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Abstract. A reliable correlation between rainfall-runoff enables the local 
authority to gain more amble time for formulation of appropriate decision 
making, issuance of an advanced flood forewarning, and execution of earlier 
evacuation measures. Since a variety of existing methods such as rainfall-runoff 
modeling or statistical techniques involve exogenous input and different 
assumptions, artificial neural networks have the potential to be a cost-effective 
solution, provided that their drawbacks can be overcome. Usual problems in the 
training with gradient algorithms are the slow convergence and easy entrapment 
in a local minimum. This paper presents a particle swarm optimization model 
for training perceptrons. It is applied to forecasting real-time runoffs in Siu Lek 
Yuen of Hong Kong with different lead times on the basis of the upstream 
gauging stations or at the specific station. It is demonstrated that the results are 
both more accurate and faster to attain, when compared with the benchmark 
backward propagation algorithm. 

1 Introduction 

Precise prediction of rainfall-runoff is an important research topic in hydrologic 
engineering since it enables the local authority to gain more amble time for 
formulation of appropriate decision making, issuance of an advanced flood 
forewarning, and execution of earlier evacuation measures. However, the relationship 
between rainfall and runoff is not definite due to many pertinent factors such as 
ambient conditions, soil infiltration capacity, evapo-transpiration, etc. Existing 
rainfall-runoff modeling or statistical techniques require exogenous input and 
embrace different assumptions. In numerical modeling, the physical problem is 
represented by a highly coupled, non-linear, partial differential equation set. The 
involving processes are highly complex and uncertain which may demand huge 
computing cost and time. The representation by a deterministic or statistical model is 
not completely satisfactory.  

Recently, owing to various advantages (built-in dynamism, data-error tolerance 
and no need to have exogenous input), artificial neural networks (ANN), and in 
particular, the feed forward back-propagation (BP) perceptrons, have been widely 
applied in water resources engineering [1]. However, the commonly used BP 
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algorithm has the drawbacks of slow training convergence speed and easy entrapment 
in a local minimum.  

In this paper, the particle swarm optimization (PSO) algorithm is employed to train 
multi-layer perceptrons for rainfall-runoff prediction in Shatin catchment of Hong 
Kong with different lead times and input precipitation data at adjacent or that stations.  

2 PSO Algor ithm 

PSO algorithm is initially developed as a tool for modeling social behavior and is able 
to optimize hard numerical functions [2-3]. It is currently adapted as a computational 
intelligence technique intimately related to evolutionary algorithms [4]. It is an 
optimization paradigm that mimics the ability of human societies to process 
knowledge. It has roots in two main component methodologies: artificial life on bird 
swarming; and, evolutionary computation.  

Its principle is founded on the assumption that potential solutions will be flown 
through hyperspace with acceleration towards more optimum solutions. PSO is a 
populated search method for optimization of continuous nonlinear functions 
resembling the movement of organisms in a bird flock or fish school. Each particle 
adjusts its flying according to the flying experiences of both itself and its companions. 
In doing so, it keeps track of its coordinates in hyperspace which are associated with 
its previous best fitness solution, and also of its counterpart corresponding to the 
overall best value acquired thus far by any other particle in the population. Vector, as 
a convenient form for optimization problems, is used as the variable presentation to 
represent particles.  

Its major advantages are relatively simple coding and hence computationally 
inexpensive. A similarity between PSO and a genetic algorithm is the initialization of 
the system with a population of random solutions and the employment of the fitness 
concept. However, the evolution of generations of a population of these individuals in 
such a system is by cooperation and competition among the individuals themselves. 
The population is responding to the quality factors of the previous best individual 
values and the previous best group values. The allocation of responses between the 
individual and group values ensures a diversity of response. The principle of stability 
is adhered to since the population changes its state if and only if the best group value 
changes. It is adaptive corresponding to the change of the best group value. The 
capability of stochastic PSO algorithm to determine the global optimum with high 
probability and fast convergence rate has been shown in other cases. In the following, 
it is adopted to train the multi-layer perceptrons. 

3 Paradigm for  Training of Network 

If a three-layered preceptron is considered, W[1] and W[2] represent the connection 
weight matrix between the input layer and the hidden layer, and that between the 
hidden layer and the output layer, respectively. During training of the multi-layer 
preceptrons, the i-th particle is denoted by Wi = {W[1], W[2]} whilst the velocity of 



particle i is denoted by Vi. The position representing the previous best fitness value of 
any particle is denoted by Pi whilst the best matrix among all the particles in the 
population is recorded as Pb
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. Let m and n represent the index of matrix row and 
column, respectively, the following equation represents the computation of the new 
velocity of the particle based on its previous velocity and the distances of its current 
position from the best experiences both in its own and as a group. 
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where j = 1, 2; m = 1, …, Mj; n= 1, …, Nj; Mj and Nj
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 are the row and column sizes 
of the matrices W, P, and V; r and s are positive constants; α and β are random 
numbers in the range from 0 to 1. In the context of social behavior, the cognition part 

 represents the private thinking of the particle itself 

whilst the social part )],(),([ ][][ nmWnmPs j
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among the particles as a group. The new position is then determined based on the new 
velocity as follows. 
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The following equation is used to determine the fitness of the i-th particle in term 
of an output mean squared error of the neural networks 
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where f is the fitness value, tkl is the target output; pkl is the predicted output based on 
Wi

4 Application Case 

; S is the number of training set samples; and, O is the number of output neurons. 

The usefulness and applicability of any modeling system can only be affirmed by 
verifying its capability to mimic a particular case study with accurate depiction of real 
phenomena. This system has been verified and validated by applying to study the 
rainfall-runoff correlation in the Shatin catchment of Hong Kong [5-12]. Discharge at 
Siu Lek Yuen is forecasted with a lead time of 1 and 2 days based on the measured 
daily precipitations there and at Tate’s Cairn. The data comprises continuous 
precipitations from 1998 to 2002 with 1460 pairs of daily records, of which two-third 
and one-third were used for training and validation, respectively. Data preprocessing 
is performed so that high and low discharge periods of the year and also rapid changes 
in runoffs are contained in both data sets. 

Figure 1 shows the perceptron which has an input layer with one neuron, a hidden 
layer with three neurons, and output layer with two neurons. The input neuron 
represents the rainfall at the current day whilst the output nodes include the runoffs 



after 1 day and 2 days, respectively. All source data are normalized into the range 
between 0 and 1, by using the maximum and minimum values of the variable over the 
whole data sets. The number of population is set to be 30 whilst the maximum and 
minimum velocity values are 0.3 and -0.3 respectively. 
 

 
Fig. 1. Forecasting schema of PSO-based perceptrons network 

Table 1. Normalized mean square errors at various fitness evaluation times during training for 
PSO-based and BP-based perceptrons 

Fitness valuation time Algorithm Normalized MSE 
5000 BP-based 0.21 
 PSO-based 0.12 
10000 BP-based 0.14 
 PSO-based 0.09 
20000 BP-based 0.11 
 PSO-based 0.09 

5 Analysis of Results 

The performance of the PSO-based multi-layer ANN is evaluated in comparison with 
the benchmarking standard BP-based network. In order to provide a fair and common 
initial ground for comparison purpose, the training process of the BP-based 
perceptron commences from the best initial population of the corresponding PSO-
based perceptron. Table 1 shows the normalized mean square errors (MSE) at various 
fitness evaluation times during training for PSO-based and BP-based perceptrons. The 
fitness evaluation time here for the PSO-based perceptron is equal to the product of 
the population with the number of generations. It can be observed that the PSO-based 
perceptron exhibits much better and faster convergence performance in the training 
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process as well as better prediction ability in the validation process than those by the 
BP-based perceptron. 
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Fig. 2. 1 day lead time water discharge prediction by both perceptrons in the validation process 

Figure 2 shows the 1 day lead time normalized water discharge prediction by both 
perceptrons in the validation process. Table 2 shows comparisons of the results for 
runoff forecasting at Siu Lek Yuen with both 1 day and 2 day lead times based on 
precipitation data at the same station (Siu Lek Yuen) and adjacent  station (Tate’s 
Cairn). It should be noticed that runoff forecasting at Siu Lek Yuen made by using the 
data collected at Tate’s Cairn is generally better compared to the data collected at Siu 
Lek Yuen. From these analyses, as a final remark, it can also be observed that the 
performance of PSO-based perceptron for both training and verification simulations is 
better than its counterparts of BP-based perceptron. 

Table 2. Results for runoff forecasting at Siu Lek Yuen based on precipitation data at the same 
and adjacent stations 

Input  
Algorithm 

Coefficient of correlation 
data Training Validation 

 1 day ahead 2 day ahead 1 day ahead 2 day ahead 
Siu Lek BP-based 0.956 0.911 0.937 0.893 
Yuen PSO-based 0.975 0.964 0.953 0.941 
Tate’s  BP-based 0.973 0.945 0.957 0.907 
Cairn PSO-based 0.991 0.981 0.985 0.977 



6 Conclusions 

In this paper, a perceptron approach based on particle swarm optimization (PSO) 
paradigm is employed for real-time prediction of runoff discharge at Siu Lek Yuen in 
Shatin catchment with different lead times based on precipitation gauging stations at 
Tate’s Cairn or at Siu Lek Yuen. The algorithm is shown to be capable to furnish 
model-free estimates in deducing the runoff output from the precipitation input, and 
hence is demonstrated to be a robust forewarning and decision-support aid. It is 
noticed from the training and verification simulation that, when compared with the 
benchmarking BP-based perceptron, the rainfall-runoff prediction results are 
apparently more accurate and at the same time consume less computational cost.  
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