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Abstract. In order to allow the key stakeholders to have more float time to take 
appropriate precautionary and preventive measures, an accurate prediction of 
water quality pollution is very significant. Since a variety of existing water 
quality models involve exogenous input and different assumptions, artificial 
neural networks have the potential to be a cost-effective solution. This paper 
presents the application of a split-step particle swarm optimization (PSO) model 
for training perceptrons to forecast real-time algal bloom dynamics in Tolo 
Harbour of Hong Kong. The advantages of global search capability of PSO 
algorithm in the first step and local fast convergence of Levenberg-Marquardt 
algorithm in the second step are combined together. The results demonstrate 
that, when compared with the benchmark backward propagation algorithm and 
the usual PSO algorithm, it attains a higher accuracy in a much shorter time.  

1 Introduction 

Over the past two decades, frequent algal blooms with occasional massive fish kills 
have been recorded in Tolo Harbour. It may largely be attributed to its intrinsic semi-
enclosed nature and the extremely low tidal flushing rate. Moreover, most of the 
freshwater runoff in the catchment area is routed to reservoirs so that the river 
discharges to the harbour are much reduced. The condition is further deteriorated by 
the nutrient enrichment through municipal and livestock waste discharges in the 
harbour through the rapid economic development recently. Precise prediction of algal 
booms is beneficial to fisheries and environmental management since it allows the 
fish farmers to have more float time to take appropriate precautionary measures. 
However, the extremely complex dynamics of algal blooms are related to various 
pertinent physical and biochemical factors and are not well-comprehended.  

Process-based mathematical models, such as finite element or finite difference 
methods, are conventionally used to forecast flow and water quality parameters in a 
water body. In general, they require exogenous input and embrace different 
assumptions. In numerical modeling, the physical problem is represented by a highly 
coupled, non-linear, partial differential equation set. The involving processes are 
highly complex and uncertain which may consume enormous computing cost and 
time. In this sense, mechanistic models are not totally satisfactory in representing the 
highly complex inter-relationships. Recently, soft computing (SC) techniques have 
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been gradually becoming a trend to complement or replace the process-based models. 
The characteristics of these data-driven approaches include built-in dynamism, data-
error tolerance, no need to have exogenous input and so on. Amongst others, artificial 
neural networks (ANN), in particular the feed forward back-propagation (BP) 
perceptrons, have been widely applied in water resources engineering [1]. However, 
slow training convergence speed and easy entrapment in a local minimum are 
inherent drawbacks of the commonly used BP algorithm [2]. Levenberg-Marquardt 
(LM) optimization technique [3] is a commonly used ANN that has attained certain 
improvements such as convergence rates over the BP algorithm. Swarm intelligence 
is another recent SC technique that is developing quickly [4]. This technique has been 
applied in hydrological problems and accomplished satisfactory results [5-6]. 

In this paper, a split-step PSO algorithm is employed to train multi-layer 
perceptrons for algal bloom prediction in Tolo Harbour of Hong Kong with different 
lead times and input variables. It is believed that, by combining the two algorithms, 
the advantages of global search capability of PSO algorithm in the first step and local 
fast convergence of LM algorithm in the second step can be fully utilized to furnish 
promising results. 

2 Character istics of PSO Algor ithm 

When PSO algorithm is initially proposed, it is considered a tool for modeling social 
behavior and for optimization of difficult numerical solutions [4,7]. This 
computational intelligence technique is intimately related to evolutionary algorithms 
and is an optimization paradigm that mimics the ability of human societies to process 
knowledge [8]. Its principle is based on the assumption that potential solutions will be 
flown through hyperspace with acceleration towards more optimum solutions. PSO is 
a populated search method for optimization of continuous nonlinear functions 
resembling the biological movement in a fish school or bird flock. Each particle 
adjusts its flying according to the flying experiences of both itself and its companions. 
During the process, the coordinates in hyperspace associated with its previous best 
fitness solution and the overall best value attained so far by other particles within the 
group are kept track and recorded in the memory.  

Among other advantages, the more significant one is its relatively simple coding 
and hence low computational cost. One of the similarities between PSO and a genetic 
algorithm is the fitness concept and the random population initialization. However, 
the evolution of generations of a population of these individuals in such a system is by 
cooperation and competition among the individuals themselves. The population is 
responding to the quality factors of the previous best individual values and the 
previous best group values. The allocation of responses between the individual and 
group values ensures a diversity of response. The principle of stability is adhered to 
since the population changes its state if and only if the best group value changes. It is 
adaptive corresponding to the change of the best group value. The capability of 
stochastic PSO algorithm, in determining the global optimum with high probability 
and fast convergence rate, has been demonstrated in other cases [7-8]. PSO can be 
readily adopted to train the multi-layer perceptrons as an optimization technique. 



3 Training of Perceptrons by PSO 

Without loss of generality, a three-layered preceptron is considered in the following. 
W[1] and W[2] represent the connection weight matrix between the input layer and the 
hidden layer, and that between the hidden layer and the output layer, respectively. 
During training of the preceptron, the i-th particle is denoted by Wi = {W[1], W[2]} 
whilst the velocity of particle i is denoted by Vi. The position representing the 
previous best fitness value of any particle is denoted by Pi whilst the best matrix 
among all the particles in the population is recorded as Pb
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. Let m and n represent the 
index of matrix row and column, respectively, the following equation represents the 
computation of the new velocity of the particle based on its previous velocity and the 
distances of its current position from the best experiences both in its own and as a 
group. 

 

)],(),([ ][][ nmWnmPs j
i

j
b −+ β  

(1) 

where j = 1, 2; m = 1, …, Mj; n= 1, …, Nj; Mj and Nj
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 are the row and column sizes 
of the matrices W, P, and V; r and s are positive constants; α and β are random 
numbers in the range from 0 to 1. In the context of social behavior, the cognition part 

 denotes the private thinking of the particle itself 

whilst the social part )],(),([ ][][ nmWnmPs j
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among the particles as a group. The new position is then determined based on the new 
velocity as follows: 
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The fitness of the i-th particle is determined in term of an output mean squared 
error of the neural networks as follows: 
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where f is the fitness value, tkl is the target output; pkl is the predicted output based on 
Wi

4 Split-Step PSO Algor ithm 

; S is the number of training set samples; and, O is the number of output neurons. 

The combination of two different SC techniques could enhance the performance 
through fully utilization of the strengths of each technique. In this algorithm, the 
training process is divided into two stages. Initially the perceptron is trained with the 
PSO algorithm for a predetermined generation number to exploit the global search 
ability for near-optimal weight matrix. Then, after this stage, the perceptron is trained 



with the LM algorithm to fine tune the fast local search. This might be able to avoid 
the drawback of either entrapment in local minima in LM algorithm or longer time 
consumption in global search of PSO algorithm. 
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Fig. 1. 1 week lead time chlorophyll-a prediction for scenario 2 in the validation process 

5 Algal Bloom Prediction in Tolo Harbour  

In order to test the capability of the model to mimic a particular case study with 
accurate depiction of real phenomena, it has been employed to predict the algal bloom 
dynamics in Tolo Harbour of Hong Kong [9-10]. Observation data indicate the life 
cycle of algal blooms to be in the order of 1 to 2 weeks. As such, algal biomass, 
represented as chlorophyll-a, is forecasted with a lead time of 1 and 2 weeks based on 
a complete set of biweekly water quality data at Tolo Harbour from year 1982 to year 
2002. The data of 1982-1995 and those of 1996-2002 are used for training and 
testing/validation, respectively. The division of data is tailored so as to include 
extreme frequency and intensity in both sets of data. Throughout the analysis, depth-
averaged values from the surface, mean, and bottom of the water column are 
employed.  

In this case, ten input variables, including the time-lagged chlorophyll-a, secchi 
disc depth, nitrogen, phosphorus, dissolved oxygen, rainfall, water temperature, solar 
radiation, wind speed and tidal range, are considered to be significant to the algal 
dynamics of Tolo Harbour [9]. Various perceptrons, having an input layer with one to 
ten neurons, a hidden layer with three to five neurons, and an output layer with one 
neuron, are tested. The single output node represents chlorophyll-a. Three scenarios 
are attempted with 10, 5 and 1 input variables for scenario 1, 2, and 3, respectively. 



Other major PSO parameters adopted are as follows: number of population is 30; the 
maximum and minimum velocity values are 0.3 and -0.3, respectively. All source data 
are normalized into the range between 0 and 1, by using the maximum and minimum 
values of the variable over the whole data sets.  

Table 1. Results for chlorophyll-a forecasting based on scenarios 1 to 3 

 
Input 
data 

 
Algorithm 

Coefficient of correlation 
Training Validation 

1 week 
ahead 

2 weeks 
ahead 

1 week 
ahead 

2 weeks 
ahead 

 BP-based 0.984 0.953 0.968 0.942 
Scenario PSO-based 0.989 0.980 0.973 0.962 

1 LM 0.986 0.958 0.970 0.958 
 Split-step 0.991 0.983 0.975 0.969 
 BP-based 0.974 0.934 0.956 0.934 

Scenario PSO-based 0.984 0.976 0.959 0.954 
2 LM 0.977 0.942 0.957 0.945 
 Split-step 0.988 0.981 0.968 0.963 
 BP-based 0.964 0.935 0.946 0.923 

Scenario PSO-based 0.983 0.973 0.965 0.952 
3 LM 0.969 0.938 0.951 0.928 
 Split-step 0.985 0.978 0.969 0.958 

Table 2. Steady-state fitness evaluation times during training for various algorithms 

Algorithm Steady-state fitness valuation time 
BP-based 21,000 
PSO-based 9,000 
LM 5,000 
Split-step 6,000 

6 Analysis and Discussions 

The performance of the split-step multi-layer ANN is evaluated in comparison with 
the benchmarking standard BP-based network, a PSO-based network and a LM 
network. In order to provide a fair and common initial ground for comparison purpose, 
the training process of the BP-based perceptron or LM network commences from the 
best initial population of the corresponding PSO-based perceptron or split-step 
network. Figure 1 shows the 1 week lead time normalized chlorophyll-a prediction for 
scenario 3 by all perceptrons in the validation process. Table 1 shows comparison of 
the results for chlorophyll-a forecasting with both 1 week and 2 weeks lead times for 
scenarios 1 to 3. It should be noted that the results do not exhibit a significant 
advantage of using more environmental variables as the network inputs and that 1 
week lead time is better than its counterparts of 2 weeks. It can be observed that the 
split-step algorithm performs the best in terms of prediction accuracy. Table 2 shows 



the steady-state fitness evaluation times during training for various perceptrons. It can 
be observed that the split-step perceptron, with rate comparable to that of LM 
algorithm, exhibits much faster convergence than those by the BP-based perceptron 
and the PSO-based network. 

7 Conclusions 

In this paper, a perceptron based on a split-step PSO algorithm is employed for real-
time prediction of algal blooms at Tolo Harbour in Hong Kong with different lead 
times and input variables. The results do not exhibit any advantage of using more 
environmental variables as the network inputs. The chlorophyll-a output from the 1 
week time-lagged chlorophyll-a input is shown to be a robust forewarning and 
decision-support tool. The results also show that the split-step PSO-based perceptron 
outperforms the other commonly used optimization techniques in algal bloom 
prediction, in terms of both convergence and accuracy. 
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