
device makes the data entry a simple task even for novice computer users. As such, users
simply point and click their way through the process to appreciate the dynamic behavior of
the system. Input data entry is kept at minimum. Input data are provided by the user mostly
through selection of appropriate values of parameters from the menus and providing answers
to the queries made by the system. An expert system can help the novice engineers or
students to learn more knowledge of the topic through using the system. Explanations are
made to assist them to learn how to design liquid retaining structures effectively and
sustainably in their design practices. Implementation of the system reduces the dependence
on experienced designers for routine design works and frees them to do more innovative
design works.

TYPICAL CONSULTATION SESSION

To demonstrate how this expert system assists engineer in the preliminary design of liquid
retaining structure, a sample run is demonstrated in this section. A typical example of liquid
retaining structure is used to illustrate its application. An rectangular shape liquid retaining
structure with a single compartment located underground, having a volume of 100 m3, a
depth of 5 m and breadth/width ratio of 1.2, is designed under a severe exposure environment,
i.e. the maximum design crack width is 0.2mm. The purpose of the design is to find a feasible
optimum structural section in term of minimum unit cost per meter length, based on the
standard slab thickness and reinforcement size as well as bar spacing. Figures 4 to 7 show
some typical screen displays during the execution of the expert system. Little explanation
facility is required since each screen display was designed to be user-friendly to follow.

CONCLUSIONS

It has been demonstrated that the hybrid knowledge representation approach combining
production rule system and object-oriented programming technique to the design of water
retaining structures is possible with the implementation of blackboard system architecture. It
is appropriate to integrate algorithmic and symbolic programming on structural design into a
single computer-aided environment running under a Windows platform. The educational
spin-off of expert systems in training novice engineers or in transferring knowledge cannot be
overemphasized.

REFERENCES

Adeli, H. and Hawkins, D.W. (1991) A hierarchical expert system for design of floors in

9

highrise buildings, Computers & Structures, 41(4): 773-778.
British Standards Institution (1987) Design of Concrete Structures for Retaining Aqueous
Liquids, British Standards Institution, London.
Chau, K.W. (1992) An expert system for the design of gravity-type vertical seawalls,
Engineering Applications of Artificial Intelligence, 5(4), 363-367.
Chau, K.W. (2004a) A prototype knowledge-based system on unsteady open channel flow in
water resources management, Water International, 29(1), 54-60.
Chau, K.W. (2004b) Knowledge-based system on water-resources management in coastal
waters, Journal of the Chartered Institution of Water and Environmental Management, 18(1),
25-28.
Chau, K.W. and Anson, M. (2002) A knowledge-based system for construction site level
facilities layout, Lecture Notes in Artificial Intelligence, 2358, 393-402.
Chau, K.W. and Chen, W. (2001) An example of expert system on numerical modelling
system in coastal processes, Advances in Engineering Software, 32(9), 695-703.
Chau, K.W., Cheng, Chuntian and Li, C.W. (2002) Knowledge management system on flow
and water quality modeling, Expert Systems with Applications, 22(4), 321-330.
Chau, K.W. and Cheung, C.S. (2004) Knowledge representation on design of storm drainage
system, Lecture Notes in Artificial Intelligence, 3029, 886-894.
Chau, K.W. and Lee, S.T. (1991) Computer Aided Design Package `RCTANK' for Analysis and
Design of Reinforced Concrete Tanks, Computers and Structures, 41(4): 789-799.
Chau, K.W. and Ng, V. (1996) A knowledge-based expert system for design of thrust blocks for
water pipelines in Hong Kong, Water Supply Research and Technology - Aqua, 45(2), 96-99.
Chau, K.W. and Yang, W.W. (1994) Structuring and evaluation of VP-expert based knowledge
bases, Engineering Applications of Artificial Intelligence, 7(4), 447-454.
Chau, K.W. and Zhang, X.N. (1995) An expert system for flow routing in a river network,
Advances in Engineering Software, 22(3), 139-146.
Dym, C.L. and Levitt, R.E. (1991) Knowledge-Based Systems in Engineering, McGraw-Hill,
New York.
Engelmore, R. and Morgan, T. (1988) Blackboard Systems, Addison_Wesley, Wokingham.
Kitzmiller, C.T. and Kowalik, J. S. (1987) Coupling Symbolic and Numeric Computing in
Knowledge-Based Systems, AI Magazine, Summer: 5-90.
Kumar, B. (1995) Knowledge Processing for Structural Design, Topics in Engineering Vol.
25, Computational Mechanics, Southampton.
Lin, S. and Albermani, F., 2001, Lattice-dome design using A knowledge-based system
approach, Computer-aided Civil and Infrastructure Engineering, 16(4), 268-286.
RuleMachines Corporation (1998) Visual Rule Studio Developer’s Guide, Indialantic.
Sriram, D. (1987) Knowledge-Based Approach for Structural Design, Topics in Engineering
Vol. 25, Computational Mechanics, Southampton.

10

Figure 1. Schematic View of an expert system

User interface

Explanation
facility

Knowledge
acquisition
facility

Context

Inference
mechanism

Knowledge
base

User

Expert

11

Figure 2. The Blackboard Architecture

Agenda
(Scheduler) Monitor

Knowledge base Blackboard

Level 1

Level 2

Level n-1

Level n KS1 KS2

KS3 KS4

KS5 KS6

Inference Mechanism

12

Figure 3. Structure of Visual Studio Components

Class

Name

Properties

Attributes

Name

Type

Facets Methods Rules Demons

Instance
Attribute

Value

13

Figure 4. Screen showing structural specification in preliminary design

14

Figure 5. Screen displaying imposed load specification

15

Figure 6. Screen showing generation of finite element model

16

Figure 7. Screen prompting a message for iteration on model generation

