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The serotonin (5-HT) uptake system is supposed to play a crucial part in vascular functions
by “fine-tuning” the local concentration of 5-HT in the vicinity of 5-HT2 receptors in vas-
cular smooth muscle cells. In this study, the mechanism of 5-HT uptake in human brain
vascular smooth muscle cells (HBVSMCs) was investigated. [3H]5-HT uptake in HBVSMCs
was Na+-independent. Kinetic analyses of [3H]5-HT uptake in HBVSMCs revealed a K m of
50.36±10.2 mM and a V max of 1033.61±98.86 pmol/mg protein/min. The specific sero-
tonin re-uptake transporter (SERT) inhibitor citalopram, the specific norepinephrine trans-
porter (NET) inhibitor desipramine, and the dopamine transporter (DAT) inhibitor GBR12935
inhibited 5-HT uptake in HBVSMCs with IC50 values of 97.03±40.10, 10.49±5.98, and
2.80±1.04 µM, respectively. These IC50 values were 100-fold higher than data reported
by other authors, suggesting that those inhibitors were not blocking their correspond-
ing transporters. Reverse transcription-polymerase chain reaction results demonstrated
the presence of mRNA for organic cation transporter (OCT)-3 and plasma membrane
monoamine transporter (PMAT), but the absence of OCT-1, OCT-2, SERT, NET, and DAT.
siRNA knockdown of OCT-3 and PMAT specifically attenuated 5-HT uptake in HBVSMCs. It
is concluded that 5-HT uptake in HBVSMCs was mediated predominantly by a low-affinity
and Na+-independent mechanism.The most probable candidates are OCT-3 and PMAT, but
not the SERT.
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INTRODUCTION
Serotonin [5-hydroxytryptamine (5-HT)] is not only a neuro-
transmitter in the central nervous system and digestive tract, but
also a potent vasoconstrictor. In the cardiovascular system, 5-HT
is mainly stored in platelets, thereby maintaining a low level of
free-circulating 5-HT. 5-HT is released during platelet aggrega-
tion. The released 5-HT feeds back on the platelets to amplify
the aggregation process and causes the contraction of vascular
smooth muscle cells through the stimulation of 5-HT2 receptors
(Vanhoutte, 1990).

Several studies have suggested that 5-HT may be involved
in vascular diseases such as hypertension. For instance, arterial
contraction to 5-HT is profoundly enhanced in hypertension in
animals and humans (Wyse, 1984; Dohi and Lüscher, 1991; Hutri-
Kähönen et al., 1999). Also, an increased plasma level of 5-HT has
been measured in various models of hypertension (Soares-da-Silva
et al., 1995; Krygicz et al., 1996).

Arteries can take up 5-HT. This mechanism is crucial to the
vascular functions of 5-HT because it “fine-tunes” the availability
of 5-HT at its cognate receptors. The action of 5-HT is supposed
to be terminated after it is removed from its site of action and is

taken up into the cytosol of vascular cells, where 5-HT is even-
tually metabolized by monoamine oxidase-A (Ni et al., 2004).
Interestingly, two research teams have reported that the uptake
of 5-HT is a prerequisite for the mitogenic effect of 5-HT on pul-
monary arterial smooth muscle (Lee et al., 1991; Eddahibi et al.,
1999). Being a protonated molecule, 5-HT cannot diffuse across
the lipid bilayer of the cell membrane under physiological condi-
tions. Therefore, transporter-mediated mechanisms play a key part
in 5-HT uptake. Similar to neurons, the smooth muscle cells of the
aorta contain a specific serotonin re-uptake transporter (SERT; Ni
et al., 2004). 5-HT uptake in the rat aorta is inhibited by the SERT
inhibitors fluoxetine and fluvoxamine (Ni et al., 2004). In addi-
tion, a significant part of 5-HT is taken up by rat extracerebral
arteries via a high-affinity transporter, which is also consistent to
the characteristics of SERT (Amenta et al., 1985). Moreover, the
contracting effect of 5-HT on the aorta can be potentiated by
SERT inhibitors (Ni et al., 2004). The SERT may also contribute
to the regulation of vascular contractility under pathophysiolog-
ical conditions. For instance, the SERT in pulmonary vascular
smooth muscle is up-regulated by hypoxia (Eddahibi et al., 1999;
Wanstall et al., 2003) and pulmonary hypertension (Eddahibi et al.,
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2001). Besides, SERT activities in deoxycorticosterone acetate salt-
and N ω-nitro-l-arginine-induced hypertensive rats are lower than
those in normal rats (Ni et al., 2006).

Although 5-HT can be taken up by blood vessels, many prob-
lems have not been resolved. First, 5-HT-induced vasoconstriction
in the main pulmonary artery and mesenteric artery cannot be
enhanced by SERT inhibitors (Wanstall et al., 2003). Second, 5-
HT uptake is reduced, but not abolished, in the carotid artery,
mesenteric artery, and aorta of SERT-knockout rats compared
with wild-type rats (Linder et al., 2008a). Although SERT protein
is expressed in veins, it is not functional, since the 5-HT uptake
in vein cannot be significantly inhibited by classic SERT inhibitors
(Linder et al., 2008b). Therefore, a non-SERT-dependent mech-
anism may be present which may make contributions to 5-HT
uptake in certain vascular beds. It is particularly of interest to
study the 5-HT uptake mechanism in cerebral arteries since 5-
HT is considered to be involved in the regulation of the cerebral
circulation, and is implicated in the etiology of cerebrovascular
diseases such as migraine, vasospasm due to subarachnoid hem-
orrhage, and stroke (Parsons, 1991). Studies have also shown
that the 5-HT-induced contraction is enhanced in the basilar
arteries of hypertensive rats (Nishimura, 1996). Therefore, we
sought to characterize the 5-HT uptake mechanism in human
brain vascular smooth muscle cells (HBVSMCs) in the present
study.

MATERIALS AND METHODS
CULTURE OF HBVSMCs
Primary culture of HBVSMCs were obtained from ScienCell
Research Laboratories (Carlsbad, CA, USA) and cultured in the
medium supplied by the same company, at 37˚C in an atmosphere
of 95% air and 5% CO2.

5-HT UPTAKE
Experiments were carried out in HEPES-buffered Ringer’s solu-
tion containing (in mM): 135 NaCl; 5 KCl; 3.33 NaH2PO4;
0.83 Na2HPO4; 1.0 CaCl2; 1.0 MgCl2; 5 HEPES; and 10 d-
glucose (adjusted to pH 7.4 or other pH as specified in the
figures). Experiments were also carried out in Na+-free buffer
containing (in mM): 140 N -methyl-d-glucamine (NMDG); 5
HEPES; 5 KH2PO4; 1.0 CaCl2; 1.0 MgCl2; and 10 d-glucose
(pH 7.4).

Confluent monolayers of cells in 24-well plates were washed
thrice in HEPES-buffered Ringer solution. Cells were pretreated
with the monoamine oxidase-A inhibitor clorgyline (10 µM)
for 10 min and 300 µL of Ringer solution containing [3H]5-HT
(1 µM, 2 µCi/mL) was then added to each well for 30 min. To
determine the passive uptake of 5-HT, monolayers of cells were
incubated in buffer containing [3H]5-HT in the presence of excess
non-radiolabeled 5-HT (1 mM). Plates were then rapidly washed
three times with ice-cold phosphate-buffered saline (PBS) contain-
ing (in mM): 137 NaCl, 2.68 KCl, 1.47 KH2PO4, and 8.1 Na2HPO4

(pH 7.4). Cells were solubilized in 0.5 mL of 5% (v/v) Triton X-
100. The radioactivity was measured by a β-scintillation counter.
Protein content was determined by spectrophotometric means
using a commercial bicinchoninic acid assay (Pierce Biochemicals,
Rockford, IL, USA).

RNA ISOLATION AND REVERSE TRANSCRIPTION-POLYMERASE CHAIN
REACTION
Total RNA was isolated from HBVSMCs using TRIzol reagent
(Invitrogen, Carlsbad, CA, USA). Two micrograms of total RNA
were used for first-strand cDNA synthesis using random hexa-
mer primers and Superscript II RNase H− Reverse Transcriptase
(SuperScript Pre-amplification System, Invitrogen). The resulting
first-strand cDNA was directly used for PCR amplification. The
primers for amplifying various transporters have been used in
other studies (Martel et al., 2003; Tahara et al., 2006; Zhang et al.,
2006) and their sequences are listed in Table 1. PCR amplification
was carried out using PCR SuperMix (Invitrogen) with the follow-
ing parameters: denaturation at 94˚C for 30 s, annealing at 55˚C for
30 s, and extension at 68˚C for 45 s. Thirty cycles were completed.
This was followed by a final extension at 72˚C for 10 min. PCR
products were analyzed by 1% agarose gel electrophoresis and
visualized by staining with ethidium bromide. To semi-quantify
the PCR products of nucleoside transporters, the optical density
values of protein bands were normalized to those of β-actin.

WESTERN BLOTTING
Human brain vascular smooth muscle cells were grown to con-
fluence on 10-cm Petri dishes. The cells were washed three times
with ice-cold PBS, scraped in 2 mL of 5 mM sodium phosphate,
pH 8, with protease inhibitor cocktail [Sigma, St. Louis, MO;
1:100 (v/v)]. Cells were sonicated briefly and centrifuged at 3,000 g
for 10 min to remove nuclei and unbroken cells. The resulting
supernatant was centrifuged at 30,000 g for 30 min to pellet the
crude microsomal membranes, which was resuspended in 5 mM
sodium phosphate. The crude membranes were then resolved on
9% (w/v) SDS-polyacrylamide gels and electrotransferred onto
nitrocellulose membranes. After blocking with 5% (w/v) non-
fat dry milk in PBS overnight at 4˚C, nitrocellulose membranes
were incubated with the anti-organic cation transporter (OCT)-3
or anti-plasma membrane monoamine transporter (PMAT) anti-
body [1:100 (v/v) dilution in blocking solution], at room temper-
ature for 2 h. Nitrocellulose membranes were then washed exten-
sively with 0.02% (v/v) Triton X-100 in PBS. After washing, the
membranes were incubated with the horseradish-conjugated goat
anti-rabbit secondary antibody [1:5000 (v/v) dilution in blocking
solution] at room temperature for 2 h. Excess secondary anti-
body was again washed, and the bound secondary antibody was
detected by enhanced chemiluminescence (Western Blot Chemilu-
minescence Reagent Plus; NEN Life Science Products, Boston, MA,
USA). Protein expression of β-actin was similarly detected with
the monoclonal mouse anti-actin antibody (Chemicon, Temecula,
CA, USA). The molecular size of OCT-3, PMAT, and β-actin are
62, 58, and 42 kDa, respectively. Optical density values of OCT-3
and PMAT bands were normalized to those of β-actin.

siRNA KNOCKDOWN OF OCT-3 AND PMAT
Human brain vascular smooth muscle cells were transiently trans-
fected with siRNA specific for OCT-3 and PMAT (Qiagen Incor-
porated, Valencia, CA, USA) for 10–12 h with RNAifect Transfec-
tion Reagent (Qiagen), according to manufacturer’s instructions.
HBVSMCs were then further cultured for 24–48 h before used for
mRNA determinations and 5-HT uptake study.
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Table 1 | Oligonucleotide sequence of the primers used for RT-PCR.

Primers Corresponding

nucleoside

Size (bp)

OCT-1 (accession no.: NM_003057) Sense 5′-CTGTGTAGACCCCCTGGCTA-3′ 408–770 363

Antisense 5′-GTGTAGCCAGCCATCCAGTT-3′

OCT-2 (accession no.: NM_003058) Sense 5′-CCTGGTATGTGCCAACTCCT-3′ 590–923 334

Antisense 5′-CACCAGGAGCCCAACTGTAT-3′

OCT-3 (accession no.: NM_021977) Sense 5′-GACCAAGGATTTGAGAAAGTTG-3′ 2067–2485 419

Antisense 5′-AGGGAATCTGTGGCTCTAGG-3′

SERT (accession no.: NM_001045) Sense 5′-CATCTGGAAAGGCGTCAAG-3′ 1112–1430 319

Antisense 5′-CGAAACGAAGCTCGTCATG-3′

PMAT (accession no.: AY485959) Sense 5′-ATGGGCTCCGTGGGGAGCCAG-3′ 148–547 400

Antisense 5′-TGTGCAGGGTCAGTCTCTCC-3′

NET (accession no.: AK312793) Sense 5′-CTTCTGGCGCGGATGAA-3′ 89–483 395

Antisense 5′-ATGGGCAGATTTTCCAAACG-3′

DAT (accession no.: NM_001044) Sense 5′-AAGAGCAAATGCTCCGTGGGA-3′ 133–502 370

Antisense 5′-CCCTGTTGAACTGGCCGAGG-3′

β-actin (accession no.: NM_001101) Sense 5′-GGCGTGATGGTGGGCATG-3′ 197–436 240

Antisense 5′-CTGGGTCATCTTCTCGCG-3′

MATERIALS
[3H]5-HT was purchased from Moravek Biochemicals (Brea, CA,
USA). All antibodies were purchased from Abcam (Cambridge,
UK). Primers for PCR were bought from Invitrogen (CA, USA).
Other chemicals were purchased from Sigma–Aldrich (St. Louis,
MO, USA).

STATISTICAL ANALYSES
Data are means± SEM and were obtained from at least three inde-
pendent experiments. Statistical analyses of the data were carried
out using the Student’s t -test or ANOVA (one-way and two-way),
if appropriate. P < 0.05 was considered significant.

RESULTS
TIME-COURSE AND KINETICS OF 5-HT UPTAKE IN HBVSMCs
5-HT uptake was measured in HBVSMCs after 0, 5, 10, and
30 min of incubation in [3H]5-HT (1 µM). Figure 1 shows that
the uptake of 5-HT into HBVSMCs increased with time. There
was no difference between Na+-dependent and Na+-independent
uptake of [3H]5-HT. The kinetic parameters of 5-HT uptake
were analyzed following a 30-min incubation in [3H]5-HT at
various concentrations (0.1 µM to 50 mM). The rate of 5-HT
uptake increased with increasing 5-HT concentration and yielded
typical saturation kinetics (Figure 2). The estimated K m of 5-
HT uptake was 50.36± 10.2 mM and the estimated V max was
1033.61± 98.86 pmol/mg protein/min.

EFFECT OF PHARMACOLOGICAL INHIBITORS ON 5-HT UPTAKE IN
HBVSMCs
To examine which type of transporters were responsible for 5-HT
uptake in HBVSMCs, the effects of various inhibitors was studied.
Citalopram (a specific SERT inhibitor), desipramine (a specific
norepinephrine transporter (NET) inhibitor), and GBR12935 (a
specific dopamine transporter (DAT) inhibitor) completely inhib-
ited 5-HT uptake in HBVSMCs with IC50 values of 97.03± 40.10,

FIGURE 1 |Time-course of 5-HT uptake in HBVSMCs. [3H]5-HT uptake
(1 µM, 2 µCi/mL) was measured in HBVSMCs in the presence or absence
of Na+ as indicated. Values are means±SEM of three experiments carried
out in triplicate.

10.49± 5.98, and 2.80± 1.04 µM, respectively (Figure 3). The
IC50 value for citalopram was significantly different from the
that for GBR12935 (P < 0.05) but not for desipramine. The IC50

values for desipramine and GBP12935 were not statistically dif-
ferent. Corticosterone (a specific OCT-3 inhibitor) could only
inhibited 5-HT uptake in HBVSMCs by 27%, with the threshold
concentration between 10 and 100 nM.

IDENTIFICATION OF TRANSPORTERS IN HBVSMCs BY RT-PCR
Reverse transcription-polymerase chain reaction (RT-PCR) was
used to study the mRNA expressions of different transporters
in HBVSMCs. cDNA from human livers and kidneys were used
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FIGURE 2 | Kinetic analyses of 5-HT uptake in HBVSMCs. Concentration
dependence of 5-HT (0.1 µM to 50 mM) uptake was determined by
measuring [3H]5-HT uptake at room temperature for 30 min. Values are
means±SEM of three experiments carried out in triplicate.

as positive controls because all the transporters studied were
expressed in these tissues. The PCR products of OCT-3 and PMAT
were amplified by RT-PCR from RNA isolated from HBVSMCs
(Figure 4). The molecular sizes of PCR products were the same
as expected and the PCR products were confirmed by sequenc-
ing, indicating the mRNA expressions of OCT-3 and PMAT in
HBVSMCs. In contrast, the PCR product of OCT-1, OCT-2, SERT,
NET, and DAT were not detected.

siRNA KNOCKDOWN OF OCT-3 AND PMAT
Organic cation transporter-3 and PMAT were knocked down
specifically using siRNA to verify their contribution to 5-HT trans-
port in HBVSMCs. Transfection of HBVSMCs with siRNA against
OCT-3 resulted in a reduction in mRNA and protein expressions
of 64.3 and 72.2%, respectively, as well as a reduction in 5-HT
uptake of 22.1% in HBVSMCs. Transfection of HBVSMCs with
siRNA against PMAT resulted in a reduction in mRNA and protein
expressions of 81.2 and 71.5%, respectively, as well as a reduction
in 5-HT uptake of 34.2% in HBVSMCs (Figure 5).

DISCUSSION
In the present study, we characterized the 5-HT uptake system
in HBVSMCs (i.e., vascular smooth muscle cells cultured from
human brain). Similar to the findings in certain vascular beds
such as mesenteric arteries, vena cava, and jugular vein (Wanstall
et al., 2003; Linder et al., 2008a,b), SERT does not have a signifi-
cant contribution to 5-HT uptake in HBVSMCs. This conclusion
can be supported by the fact that: (i) the mRNA of SERT is not
expressed in HBVSMCs; (ii) 5-HT uptake in HBVSMCs is Na+-
independent; (iii) the apparent affinity of HBVSMCs for 5-HT
is much lower than that of SERT (K m, 1033 µM vs. 463 mM;
Ramamoorthy et al., 1993); and (iv) citalopram at 100 nM (a dose
that can inhibit SERT) does not affect 5-HT uptake in HBVSMCs.
The lack of SERT activity in HBVSMCs could suggest that different

FIGURE 3 | Effects of various transporter inhibitors on 5-HT uptake in
HBVSMCs. [3H]5-HT uptake (1 µM, 2 µCi/mL) was measured at room
temperature for 30 min in the presence of various concentrations of
citalopram (�), desipramine (�), GBR12935 (•), and corticosterone (©).
Values are means±SEM of three experiments carried out in triplicate.

mechanisms may be responsible for 5-HT uptake in different
vascular beds.

It has been reported that 5-HT is one of the substrates of NET
and DAT (Daws et al., 1998; Zhou et al., 2002). However, the
present study has shown that the mRNA of NET and DAT are not
expressed in HBVSMCs. BGR12935 and desipramine, which block
DAT and NET in the nanomolar range, inhibited 5-HT uptake
in HBVSMCs only at micromolar concentrations. Therefore, the
involvement of NET and DAT in 5-HT uptake in HBVSMCs can
be excluded. More likely candidates responsible for non-SERT-
dependent 5-HT uptake in HBVSMCs are OCTs. OCTs are electro-
genic and Na+-independent transporters (Koepsell et al., 2007).
Substrates for OCTs can be as diverse as 5-HT, dopamine, nor-
epinephrine, epinephrine, histamine, and cimetidine (Jonker and
Schinkel, 2004). Three OCT isoforms, which share high sequence
homologies and a common 12-transmembrane domain structure,
have been identified and characterized from human and other
mammalian species. They display considerable overlap in sub-
strate specificity and are differentially expressed in various tissues.
OCT-1 and OCT-2 are mainly expressed in the liver and kid-
ney, respectively, where they are supposed to play a key part in
systemic elimination of organic cations (Gorboulev et al., 1997;
Zhang et al., 1997; Wright and Dantzler, 2004). OCT-3 (also called
“extraneuronal monoamine transporter”) has a broad distribu-
tion and is found in the liver, heart, placenta, skeletal muscle,
kidney, and brain (Gründemann et al., 1998; Wu et al., 2000).
The results of RT-PCR in the present study revealed that the
mRNA of OCT-3 (but not OCT-1 and OCT-2) is expressed in
HBVSMCs. From a pharmacological perspective, OCT-3 can be
distinguished from the SERT, DAT, NET, and other isoforms of
OCTs by inhibition by corticosterone, O-methyl isoprenaline, and
levamisole (Horvath et al., 2003; Martel and Azevedo, 2003).
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FIGURE 4 | Reverse transcription-polymerase chain reaction
analyses of various 5-HT transporter mRNAs in HBVSMCs. PCR
products are seen in reactions using oligonucleotide primer pairs for
(A) OCT-3 and (B) PMAT but not for (A) OCT-1, OCT-2, (C) SERT, (D)

NET, and (E) DAT. Positive controls with human liver or brain cDNA
indicate the expected sizes of amplified fragments: 363 bp (OCT-1),
334 bp (OCT-2), 419 bp (OCT-3), 319 bp (SERT), 400 bp (PMAT), 395 bp
(NET), and 370 bp (DAT).

FIGURE 5 | Effects of siRNA knockdown of OCT-3 and PMAT on 5-HT
uptake in HBVSMCs. (A) mRNA and (B) protein expressions of OCT-3 and
PMAT mRNA in HBVSMCs transfected with siRNA against OCT-3 and PMAT
and a control non-silencing sequence. Bar graph showing the amount of (C)

mRNA and (D) protein of OCT-3 and PMAT normalized to β-actin. (E) 5-HT
uptake in HBVSMCs transfected with OCT-3 and PMAT siRNA and a control
non-silencing sequence. Values are means±SEM of three separate
experiments. *P < 0.05 vs. control.

In the present study, corticosterone inhibited uptake of 5-HT
by 27% and the threshold concentration was found between 10
and 100 nM, which is consistent to the characteristics of OCT-3
(IC50= 0.29 µM; Hayer-Zillgen et al., 2002). Furthermore, siRNA
knockdown of OCT-3 resulted in an inhibition of 5-HT uptake

of 22% in HBVSMCs. All these data imply that OCT-3 may be
involved in 5-HT uptake in HBVSMCs. However, the inability of
corticosterone and siRNA against OCT-3 to abolish 5-HT uptake
in HBVSMCs indicates the existence of other 5-HT transport
systems in these cells.
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Plasma membrane monoamine transporter shows homology
to the equilibrative nucleoside transporter family but, unlike
the existing equilibrative nucleoside transporter members that
mainly transport nucleosides, PMAT specifically transports bio-
genic amines such as 5-HT and dopamine (Engel et al., 2004).
The present study shows that the mRNA of PMAT is expressed
in HBVSMCs. Also, the characteristic of 5-HT uptake activity
in HBVSMCs, such as Na+ independence, low-affinity for 5-
HT, and sensitivity to inhibitors of DAT, SERT, and NET in the
micromolar range, coincide well with the properties of PMAT
(Engel et al., 2004). Therefore, we cannot exclude the possibil-
ity that PMAT may also have a significant role in 5-HT uptake in
HBVSMCs. A good pharmacological inhibitor for PMAT is cur-
rently unavailable. Although decynium-22 is a strong inhibitor of
PMAT (K i= 0.1 µM; Engel and Wang, 2005), it can inhibit OCT-3
with the same potency (Hayer-Zillgen et al., 2002). An alternative
method to study PMAT is the use of siRNA. In the present study,
5-HT uptake was reduced by 34% after the siRNA knockdown of
PMAT. This indicates that PMAT contributes to 5-HT uptake in
HBVSMCs.

Other unidentified transporters or mechanisms independent
of protein transporters may be involved in 5-HT uptake. 5-
HT2A receptors on the cell membrane can be internalized
upon stimulation by 5-HT (Bhattacharyya et al., 2002; Gray
et al., 2003). However, it is hitherto unclear if the internaliza-
tion of 5-HT receptors is involved in 5-HT uptake, just like
the well-known ability of the endothelin type B receptor to
act as a clearance receptor for endothelin-1 (Fukuroda et al.,
1994). Also, 5-HT is a very small molecule that can alternate
its charge dependent upon pH. 5-HT may be able to cross
the plasma membrane by passive diffusion. Nevertheless, based
on the observation that pharmacological blockers and siRNA
could greatly inhibit the 5-HT uptake in HBVSMCs, the involve-
ment of transporter-independent mechanisms should not be
significant.

The role of 5-HT in hypertension is controversial and intrigu-
ing. The enhancement of potency for 5-HT in inducing vasocon-
striction or the pressor response have been observed in several
models of hypertension, including DOCA-salt hypertensive rats
(Watts, 1998), spontaneous hypertensive rats (Collis and Van-
houtte, 1981), and in human patients (Golino et al., 1991). Many
mechanisms may contribute to this hyper-responsiveness, such as
changes in 5-HT receptor signaling or changing circulating levels
of 5-HT. It has been reported that the expression and function
of 5-HT2 receptors are up-regulated in arterial smooth muscle
in DOCA-salt hypertensive rats (Watts, 2002; Banes and Watts,
2003). In addition, SERT function in the aortas of DOCA-salt and

LNNA-hypertensive rats is impaired (Ni et al., 2006). It may lead
to an increase in the level of free-circulating 5-HT. However, the
effect of the SERT on blood pressure is controversial because the
systolic blood pressure, circadian rhythms in the heart rate and
the gross level of motor activity of SERT-knockout rats are not
different from those of normal rats (Homberg et al., 2006; Linder
et al., 2008a). Such a discrepancy could be because 5-HT is taken
up into arteries through mechanisms that are partially (but not
completely) dependent upon the SERT, such as OCT-3 and PMAT
as shown in the present study. The ability of OCT-3 to trans-
port 5-HT has been demonstrated in SERT-deficient mice (Bengel
et al., 1998; Schmitt et al., 2003). More importantly, animals may
adapt to the genetic alteration. Activated or up-regulated mech-
anisms may serve the function of the ablated gene. It has been
reported that OCT-3 contributes to 5-HT clearance if the expres-
sion of the SERT is low or absent. For instance, mRNA expression
of OCT-3 is significantly increased in the intestine and hippocam-
pus of SERT-deficient mice (Chen et al., 2001; Schmitt et al., 2003;
Baganz et al., 2008). Therefore, OCT-3 may be important in the
homeostatic regulation of extracellular 5-HT levels by ensuring
(albeit low-affinity) uptake of 5-HT, particularly in the face of
constitutively reduced expression or function of the SERT such
as that seen in hypertension or during treatment with selective
serotonin re-uptake inhibitors (Hirano et al., 2005; Mirza et al.,
2007). The regulation of PMAT in SERT-knockout animals is not
known. Investigating the possibility that chronic inactivation of
the SERT also leads to compensatory up-regulation of PMAT will
be interesting.

In conclusion, we demonstrated that 5-HT uptake in
HBVSMCs is mediated predominantly by a low-affinity, Na+-
independent, and pH-dependent mechanism. The most possible
candidates are OCT-3 and PMAT. Unlike previous findings in the
aorta, the SERT does not participate in 5-HT uptake in HBVSMCs.
We hypothesize that OCT-3 and PMAT may have a role in regu-
lating 5-HT functions by controlling the local concentration of
5-HT in the vicinity of 5-HT2 receptors in vascular smooth mus-
cle cells. It is worth studying if impairment of OCT-3 and PMAT
may be related to vascular diseases such as hypertension, ischemic
stroke, arteriosclerosis, or even Alzheimer’s disease because this
disease is not only a neurological but also a cerebrovascular
disorder.
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