
Two semi-online scheduling problems on two uniform machines

C. T. Ng a, ∗ Zhiyi Tanb, † Yong Heb T. C. E. Chenga, ‡

a Department of Logistics and Maritime Studies, The Hong Kong Polytechnic University,

Hung Hom, Kowloon, Hong Kong SAR, P. R. China
b Department of Mathematics, State Key Lab of CAD & CG, Zhejiang University,

Hangzhou 310027, P. R. China

Abstract

This paper considers two semi-online scheduling problems, one with known optimal value
and the other with known total sum, on two uniform machines with a machine speed ratio

of s ≥ 1. For the first problem, we provide an optimal algorithm for s ∈ [1+
√

3

2
, 1+

√

21

4
], and

improved algorithms or/and lower bounds for s ∈ [1+
√

21

4
,
√

3], over which the optimal algorithm
is unknown. As a result, the largest gap between the competitive ratio and the lower bound
decreases to 0.02192. For the second problem, we also present algorithms and lower bounds for
s ≥ 1. The largest gap between the competitive ratio and the lower bound is 0.01762, and the
length of the interval over which the optimal algorithm is unknown is 0.47382. Our algorithms
and lower bounds for these two problems provide insights into their differences, which are unusual
from the viewpoint of the known results on these two semi-online scheduling problems in the
literature.
Mathematics Subject Classification (1991). 90B35, 90C27
Key words: analysis of algorithm, scheduling, semi-online, competitive ratio.

1 Introduction

In this paper we consider semi-online scheduling problems. We are given a sequence J of inde-

pendent jobs with positive sizes p1, p2, . . . , pn, which must be non-preemptively scheduled onto m

uniform machines M1,M2, · · · ,Mm. We identify the jobs with their sizes. Machine Mi has speed si.

Without loss of generality, we assume 1 = s1 ≤ s2 ≤ · · · ≤ sm. If job pj is assigned to machine Mi,

then pj/si time units are required to process this job. If all the machines have the same speed 1,

they are called identical machines. The jobs arrive online over list, i.e., each job should be assigned

to a machine before the next job is revealed. The goal is to minimize the makespan, which is the

maximum completion time among the machines. Further we assume that the smallest makespan

∗Supported by The Hong Kong Polytechnic University under grant number G-U060. Email address:
lgtctng@polyu.edu.hk.

†Supported by the National Natural Science Foundation of China (10671177, 60021201) and Zhejiang Provincial
Natural Science Foundation of China (Y607079). Email address: tanzy@zju.edu.cn.

‡Supported by The Hong Kong Polytechnic University under grant number G-U060. Email address:
lgtcheng@polyu.edu.hk.

1

This is the Pre-Published Version.

is achievable (i.e., the optimal value) for the sequence is known in advance. We call this problem

the semi-online scheduling problem with known optimal value, and denoted it by Pm|opt|Cmax if

all the machines have the same speed 1, and by Qm|opt|Cmax otherwise. Azar and Regev [2] gave

an application of this problem in file allocation.

A closely related problem is the semi-online scheduling problem with known total sum, where

the total sum of all the job sizes is known in advance [7]. We denote this problem by Pm|sum|Cmax

if all the machines have the same speed 1, and by Qm|sum|Cmax otherwise. As the total sum of all

the job sizes gives a trivial lower bound for the optimal value, the problem with known total sum

may be viewed as a relaxation of the problem with known optimal value. But these two problems

are clearly different, since, among other reasons, some jobs may have sizes greater than the average

and hence the optimal makespan is still unknown.

The quality of the performance of an on-line or a semi-online algorithm is measured by its

competitive ratio. For a job sequence J and an algorithm A, let CA(J) (or briefly CA) denote

the makespan produced by A and let COPT (J) (or briefly COPT) denote the optimal makespan

of the off-line version. Then the competitive ratio of A is defined as RA = sup
J

{ CA(J)
COPT (J)

}. An

online (semi-online) scheduling problem has a lower bound ρ if no online (semi-online) algorithm

has a competitive ratio smaller than ρ. An online (semi-online) algorithm A is called optimal if its

competitive ratio matches the lower bound of the problem.

Previous work: For the problem Pm|opt|Cmax, Azar and Regev [2] presented an algorithm

with a competitive ratio of 13/8, which is a combination of two families of algorithms all with

a competitive ratio of 5/3. They showed that a lower bound for the problem is at least 4/3.

Furthermore, they presented an optimal algorithm with a competitive ratio of 4/3 when m = 2. If

the information that all the jobs arrive in non-increasing sizes is known in advance for P2|opt|Cmax,

Epstein [5] provided an optimal algorithm with a competitive ratio of 10/9.

For the problem Q2|opt|Cmax, Epstein [5] provided a comprehensive study of the competitive

ratio as a function of s, where s = s2/s1 is the speed ratio of the two machines. She provided two

algorithms FAST and SLOW . Algorithm FAST is for s ∈ [1,
√

2] and SLOW for s ∈ [
√

2,∞).

The competitive ratios are as follows:

{

max{s, 2s+2
2s+1}, for 1 ≤ s ≤

√
2,

s+2
s+1 , for s ≥

√
2,

=











2s+2
2s+1 , for 1 ≤ s ≤ 1+

√
17

4 ≈ 1.28078,

s, for 1+
√

17
4 ≤ s ≤

√
2 ≈ 1.41421,

s+2
s+1 , for s ≥

√
2.

To evaluate the optimality of the algorithms, she further presented the following lower bounds for

2

the problem























































3s+1
3s

, for 1 ≤ s ≤ q1 ≈ 1.12433,

(3
4 +

√
65

20)s, for q1 ≤ s ≤ 1+
√

65
8 ≈ 1.13278,

2s+2
2s+1 , for 1+

√
65

8 ≤ s ≤ 1+
√

17
4 ,

s, for 1+
√

17
4 ≤ s ≤ 1+

√
3

2 ≈ 1.36603,
2s+1
2s

, for 1+
√

3
2 ≤ s ≤ 1+

√
5

2 ≈ 1.61803,
s+1
2 , for 1+

√
5

2 ≤ s ≤
√

3 ≈ 1.73205,
s+2
s+1 , for s ≥

√
3,

where q1 is a solution of the equation 36x4−135x3 +45x2 +60x+10 = 0. Hence the algorithms are

optimal in the intervals [1+
√

65
8 , 1+

√
3

2]∪[
√

3,∞); the length of the interval over which the algorithms

are not optimal is about 0.4987, and the largest gap between the competitive ratio and the lower

bound is about 0.07295. Furthermore, the overall competitive ratio is
√

2 while the overall (highest)

lower bound is 1+
√

3
2 .

There are several papers studying the semi-online problem with known total sum, which are

extensions of the basic semi-online model presented by Kellerer et al. [7]. It is interesting to

note that the results (e.g., competitive ratios, even optimal algorithms), which were obtained

independently by different authors, resemble those mentioned above for the problem with known

optimal value. For example, Kellerer et al. [7] gave an optimal algorithm with a competitive ratio

of 4/3 for P2|sum|Cmax. If it is further known that the jobs arrive in non-increasing processing

times for P2|sum|Cmax, Tan and He [9] presented an optimal algorithm with a competitive ratio of

10/9. For the general m machine case, an algorithm with a competitive ratio of 8/5 was provided

by Cheng et al. [4], and a lower bound of 1.565 was given by Angelelli et al. [1]. For the problem

Q2|sum|Cmax, Tan and He [8] presented an algorithm with an overall competitive ratio of
√

2 and

a lower bound of 1+
√

3
2 (the algorithm and its competitive ratio are independent of s). Moreover,

it is trivial that the lower bounds for Q2|opt|Cmax given in [5] and in a later section of this paper

are also lower bounds for Q2|sum|Cmax. And it can be verified that algorithms FAST and SLOW

retain the same competitive ratios for solving Q2|sum|Cmax.

Our results: In this paper we focus on the two uniform machines case. We assume s ≥ 1, since

the case of s ≤ 1 can be converted to the case of s ≥ 1 by scaling the job sizes. The contribution

of this paper consists of two parts.

(1) We improve the results of [5] by studying the problem Q2|opt|Cmax for s ∈ [1+
√

3
2 ,

√
3], over

which the optimal algorithm is unknown. To obtain improved algorithms for the considered interval,

we develop a new unified procedure. By properly choosing the parameters of the procedure, we

obtain an algorithm STATUS1 with a competitive ratio of

max{2s + 1

2s
,
6s + 6

4s + 5
} =

{

2s+1
2s

, for 1+
√

3
2 ≤ s ≤ 1+

√
21

4 ≈ 1.39562,
6s+6
4s+5 , for 1+

√
21

4 ≤ s ≤ 1+
√

13
3 ≈ 1.535187,

3

and an algorithm STATUS2 with a competitive ratio of

max{12s + 10

9s + 7
,
2s + 3

s + 3
} =

{

12s+10
9s+7 , for 1+

√
13

3 ≤ s ≤ 5+
√

241
12 ≈ 1.71035,

2s+3
s+3 , for 5+

√
241

12 ≤ s ≤
√

3.

Furthermore, we present improved lower bounds for the interval [
√

2, 5+
√

73
8 ≈ 1.69300] as follows:















































3s+5
2s+4 , for

√
2 ≤ s ≤

√
21
3 ≈ 1.52753,

3s+3
3s+1 , for

√
21
3 ≤ s ≤ 5+

√
193

12 ≈ 1.57437,
4s+2
2s+3 , for 5+

√
193

12 ≤ s ≤ 7+
√

145
12 ≈ 1.5868,

5s+2
4s+1 , for 7+

√
145

12 ≤ s ≤ 9+
√

193
14 ≈ 1.63517,

7s+4
7s

, for 9+
√

193
14 ≤ s ≤ 5

3 ,
7s+4
4s+5 , for 5

3 ≤ s ≤ 5+
√

73
8 .

Then we can conclude that STATUS1 is optimal for s ∈ [1+
√

3
2 , 1+

√
21

4]. By combining our algo-

rithms with those in [5] for different intervals, we have an algorithm COMBINE1 for the whole

interval [1,∞). Then the length of the interval over which COMBINE1 is not optimal decreases

to 0.46914, and the largest gap between the competitive ratio and the lower bound decreases to

8/365 ≈ 0.02192. Besides these, the overall competitive ratio of COMBINE1 is 1+
√

3
2 , which

matches the overall lower bound.

Figure 1 shows that the competitive ratios of the new algorithms and the new lower bounds for

the interval [1+
√

3
2 ,

√
3], compared with those given in [5].

1.4 1.45 1.5 1.55 1.6 1.65 1.7

1.32

1.34

1.36

1.38

1.4

1.42

Figure 1: The upper and lower bounds for the interval [1+
√

3

2
,
√

3]. The bold lines are the new upper and

lower bounds.

(2) As mentioned above, from the relevant literature on the two problems Q2|opt|Cmax and

Q2|sum|Cmax, we know that information on the total sum seems strong enough to get the same

competitive ratio as that of the problem with known optimal value; even the algorithms resemble

or are almost the same. Moreover, it can also be shown that algorithms FAST and SLOW retain

the same competitive ratios when they are used to solve Q2|sum|Cmax. Hence it is interesting to

4

identify the differences between these two problems. In this paper we make an attempt to address

this question. We provide job sequences to show that algorithms STATUS1 and STATUS2 for

Q2|opt|Cmax no longer attain their competitive ratios in solving Q2|sum|Cmax. We then provide

new algorithms STATUS3 and STATUS4 for the interval [1+
√

3
2 ,

√
3] with competitive ratios of



























2s+1
2s

, for 1+
√

3
2 ≤ s ≤ q2 ≈ 1.3915,

s+
√

29s2+59s+30
4s+5 , for q2 ≤ s ≤ q3 ≈ 1.5062,√

36s4+9s3−32s2−2s+9+6s2+9s+3
9s2+7s

, for q3 ≤ s ≤ q4 ≈ 1.6932√
4s4+8s3+s2+4+2s2+3s+2

2(s2+3s) , for q4 ≤ s ≤
√

3,

where q2, q3 and q4 are the roots of the following equations, respectively:

2s+1
2s

= s+
√

29s2+59s+30
4s+5 ,

s+
√

29s2+59s+30
4s+5 =

√
36s4+9s3−32s2−2s+9+6s2+9s+3

9s2+7s
,

√
36s4+9s3−32s2−2s+9+6s2+9s+3

9s2+7s
=

√
4s4+8s3+s2+4+2s2+3s+2

2(s2+3s)
.

Algorithms STATUS3 and STATUS4 utilize the new procedure proposed in this paper, with

different parameters.

The provided sequences also illustrate that algorithms FAST , SLOW , STATUS1 and STATUS2

cannot guarantee competitive ratios smaller than those of STATUS3 and STATUS4. Hence we

can conclude that algorithms STATUS3 and STATUS4 are necessary for Q2|sum|Cmax. Further-

more, we give a lower bound for the problem Q2|sum|Cmax for s ∈ [q5 ≈ 1.62803,
√

3], which is

strictly larger than that for Q2|opt|Cmax, where q5 is a value of s in the following group of equations:

√

s2x2 + 4s(s + 1 − x) + sx

2s
=

5s + 2

4s + 1
=

s(2s + 2 − x)

(s + 1)(x + 2)
.

Based on the above results, we may conclude that the optimal algorithms for these two problems

should be different for some interval of s.

By combining algorithms FAST , SLOW , STATUS3 and STATUS4, we have an algorithm

COMBINE2 for the whole interval [1,∞). The algorithm is optimal for s ∈ [1+
√

65
8 , q2]∪ [

√
3,∞).

The length of the interval over which COMBINE2 is not optimal is about 0.47328, and the largest

gap between the competitive ratio and the lower bound is about 0.01762, which is even smaller

than 0.02192, the gap existing for Q2|opt|Cmax. The overall competitive ratio of the algorithm is

1.3692, which is achieved at q3 and only 0.0032 larger than the overall lower bound, 1+
√

3
2 . Figure

2 shows the differences between the competitive ratios and lower bounds of the two problems in

the interval [q2,
√

3].

The structure of the paper is as follows. In Section 2 we give descriptions of our algorithms for

the two problems. In Section 3 we prove the competitive ratios of the algorithms. In Section 4 we

present lower bounds for the two problems.

5

1.4 1.45 1.5 1.55 1.6 1.65 1.7

1.345

1.35

1.355

1.36

1.365

1.37

1.375

Figure 2: The differences between the upper and lower bounds for the two problems in the interval [q2,
√

3].
The bold lines are for Q2|sum|Cmax.

2 Descriptions of algorithms

In this section we give descriptions of our algorithms. We first introduce some notation and def-

initions. In the remainder of this paper, without loss of generality, we assume that COPT = 1

when studying Q2|opt|Cmax, and the total sum is 1 + s when studying Q2|sum|Cmax. We define

the current load of a machine as the total size of all the jobs currently assigned to it. Let p be a

newly-arrived job, and let Ti be the current load of Mi right before p arrives, i = 1, 2. Let r > 1

and t > 0 be two parameters that will be specified later. In fact, r will be the desired competitive

ratios of our algorithms. We call the process that assigns jobs one by one by an algorithm as a

scheduling process.

Definition 2.1 If T1 < 1 + s − rs and T1 + p ∈ [1 + s − rs, r], we say that a scheduling process is

in Normal Stopping Status 1 (NSS1 for short). If T2 < 1 + s − r and T2 + p ∈ [1 + s − r, rs], we

say that a scheduling process is in Normal Stopping Status 2 (NSS2 for short).

Definition 2.2 If (1) T1 < 1 + s − rs and T1 + p > r and (2) T2 < 1 + s − r and T2 + p > rs, we

say that a scheduling process is in Abnormal Stopping Status (ANSS for short).

Let NSS = {NSS1, NSS2} and SS = NSS∪{ANSS}. Remember that if a scheduling process

is in the status of NSS1 and NSS2, it is impossible that it is in the status of ANSS, and vice

versa.

Definition 2.3 If T2 < 5 + 6s− 4r − 4rs− t and T2 + p ∈ [5 + 6s− 4r − 4rs− t, 2rs− 2s − 1], we

say that a scheduling process is in Transition Status 1 (TS1 for short). If T1 < 3 + 4s − 2r − 3rs

and T1 + p ∈ [3 + 4s − 2r − 3rs, t], we say that a scheduling process is in Transition Status 2 (TS2

for short). If T2 < 2+2s−2r− rs and T2 +p ∈ [2+2s−2r− rs, (r−1)s], we say that a scheduling

process is in Transition Status 3 (TS3 for short).

6

TS1

TS2

TS3

NSS1

NSS2

1

s

Figure 3: Normal Stopping Status and Transition Status.

Note that a scheduling process may be in more than one status simultaneously. For example,

let r satisfy r > 2s+1
2s

and r > 4s+3
2s+4 , and let the first job p1 = 1

2 . Then clearly 1 + s − rs < p1 < r

and 2 + 2s − 2r − rs < p1 < (r − 1)s hold, and T1 = T2 = 0 right before an algorithm assigns p1.

Hence, according to Definitions 2.1 and 2.3, the scheduling process can be in both TS3 and NSS1

status. In such a case, we will stipulate in our algorithms that it is in NSS1 rather than TS3,

which determines the assignment of the current jobs and those that come later (see the procedure

defined below). Figure 3 shows which status a scheduling process may be simultaneously in. In

general, we will always stipulate in our algorithms that the scheduling process is in SS rather than

TS, TSj rather than TSi, j > i, and NSS1 rather than NSS2.

We now describe an assignment procedure with parameters r and t. It assigns jobs in a way

that a schedule process ends in Stopping Status, which guarantees that the yielded solution has

the desired competitive ratio. The schedule process may be first in Transition Status (for example,

TSi). If so, the assignment procedure assigns the later-coming jobs such that it will be in the next

Transition Status (i.e., TSj with j > i) or Stopping Status. In the following, let TS be a subset of

{TS1, TS2, TS3}.
Assignment Procedure AP (r, t, TS,Mi)

While there exists at least one unassigned job, and p is the first such job, we do:

1. (NSS Rule) (1.1) If assigning job p to M1 makes the scheduling process in NSS1, then

assign p to M1, and all the remaining jobs to M2. Stop.

(1.2) If assigning job p to M2 makes the scheduling process in NSS2, then assign p to M2,

and assign all the remaining jobs to M1. Stop.

2. (ANSS Rule) If assigning job p makes the scheduling process in ANSS, assign p to the

machine that can complete it earlier, and assign all the remaining jobs to another machine.

Stop.

3. (TS Rule) If assigning job p to a machine makes the scheduling process in TSi ∈ TS,

then assign it to this machine, and assign the later-coming jobs to another machine until the

scheduling process in TSj ∈ TS, j > i, or one of SS.

4. If assigning p to a machine cannot make the scheduling process in any of SS and TS, assign

it to Mi.

7

The above Assignment Procedure originated from He, Kellerer and Kotov [6], and Burkard,

He and Kellerer [3]. They designed a procedure with parameters for solving the offline problems

P2||Cmax and Q2||Cmax. By a combination of three such procedures with different parameter

values, they obtained a linear time algorithm with a worst-case ratio 12/11 for the former problem,

and a linear time algorithm with a worst-case ratio 7/6 for the latter problem. Furthermore, an

essentially similar procedure can be used to obtain algorithms for Q2|sum|Cmax [8] and Q2|opt|Cmax

[5] (see below). Note that in that procedure, the authors introduced Stopping Status, although

not explicitly mentioned; however they did not introduce Transition Status. Our above assignment

procedure substantially extends that procedure. In fact, the algorithm of Tan and He [8] for

Q2|sum|Cmax, SUM , and the algorithms of Epstein [5] for Q2|opt|Cmax, FAST and SLOW , can

be re-stated through the new procedure as follows. Here the notation t = ∞ means that the value of

t is unnecessary, and the notion TS = ∅ means that the TS rule is deleted in the above Assignment

Procedure.

Algorithm SUM [8]: Call AP (
√

2,∞, ∅,M1).

Algorithm SLOW [5]: Call AP (s+2
s+1 ,∞, ∅,M1).

Algorithm FAST [5]:

1. Let r = 2s+2
2s+1 if s ∈ [1, 1+

√
17

4], and r = s if s ∈ [1+
√

17
4 ,

√
2]. Let t = ∞ and TS = ∅.

2. Call AP (r, t, TS,M2).

Tan and He [8] proved that SUM has a competitive ratio of
√

2 for Q2|sum|Cmax for any s ≥ 1.

Epstein [5] proved that for Q2|opt|Cmax, FAST has a competitive ratio of 2s+2
2s+1 for s ∈ [1, 1+

√
17

4],

and s for s ∈ [1+
√

17
4 ,

√
2], and SLOW has a competitive ratio of s+2

s+1 for s ≥
√

2.

Now we give the descriptions of our improved algorithms. STATUS1 and STATUS2 are de-

signed for Q2|opt|Cmax, while STATUS3 and STATUS4 are designed for Q2|sum|Cmax. Note that

STATUS1 and STATUS3 use TS2 and TS3, together with SS; and STATUS2 and STATUS4

use all the status we have defined above.

Algorithm STATUS1:

1. Let r = max{2s+1
2s

, 6s+6
4s+5}, t = r − 1 and TS = {TS2, TS3}.

2. Call AP (r, t, TS,M1).

Algorithm STATUS2:

1. Let r = max{12s+10
9s+7 , 2s+3

s+3 }, t = r − 1 and TS = {TS1, TS2, TS3}.

2. Call AP (r, t, TS,M2).

Algorithm STATUS3:

8

1. Let r = 2s+1
2s

if s ∈ [1+
√

3
2 , q2], and r = s+

√
29s2+59s+30

4s+5 if s ∈ [q2, q3]. Let t = r − s+1
r+1 and

TS = {TS2, TS3}.

2. Call AP (r, t, TS,M1).

Algorithm STATUS4:

1. Let r =
√

36s4+9s3−32s2−2s+9+6s2+9s+3
9s2+7s

if s ∈ [q3, q4], and r =
√

4s4+8s3+s2+4+2s2+3s+2
2(s2+3s)

if s ∈
[q4,

√
3]. Let t = r − 1+s−r

rs−1 and TS = {TS1, TS2, TS3}.

2. Call AP (r, t, TS,M2).

Note that in the above description of the algorithms, q2, q3 and q4 are defined in Section 1, and
s+

√
29s2+59s+30

4s+5 ,
√

36s4+9s3−32s2−2s+9+6s2+9s+3
9s2+7s

and
√

4s4+8s3+s2+4+2s2+3s+2
2(s2+3s) are the solutions of the

following equations regarding r:

5 + 6s − 4r − 4rs = r − s+1
r+1 ,

9 + 12s − 6r − 9rs = r − 1+s−r
rs−1 ,

2 + 2s − 2r − rs = r − 1+s−r
rs−1 ,

respectively.

We first show that, after all the jobs have been assigned by Assignment Procedure, the schedul-

ing process must be in SS. Otherwise, we have T1 +pn < 1+s−rs < 1 and T2 +pn < 1+s−r < s.

Hence there exists a solution such that the makespan is less than 1, and the total sum of sizes is

less than 1 + s, which violates the assumption that COPT = 1 for Q2|opt|Cmax or T = 1 + s for

Q2|sum|Cmax.

Lemma 2.1 If the scheduling process of algorithm A ends in NSS, we have CA

COPT ≤ r. If the

scheduling process ends in ANSS by assigning p, we have CA = min{T1 + p, T2+p
s

}.

Proof. If the scheduling process ends in NSS1, then 1 + s − rs ≤ T1 + p ≤ r. It follows that the

completion time of M1 is less than r. Furthermore, the load of M2 after assigning all the jobs is

less than
∑n

i=1 pi − (T1 + p) ≤ (1+ s)− (1+ s− rs) = rs. It follows that the completion time of M1

is less than r, too. Hence we have CA

COPT ≤ r. The case that the scheduling process ends in NSS2

can be proved similarly.

Suppose that the scheduling process ends in ANSS. (1) If T1 + p ≤ T2+p
s

, then p is assigned

to machine M1 and all the remaining jobs to M2 by the rule of Assignment Procedure. From

T1 +p > r, we know that the load of M2 after assigning all the jobs is less than
∑n

i=1 pi− (T1 +p) ≤
(1 + s)− r < rs. It follows that CA = T1 + p = min{T1 + p, T2+p

s
}. (2) If T1 + p > T2+p

s
, the result

can be obtained similarly. 2

In fact, we will see that for Q2|opt|Cmax, the algorithms must end in NSS, resulting in the

desired competitive ratios. However, for Q2|sum|Cmax, the algorithms may end in ANSS, but it

9

can be proved that the desired competitive ratios are still valid because of the assignment rule in

the algorithms. From this point, we can obtain some insights into the algorithms for these two

problems.

3 Competitive ratios of algorithms

3.1 Algorithms for Q2|opt|Cmax

Theorem 3.1 For s ∈ [1+
√

3
2 , 1+

√
13

3], STATUS1 has a competitive ratio of r = max{2s+1
2s

, 6s+6
4s+5}.

Proof. It is easy to verify that for s ∈ [1+
√

3
2 , 1+

√
13

3], the values of r and t defined in the algorithm

satisfy the following group of inequalities

0 < 2 + 2s − 2r − rs < (r − 1)s < 1 + s − r < rs,

0 < 3 + 4s − 2r − 3rs < t < 1 + s − rs < r. (1)

Hence all SS and TS are well-defined. If the scheduling process of STATUS1 ends in NSS, it

follows that CA

COPT ≤ r (due to Lemma 2.1). Hence we suppose that the scheduling process ends in

ANSS. Noting that TS = {TS2, TS3} in algorithm STATUS1, we distinguish three cases to get

a contradiction as follows:

Case 1 The scheduling process is first in TS3 before it ends in ANSS.

On the arrival of job p, the scheduling process is in TS3, i.e.,

2 + 2s − 2r − rs ≤ T2 + p ≤ (r − 1)s. (2)

By the TS Rule, the later-coming jobs are assigned to M1 until the scheduling process is in another

status. Since the new status is not NSS1 according to the hypothesis, there exists a job, denoted

by pa, such that the current load of M1 is increased from less than 1 + s − rs to greater than r if

pa is assigned to M1. Hence pa > r − (1 + s − rs) = rs + r − s − 1. Combining it with the first

inequality of (2), we obtain T2 + p + pa ≥ 1 + s − r. On the other hand, COPT = 1 implies pa ≤ s.

Combining it with the second inequality of (2), we then have T2 + p + pa ≤ rs. Hence, we have

T2 + p + pa ∈ [1 + s − r, rs], which implies that the new status of the scheduling process must be

NSS2 by assigning pa to M2, a contradiction.

Case 2 The scheduling process is first in TS2 before it ends in the status ANSS.

On the arrival of job p, the scheduling process is in TS3, i.e.,

3 + 4s − 2r − 3rs ≤ T1 + p ≤ r − 1. (3)

By the TS Rule, the later-coming jobs are assigned to M2 until the scheduling process is in another

status. If the next status is TS3, then a similar argument as that in Case 1 can reach the conclusion.

Otherwise, as no job makes the scheduling process in TS3, there exists a job, denoted by pb, such

10

that the current load of M2 is increased from less than 2 + 2s − 2r − rs to greater than (r − 1)s

if pb is assigned to M2. Hence pb > (r − 1)s − (2 + 2s − 2r − rs) = 2rs + 2r − 3s − 2. Combining

it with the first inequality of (3), we obtain T1 + p + pb > 1 + s − rs. If T1 + p + pb ≤ r, i.e.,

T1 + p + pb ∈ [1 + s − rs, r], the scheduling process is in NSS1 by assigning pb to M1. Hence

T1 + p + pb > r. Substituting the second inequality of (3) into it, we have pb > 1.

pb and the later-coming jobs are assigned to M2 by the TS Rule. Since the scheduling process

is never in NSS2, similarly there exists a job, denoted by pc, such that pc > rs − (1 + s − r) =

(r − 1)(s + 1). Combining it with the first inequality of (3), we obtain

T1 + p + pc ≥ (3 + 4s − 2r − 3rs) + (r − 1)(s + 1) = 2 + 3s − r − 2rs > 1 + s − rs,

where the last inequality is from r = max{2s+1
2s

, 6s+6
4s+5} < 2s+1

s+1 . To avoid the situation that the

scheduling process is in NSS1 by assigning pc to M1, T1 + p + pc > r must hold. We thus have

pc > 1 because of the second inequality of (3). Now we have two jobs with sizes of greater than 1.

Since s < 2, we obtain COPT > 1, a contradiction.

Case 3 The scheduling process is never in TS2 or TS3 before it ends in ANSS.

According to the algorithm, jobs are always assigned to M1 if the scheduling process is never

in SS and TS. Denote by pd the first job that forces the load of M1 to exceed 3 + 4s− 2r − 2rs. If

pd ≤ (r− 1)− (3+4s− 2r− 3rs) = 3rs+3r− 4s− 4, assigning pd to M1 makes the new load of M1

lie in [3+4s−2r−3rs, r−1], which implies that the scheduling process is in TS2, contradicting our

assumption. Hence we obtain pd > 3rs+3r−4s−4. Combining it with r = max{2s+1
2s

, 6s+6
4s+5} ≥ 6s+6

4s+5 ,

we obtain

pd > 2 + 2s − 2r − rs. (4)

As there is no job on M2 yet, if pd ≤ (r−1)s, clearly assigning pd to M2 makes the scheduling process

in TS3, which again contradicts our assumption. So we obtain pd > (r − 1)s. Combining it with

r = max{2s+1
2s

, 6s+6
4s+5} ≥ 2s+1

2s
, we have pd > 1 + s − rs. To avoid the situation that the scheduling

process ends in NSS1 by assigning pd to M1, the load of machine M1 would be increased from less

than 3+4s−2r−3rs to greater than r, which implies pd > r−(3+4s−2r−3rs) = 3rs+3r−4s−3.

Combining it with r = max{2s+1
2s

, 6s+6
4s+5} ≥ 5s+4

3s+4 , we have pd > 1 + s − r. On the other hand,

COPT = 1 implies pd ≤ s < rs. Now we have 1 + s − r < pd < rs, then by assigning pd to M2 the

scheduling process is in NSS2, a contradiction. The proof is complete. 2

Theorem 3.2 For s ∈ [1+
√

13
3 ,

√
3], STATUS2 has a competitive ratio r = max{12s+10

9s+7 , 2s+3
s+3 }.

Proof. It is easy to verify that for s ∈ [1+
√

13
3 ,

√
3], the values of r and t defined in algorithm

STATUS2 satisfy (1) and

0 < 5 + 6s − 4r − 4rs − t < 2rs − 2s − 1 < 2 + 2s − 2r − rs. (5)

So all the status are well-defined. Similar to the proof of Theorem 3.1, we show the result by

contradiction. We still suppose that the scheduling process of STATUS2 ends in ANSS. Noting

11

that TS = {TS1, TS2, TS3} in algorithm STATUS2, we distinguish four cases. The first two

cases, together with their proofs, are the same as the corresponding parts in the proof of Theorem

3.1 and omitted.

Case 3 The scheduling process is first in TS1 before it ends in ANSS.

On the arrival of job p, the scheduling process is in TS1, i.e.,

6 + 6s − 5r − 4rs = 5 + 6s − 4r − 4rs − t ≤ T2 + p ≤ 2rs − 2s − 1. (6)

By the TS Rule, the later-coming jobs are assigned to M1 until the scheduling process is in the

next status. If the next status is TS2, then the same argument as that in Case 2 of Theorem 3.1

can reach the conclusion. Otherwise, as no job makes the scheduling process in TS2, there exists a

job, denoted by pe, such that the current load of M1 is increased from less than 3+4s−2r−3rs to

greater than r−1 if pe is assigned to M1. Hence pe > (r−1)−(3+4s−2r−3rs) = 3rs+3r−4s−4.

If pe ≤ 1 + s − rs, by (6), we obtain

2 + 2s − 2r − rs = (6 + 6s − 5r − 4rs) + (3rs + 3r − 4s − 4) ≤ T2 + p + pe

≤ (2rs − 2s − 1) + (1 + s − rs) = (r − 1)s.

Hence assigning pe to M2 makes the scheduling process in TS3, and thus the proof of Case 1 of

Theorem 3.1 can reach the conclusion. Therefore we assume pe > 1+ s− rs. To avoid the situation

that the scheduling process is in NSS1 by assigning pe to M1, we have pe > r−(3+4s−2r−3rs) =

3rs + 3r − 4s − 3. Combining it with the first inequality of (6), we have

T2 + p + pe > (6 + 6s − 5r − 4rs) + (3rs + 3r − 4s − 3) > 1 + s − r,

where the last inequality is from r = max{12s+10
9s+7 , 2s+3

s+3 } < s+2
s+1 . If further T2 + p + pe ≤ rs, the

scheduling process is in NSS2 by assigning pe to M2. Hence T2 + p + pe > rs. Combining it with

the second inequality of (6), we obtain pe > rs − (2rs − 2s − 1) > s, which contradicts COPT = 1.

Case 4 The scheduling process is never in TS before it ends in ANSS.

According to the algorithm, jobs are always assigned to M2 if the scheduling process is never

in SS and TS. Denote by pf the first job that forces the load of M2 to exceed 6 + 6s − 5r − 4rs.

We next prove pf > s, which implies COPT > 1. This contradiction will complete the proof of

Theorem 3.2.

In fact, if pf ≤ (2rs − 2s − 1) − (6 + 6s − 5r − 4rs) = 6rs + 5r − 8s − 7, assigning pf to M2

makes the new load of M2 lie in [6 + 6s − 5r − 4rs, 2rs − 2s − 1], which implies the scheduling

process is in TS1, contradicting our assumption. Hence pf > 6rs + 5r − 8s − 7. Combining it

with r = max{12s+10
9s+7 , 2s+3

s+3 } ≥ 12s+10
9s+7 , we obtain pf > 3 + 4s − 2r − 3rs. As there is no job on

M1 yet, if pf ≤ t = r − 1, assigning pf to M2 makes the scheduling process in TS2, contradicting

our assumption. Hence we have pf > r − 1. Combining it with r = max{12s+10
9s+7 , 2s+3

s+3 } ≥ 2s+3
s+3 , we

have pf > 2 + 2s − 2r − rs. If pf ≤ (r − 1)s, assigning pf to M1 makes the scheduling process

in TS3, which again contradicts our assumption. Therefore, we have pf > (r − 1)s. Combining

12

it with r = max{12s+10
9s+7 , 2s+3

s+3 } ≥ 2s+1
2s

, we obtain pf > 1 + s − rs. To avoid the situation that

the scheduling process is in NSS1 by assigning pf to M1, pf > r must hold. Combing it with

r = max{12s+10
9s+7 , 2s+3

s+3 } ≥ s+1
2 , we get pf > 1 + s − r. Recall that the current load of M2 is no

greater than 6 + 6s − 5r − 4rs. If pf < rs − (6 + 6s − 5r − 4rs) = 5rs + 5r − 6s − 6, assigning pf

to M2 makes the scheduling process in NSS2. Hence we get pf > 5rs + 5r − 6s − 6. Combining it

with r = max{12s+10
9s+7 , 2s+3

s+3 } ≥ 7s+6
5s+5 , we get pf > s. Thus the proof is completed. 2

By combining our algorithms with those of Epstein [5], we have an algorithm COMBINE1 for

the whole interval [1,∞) as follows:






















FAST, for 1 ≤ s ≤ 1+
√

3
2 ,

STATUS1, for 1+
√

3
2 ≤ s ≤ 1+

√
13

3 ,

STATUS2, for 1+
√

13
3 ≤ s ≤

√
3,

SLOW, for s ≥
√

3.

The overall competitive ratio of COMBINE1 is 1+
√

3
2 , which matches the overall lower bound.

Algorithm COMBINE1 can be viewed as an optimal algorithm in the sense that it yields an

overall competitive ratio.

3.2 Algorithms for Q2|sum|Cmax

As mentioned before, Q2|sum|Cmax is a relaxation of Q2|opt|Cmax, so any algorithm for the latter

problem must have a competitive ratio of no greater than one if it can be used to solve the former

problem. The next Theorem 3.3 states that FAST and SLOW retain the same competitive ratios

for any s ≥ 1, while the next Examples 1-2 state the contrary when s ∈ [1+
√

3
2 ,

√
3], which show

that algorithms STATUS1 and STATUS2 may achieve worse competitive ratios when applying

them directly to the former problem. Hence new algorithms, such as STATUS3 and STATUS4,

are necessary for this interval. Further, Theorems 3.4-3.5, together with the sequences given in the

proof of Theorem 3.3, show that STATUS3 and STATUS4 have smaller competitive ratios than

those of FAST and SLOW for the considered interval.

Combining these with the lower bound for Q2|sum|Cmax presented in the next section, which

is not valid for Q2|opt|Cmax, we conclude that these two problems are indeed different.

Theorem 3.3 For Q2|sum|Cmax, if s ∈ [1, 1+
√

3
2], FAST has a competitive ratio of

max{s, 2s + 2

2s + 1
} =

{

2s+2
2s+1 , for s ∈ [1, 1+

√
17

4],

s, for s ∈ [1+
√

3
2 , 1+

√
17

4];

and if s ∈ [
√

3,∞), SLOW has a competitive ratio of s+2
s+1 .

Proof. By an easy modification of the proofs in [5] we can get the result. The proofs are quite

similar to those of Theorems 3.4-3.5 and are omitted. The following sequences show that the

algorithms cannot have competitive ratios smaller than those claimed in the theorem:

13

For 1 ≤ s ≤ 1+
√

17
4 , let J = {p1 = 2s2+s−1

2s+1 , p2 = 1, p3 = 1
2s+1}. Then FAST assigns p1 to M2,

p2 and p3 to M1. We have CFAST = 2s+2
2s+1 , COPT = 1, and thus CF AST

COPT = 2s+2
2s+1 .

For 1+
√

17
4 ≤ s ≤

√
2, let J = {p1 = 1, p2 = s}. Then FAST assigns p1 to M2, p2 to M1. We

have CFAST = s, COPT = 1, and thus CF AST

COPT = s.

For s ≥
√

2, let J = {p1 = 1
s+1 , p2 = s, p3 = s

s+1}. Then SLOW assigns p1 to M1, and p2 and

p3 to M2. We have CFAST = s+2
s+1 , COPT = 1, and thus CSLOW

COPT = s+2
s+1 . 2

Example 1: Let s = 3
2 ∈ [1+

√
3

2 , 1+
√

13
3], where STATUS1 is used to solve Q2|opt|Cmax.

The competitive ratio of STATUS1 is 15
11 for s = 3

2 . Let J = {p1 = 3
22 − ǫ, p2 = 5

22 − ǫ, p3 =

1 + 3ǫ, p4 = 25
22 − ǫ}, where ǫ is a sufficiently small positive number. In an optimal schedule,

p3 is assigned to M1 and the remaining jobs are assigned to M2. We thus have COPT = 1 + ǫ.

According to STATUS1, p1 and p2 are assigned to M1 and the scheduling process is in TS2. As

p1 + p2 + p3 = 15
11 + ǫ, the scheduling process cannot be in NSS1, p3 is thus assigned to M2 by

the TS rule. p4 makes the scheduling process end in ANSS by assigning it to a machine such

that CSTATUS1 = min{p1 + p2 + p4,
p3+p4

s
} = 47

33 + 4
3ǫ. It follows that CSTATUS1

COPT → 47
33 > 15

11 when

ǫ → 0. We conclude that STATUS1 cannot retain the same competitive ratio for both problems.

Furthermore, as 47
33 ≈ 1.42424 is even larger than the competitive ratio of 3+7

√
15

22 ≈ 1.36868 of

STATUS3 when s = 3
2 (see Theorem 3.4), we conclude that STATUS3 is definitely better than

STATUS1 when both are used to solve the same problem Q2|sum|Cmax.

Example 2 Let s = 12
7 ∈ [1+

√
13

3 ,
√

3], where STATUS2 is used to solve Q2|opt|Cmax. The

competitive ratio of STATUS2 is 15
11 for s = 12

7 . Let J = {p1 = 28
77 − ǫ, p2 = 1 + 2ǫ, p3 = 104

77 − ǫ},
where ǫ is a sufficiently small positive number. In an optimal schedule, p3 is assigned to M1 and

the remaining jobs are assigned to M2. We have COPT = 1 + ǫ. On the other hand, it can be

easily verified that STATUS2 assigns p1 to M1, and p2 and p3 to M2. We have CSTATUS2 =
181
132 + ǫ. Thus CSTATUS2

COPT → 181
132 > 15

11 when ǫ → 0. We conclude that STATUS2 cannot retain

the same competitive ratio for both problems. Furthermore, as 181
132 ≈ 1.37121 is even larger than

the competitive ratio 1.36507 of STATUS4 when s = 12
7 (see Theorem 3.5), we conclude that

STATUS4 is definitely better than STATUS2 when both are used to solve the same problem

Q2|sum|Cmax.

The above examples can be easily extended to other values of s.

Theorem 3.4 For s ∈ [1+
√

3
2 , q2], STATUS3 has a competitive ratio of

r =

{

2s+1
2s

, for 1+
√

3
2 ≤ s ≤ q2,

s+
√

29s2+59s+30
4s+5 , for q2 ≤ s ≤ q3.

Proof. Similarly we can show that all the status used in STATUS3 are well-defined. We will again

prove the result by contradiction. Suppose that there exists a sequence satisfying CSTATUS3

COPT > r.

By Lemma 2.1, we only need to consider the case that the scheduling process ends in ANSS.

Case 1 The scheduling process is first in TS3 before it ends in ANSS.

14

On the arrival of job p, the scheduling process is in TS3, i.e., 2+2s−2r−rs ≤ T2 +p ≤ (r−1)s.

By the same argument as that in the proof of Case 1 of Theorem 3.1, we know that there exists a

job pa such that pa > rs+r−s−1 and T2 +p+pa ≥ 1+s−r. Since the scheduling process ends in

the status ANSS instead of NSS2, we have T2 + p+ pa ≥ rs. Combining it with T2 + p ≤ (r− 1)s,

we have pa > s. As T2 + p + pa ≥ rs and T1 + pa ≥ pa > s > r, pa makes the scheduling process

end in ANSS. Noting that the current load of machine M2 is T2 + p (not T2) when assigning pa,

by Lemma 2.1, we have

CSTATUS3

COPT
≤

T2+p+pa

s
pa

s

=
T2 + p + pa

pa
=

T2 + p

pa
+ 1 ≤ r − 1 + 1 = r.

Case 2 The scheduling process is first in TS2 before it ends in ANSS.

Assume that assigning job p makes the scheduling process in TS2, i.e., 3 + 4s − 2r − 3rs ≤
T1 + p ≤ t. Using an argument analogous to that in the proof of Case 2 of Theorem 3.1, we know

that there exists a job satisfying pb > r − (T1 + p) ≥ r − t > 1. Furthermore, there exists another

job pc such that pc > r − (T1 + p) ≥ r − t > 1 and all the jobs coming later than pb but earlier

than pc, together with pb, are assigned to M2. Note that
∑c

j=b pj ≥ pb + pc > 2 > s > 1 + s − r. If
∑c

j=b pj ≤ rs, assigning pc to M2 makes the scheduling process end in NSS2, which contradicts our

assumption. Thus we have
∑c

j=b pj > rs. Combing it with T1 + p + pc > r, we know that assigning

pc makes the scheduling process end in ANSS. By Lemma 2.1, we get CSTATUS3 ≤ T1 + p + pc.

We next show COPT ≥ min{pb, pc}. In fact, if pb and pc are processed on the same machine,

we have COPT ≥ pb+pc

s
> min{pb, pc} (due to pb, pc > 1 and s < 2). Otherwise, at least one of

them is assigned on M1, and we also have COPT ≥ min{pb, pc}.
If COPT ≥ pb, we have

CSTATUS3

COPT
≤ T1 + p + pc

pb

≤
∑n

j=1 pj − pb

pb

=
1 + s − pb

pb

=
1 + s

pb

− 1 ≤ 1 + s

r − t
− 1 = r, (7)

where the last equality is due to t = r − s+1
r+1 . If COPT ≥ pc, we have

CSTATUS3

COPT
≤ T1 + p + pc

pc
≤ t + pc

pc
=

t

pc
+ 1 ≤ t

r − t
+ 1 =

r

r − t
< r, (8)

where the last inequality is due to r − t > 1.

Case 3 The scheduling process is never in TS2 or TS3 before it ends in ANSS.

By an argument analogous to that in the proof of Case 3 of Theorem 3.1, there exists a job pd

satisfying pd > t−(3+4s−2r−3rs). By the definitions of t and r, we have pd > t−(3+4s−2r−3rs) ≥
2+2s−2r−rs, which is just inequality (4) in the proof of Theorem 3.1. By following the argument

after inequality (4) in that proof, we obtain pd > rs. Obviously, all the jobs earlier than pd are

assigned to M1. Then we are confronted with T1 + pd > rs > r and pd > rs, which means that

pd makes the scheduling process end in ANSS. By Lemma 2.1 we have CSTATUS3 = pd

s
. On the

other hand, COPT ≥ pd

s
trivially. We thus have CSTATUS3

COPT = 1 < r. 2

15

Theorem 3.5 For s ∈ [q3,
√

3], STATUS4 has a competitive ratio of

r =







√
36s4+9s3−32s2−2s+9+6s2+9s+3

9s2+7s
, for q3 ≤ s ≤ q4,√

4s4+8s3+s2+4+2s2+3s+2
2(s2+3s) , for q4 ≤ s ≤

√
3.

Proof. Similarly we can show that all the status used in STATUS4 are well-defined. We prove the

result by contradiction, too. Hence we only need to consider the case that the scheduling process

of STATUS4 ends in ANSS.

Case 1 The scheduling process is first in TS3 before it ends in ANSS.

Using the same argument as that in Case 1 of Theorem 3.4 can reach the conclusion.

Case 2 The scheduling process is first in TS2 before it ends in ANSS.

Using an argument analogous to that in the proof of Case 2 of Theorem 3.4, we know that there

exists a job satisfying pb > r − (T1 + p) ≥ r − t > 1, and a job pc satisfying pc > r − (T1 + p) ≥
r − t > 1. Moreover, assigning ps makes the scheduling process end in ANSS. Noting that all

the jobs arriving later than pb but earlier than pc, together with pb, are assigned to M2, we have

CSTATUS4 = min{T1 + p + pc,

∑c

j=b
pj

s
}. Since pb > r − (T1 + p), we have

CSTATUS4 ≤
∑c

j=b pj

s
≤

∑n
j=1 pj − (T1 + p)

s
=

1 + s − (T1 + p)

s
≤ 1 + s − (r − pb)

s
. (9)

On the other hand, we can obtain COPT ≥ max{pb, pc} similarly. If COPT ≥ pb, from (9) we obtain

CSTATUS4

COPT
≤ 1 + s − (r − pb)

spb

=
1 + s − r

spb

+
1

s
≤ 1 + s − r

s(r − t)
+

1

s
= r, (10)

where the second inequality is due to pb > r − t, and the last equality is due to the definition of

t = r − 1+s−r
rs−1 . If COPT ≥ pc, we get CSTATUS4

COPT ≤ r in the same way as the proof of (8).

Case 3 The scheduling process is first in TS1 before it ends in ANSS.

On the arrival of job p, the scheduling process is in TS1, i.e.,

5 + 6s − 4r − 4rs − t ≤ T2 + p ≤ 2rs − 2s − 1. (11)

Using an argument analogous to that in the proof of Case 3 of Theorem 3.2, we find that there

exists a job pe such that the current load of M1 is increased from T1 < 3 + 4s− 2r − 3rs to greater

than t if pe is assigned to M1. Hence

pe > t − (3 + 4s − 2r − 3rs). (12)

We classify four subcases according to the value of pe.

Subcase 3.1 pe ≤ 1+s−rs. From the second inequality of (11) and this subcase’s assumption,

we have T2 +p+pe ≤ (r−1)s. From the first inequality of (11) and (12), we have 2+2s−2r−rs <

T2 + p + pe. These inequalities imply that the scheduling process is in TS3 by assigning pe to M2.

Hence using the same argument as in Case 1 can complete the proof.

16

Subcase 3.2 1 + s − rs < pe ≤ r − T1. We have 1 + s − rs < pe ≤ T1 + pe ≤ r. Hence the

scheduling process can be in NSS1 by assigning pe to M1, which violates the hypothesis that the

scheduling process ends in ANSS.

Subcase 3.3 r − T1 < pe ≤ rs − (T2 + p). From T1 < 3 + 4s − 2r − 3rs and (11), we get

1 + s − r < (5 + 6s − 4r − 4rs − t) + r − (3 + 4s − 2r − 3rs) ≤ T2 + p + r − T1 ≤ T2 + p + pe ≤ rs.

Hence the scheduling process can be in NSS2 by assigning pe to M2, a contradiction again.

Subcase 3.4 pe > rs − (T2 + p). By the second inequality of (11) and the definition of r, we

have T2+p < (r−1)s. Hence pe > s. Now we have T2+p+pe > rs and T2+p < (r−1)s < 1+s−r,

as well as T1 < 3 + 4s − 2r − 3rs < 1 + s − rs and T1 + pe > r, which states that pe makes the

scheduling process end in ANSS. By Lemma 2.1, we know

CSTATUS4

COPT
≤

T2+p+pe

s
pe

s

≤ T2 + p

pe
+ 1 ≤ r − 1 + 1 = r.

Case 4 The scheduling process is never in one of TS before it ends in ANSS.

By an argument analogous to that in the proof of Case 4 of Theorem 3.2, there exists a job pf

such that the current load of M2 is increased from T2 < 5+6s−4r−4rs−t to greater than 2rs−2s−1

if pf is assigned to M2. Hence pf > (2rs− 2s− 1)− (5 + 6s− 4r − 4rs− t) = t + 6rs + 4r − 8s− 6.

By the definitions of t and r, we have pf > 3 + 4s− 2r − 3rs and t ≥ 2 + 2s − 2r − rs. We classify

five subcases according to the value of pf .

Subcase 4.1 pf ≤ t. Since there is no job processed on M1 yet, from pf > 3 + 4s − 2r − 3rs

and pf ≤ t, we know that the scheduling process is in TS2 by assigning pf to M1. Hence using the

same argument as in Case 2 can complete the proof.

Subcase 4.2 t < pf ≤ (r − 1)s− T2. By t ≥ 2 + 2s− 2r − rs, we know that 2 + 2s− 2r − rs ≤
T2 + t ≤ T2 + pf ≤ (r − 1)s. Then the scheduling process is in TS3 by assigning pf to M2. Hence

using the same argument as that in Case 1 can complete the proof.

Subcase 4.3 (r − 1)s − T2 < pf ≤ r. By T2 < 5 + 6s − 4r − 4rs − t, and the definitions of t

and r, we have

pf > (r − 1)s − T2 > (r − 1)s − (5 + 6s − 4r − 4rs − t) > 1 + s − rs.

As 1 + s − rs < pf ≤ r, the scheduling process is in NSS1 by assigning pf to M1, which violates

the hypothesis that the scheduling process ends in ANSS.

Subcase 4.4 r < pf ≤ rs − T2. Then T2 + pf ≥ pf > r > 1 + s − r. Combining it with

T2+pf ≤ rs, we know that the scheduling process is in NSS2 by assigning pf to M2, a contradiction

again.

Subcase 4.5 pf > rs−T2. By (1) and (5), we have T2 < 5+6s−4r−4rs−t < 2+2s−2r−rs <

(r − 1)s, and thus pf > s. Hence, similar to Subcase 3.4, assigning pf to any machine makes the

17

scheduling process end in ANSS. By Lemma 2.1, we have

CSTATUS4

COPT
≤

T2+pf

s
pf

s

≤ T2

pf

+ 1 <
(r − 1)s

s
+ 1 ≤ r − 1 + 1 = r.

The proof is thus completed. 2

Based on Theorems 3.3-3.5, we have an algorithm COMBINE2 for the whole interval [1,∞)

as follows:






















FAST, for 1 ≤ s ≤ 1+
√

3
2 ,

STATUS3, for 1+
√

3
2 ≤ s ≤ q3,

STATUS4, for q3 ≤ s ≤
√

3,

SLOW, for s ≥
√

3.

The overall competitive ratio of the algorithm is 1.3692, which is achieved at q3 and only 0.0032

larger than the trivial overall lower bound of 1+
√

3
2 .

4 Lower bounds

This section considers lower bounds for Q2|opt|Cmax and Q2|sum|Cmax. The proof will be com-

pleted by using an adversarial method. We will present a series of sequences and show that no

semi-online algorithm can work well on all of them simultaneously, i.e., for any semi-online al-

gorithm A, there always exists a sequence such that CA/COPT is no less than our desired lower

bound.

4.1 Lower bounds for Q2|opt|Cmax

This subsection focuses on the problem Q2|opt|Cmax. We present improved lower bounds for s ∈
[
√

2, 5+
√

73
8]. All the sequences used in this subsection have the optimal value COPT = 1 (and

the total sum of sizes 1 + s), thus CA/COPT = CA. We prove the case s ∈ [
√

2,
√

21
3] in detail.

The remaining cases of s ∈ [
√

21
3 , 5+

√
73

8] can be verified by essentially similar arguments, hence we

sketch the proof by listing the schedules of algorithm A and the adversarial sequences for all the

possible situations, which are given case by case in the ensuing Tables 1-3.

Theorem 4.1 For s ∈ [
√

2,
√

21
3], any semi-online algorithm A for Q2|opt|Cmaxhas a competitive

ratio of at least 3s+5
2s+4 .

Proof. Let p1 = 3−s2

2s+4 . We first consider the case that p1 is assigned to M1. Let p2 = s2+s−2
2s+4 . If p2

is also assigned to M1, let the last two jobs be p3 = 1 and p4 = 2s2+3s−1
2s+4 . Then we have

CA ≥
{

p1 + p2 + p3 = 3s+5
2s+4 , if p3 is assigned to M1,

min{p1 + p2 + p4,
p3+p4

s
} = min{s, 2s2+5s+3

s(2s+4) } ≥ 3s+5
2s+4 , otherwise.

18

If p2 is assigned to M2, let p3 = s+1
2s+4 . If further p3 is assigned to M1, let the last two jobs be

p4 = p5 = s2+2s+1
2s+4 . We obtain

CA ≥
{

p1 + p3 + p4 = 3s+5
2s+4 , if p4 is assigned to M1,

min{p1 + p3 + p5,
p2+p4+p5

s
} = 3s+5

2s+4 , otherwise.

If p3 is assigned to M2, let the last two jobs be p4 = s are p5 = 2
2s+4 . We also have

CA ≥ min{p1 + p4,
p2 + p3 + p4

s
} = min{s2 + 4s + 3

2s + 4
,

3s2 + 6s + 1

2s + 4
} ≥ 3s + 5

2s + 4
.

Now we consider the case that A assigns p1 to M2. In this case, let p2 = 4+s−s2

2s+4 . If p2 is assigned

to M2, let the last two jobs be p3 = s and p4 = 2s2+s−3
2s+4 . We have

CA ≥ min{p3,
p1 + p2 + p3

s
} = min{s, 5s + 7

s(2s + 4)
} ≥ 3s + 5

2s + 4
.

If p2 is assigned to M1, let p3 = s2+2s+1
2s+4 and p4 = 3s2+3s−4

2s+4 . We have

CA ≥
{

p2 + p3 = 3s+5
2s+4 , if p3 is assigned to M1,

min{p1 + p4,
p2+p3+p4

s
} = min{s, 3s+5

2s+4} ≥ 3s+5
2s+4 , otherwise.

We are done. 2

Theorem 4.2 For s ∈ [
√

21
3 , 5+

√
193

12], any semi-online algorithm A for Q2|opt|Cmax has a compet-

itive ratio of at least 3s+3
3s+1 .

Proof. Consider Table 1. It is easy to verify that all the values in the last column of the table are

greater than or equal to 3s+3
3s+1 for any s ∈ [

√
21
3 , 5+

√
193

12]. The theorem is thus proved. 2

Theorem 4.3 For s ∈ [5+
√

193
12 , 5

3], any semi-online algorithm A for Q2|opt|Cmax has a competitive

ratio of at least














4s+2
2s+3 , 5+

√
193

12 ≤ s ≤ 7+
√

145
12 ,

5s+2
4s+1 , 7+

√
145

12 ≤ s ≤ 9+
√

193
14 ,

7s+4
7s

, 9+
√

193
14 ≤ s ≤ 5

3 .

Proof. Consider Table 2. If s ∈ [5+
√

193
12 , 7+

√
145

12], we set

x =
−2s2 + 3s + 1

2s + 3
, y =

4s2 − 4s − 1

2s + 3
, z =

2s2 − s − 2

2s + 3
, w =

2

2s + 3
.

Substituting these values into the expressions in the last column in Table 2, we have

min{1 + s − x, y + 1, s − x, 1+s−y
s

} = min{4s2+2s+2
2s+3 , 4s2−2s+2

2s+3 , 4s2−1
2s+3 , −2s2+9s+4

s(2s+3) } = −2s2+9s+4
s(2s+3) ,

min{1 + s − x − y, s, x+y+s
s

, 1+s
s
} = min{6s+3

2s+3 , s, 4s+2
2s+3 , 1+s

s
} = 4s+2

2s+3 ,

min{s + 1, x + z + 1, 1+s−x−z
s

, s} = min{s + 1, 4s+2
2s+3 , 2s2+3s+4

s(2s+3) , s} = 4s+2
2s+3 ,

min{1 + s − z, x + w + 1, s − z, 1+s−x−w
s

} = min{6s+5
2s+3 , −2s2+5s+6

2s+3 , 4s+2
2s+3 , 4s+2

2s+3} = 4s+2
2s+3 ,

min{1 + s − z − w, s + x, s+z+w
s

, 1+s−x
s

} = min{6s+3
2s+3 , 6s+1

2s+3 , 4s+2
2s+3 , 4s2+2s+2

s(2s+3) } = 4s+2
2s+3 .

19

Schedule by A
M1 M2

Adversary sequence CA

{p1, p2, p3, p4} ∅ s + 1

{p1, p2, p3} {p4} 3s2+3s−4
3s+1

{p1, p2, p4} {p3} { s−1
3s+1 , 3s2−s−4

3s+1 , 1, s+5
3s+1} s

{p1, p2} {p3, p4} 4s+6
s(3s+1)

{p1, p3, p4, p5} {p2} 5s+5
3s+1

{p1, p3, p4} {p2, p5}
{p1, p3, p5} {p2, p4} { s−1

3s+1 , 3s2−s−4
3s+1 , 2

3s+1 , 2s+2
3s+1 , 2s+2

3s+1} 3s+3
3s+1

{p1, p3} {p2, p4, p5}
{p1, p4, p5} {p2, p3} 5s+3

3s+1

{p1, p4} {p2, p3, p5} 3s2+2s−1
3s+1

{p1, p5} {p2, p3, p4} { s−1
3s+1 , 3s2−s−4

3s+1 , 2
3s+1 , s, −3s2+3s+4

3s+1 } 6s2−2
s(3s+1)

{p1} {p2, p3, p4, p5} 3s2+3s+2
s(3s+1)

{p2, p3, p4} {p1} 3s2+3s+2
3s+1

{p2, p4} {p1, p3} s
{p2, p3} {p1, p4} { s−1

3s+1 , s+1
3s+1 , 2s+2

3s+1 , 3s2−1
3s+1 }

{p2} {p1, p3, p4}
3s+3
3s+1

{p3, p4} {p1, p2} 3s2+2s+1
3s+1

{p3} {p1, p2, p4} s
{p4} {p1, p2, p3} { s−1

3s+1 , s+1
3s+1 , s, s+1

3s+1} 3s+3
3s+1

∅ {p1, p2, p3, p4} s+1
s

Table 1: The case s ∈ [
√

21
3 , 5+

√
193

12] for Theorem 4.2

20

Schedule by A
M1 M2

Adversary sequence CA

{p2, p3, p4} {p1} 1 + s − x
{p2, p3} {p1, p4} y + 1
{p2, p4} {p1, p3} {x, y, 1, s − x − y} s − x

{p2} {p1, p3, p4} 1+s−y
s

{p3, p4} {p1, p2} 1 + s − x − y
{p3} {p1, p2, p4} s

{p4} {p1, p2, p3} {x, y, s, 1 − x − y} x+y+s
s

∅ {p1, p2, p3, p4} 1+s
s

{p1, p2, p3, p4} ∅ s + 1
{p1, p2, p3} {p4} x + z + 1
{p1, p2} {p3, p4} {x, z, 1, s − x − z} 1+s−x−z

s

{p1, p2, p4} {p3} s

{p1, p3, p4, p5} {p2} 1 + s − z
{p1, p3, p4} {p2, p5} x + w + 1
{p1, p3, p5} {p2, p4} {x, z, w, 1, s − x − w − z} s − z
{p1, p3} {p2, p4, p5} 1+s−x−w

s

{p1, p4, p5} {p2, p3} 1 + s − z − w
{p1, p4} {p2, p3, p5} s + x
{p1, p5} {p2, p3, p4} {x, z, w, s, 1 − x − z − w} s+z+w

s

{p1} {p2, p3, p4, p5} 1+s−x
s

Table 2: The case 5+
√

193
12 ≤ s ≤ 5

3 for Theorem 4.3

{p1, p4, p5, p6} {p2, p3} 1 + s − z − w
{p1, p4, p5} {p2, p3, p6} x + v + 1
{p1, p4, p6} {p2, p3, p5} {x, z, w, v, 1, s − x − z − w − v} s − z − w
{p1, p4} {p2, p3, p5, p6} 1+s−x−v

s

{p1, p5, p6} {p2, p3, p4} 1 + s − z − w − v
{p1, p5} {p2, p3, p4, p6} s + x
{p1, p6} {p2, p3, p4, p5} {x, z, w, v, s, 1 − x − z − w − v} s+z+w+v

s

{p1} {p2, p3, p4, p5, p6} 1+s−x
s

Table 3: The case 5
3 ≤ s ≤ 5+

√
73

8 for Theorem 4.4

21

Hence we have

CA ≥ min{−2s2 + 9s + 4

s(2s + 3)
,
4s + 2

2s + 3
} =

4s + 2

2s + 3
.

Similarly, by setting

x =
2s2 − 2s − 1

4s + 1
, y =

−s2 + 3s + 1

4s + 1
, z =

4s2 − 4s − 2

4s + 1
, w =

−3s2 + 5s + 2

4s + 1

if s ∈ [7+
√

145
12 , 9+

√
193

14], and setting

x =
1

7
, y =

3

7
, z = w =

2

7

if s ∈ [9+
√

193
14 , 5

3], we can get the desired lower bounds for these intervals, too. 2

Theorem 4.4 For s ∈ [53 , 5+
√

73
8], any semi-online algorithm A for Q2|opt|Cmax has a competitive

ratio of at least 7s+4
4s+5 .

Proof. Replace the last four rows in Table 2 with all the rows in Table 3, and set

x =
−2s2 + 4s + 1

4s + 5
, y =

5s2 − 5s − 1

4s + 5
, z = w =

2s2 − s − 2

4s + 5
, v =

−s2 + s + 4

4s + 5
.

By a similar argument as that in the proof of Theorem 4.3, we can reach the conclusion. 2

Combining Theorems 3.1-3.2 and 4.1-4.4, we have improved the known results for Q2|opt|Cmax

as follows: we have decreased the largest gap between the competitive ratio and the lower bound

from 0.07295 to 0.02192, and the length of the interval over which the algorithm is not optimal

from 0.4987 to 0.46814. Figure 4 shows the competitive ratios of algorithm COMBINE1 and the

lower bounds for the problem.

1.2 1.4 1.6 1.8 2

1.28

1.3

1.32

1.34

1.36

Figure 4: The competitive ratio of algorithm COMBINE1 and the lower bound.

22

4.2 Lower bound for Q2|sum|Cmax

Finally, we give a lower bound for Q2|sum|Cmax in this subsection.

Theorem 4.5 Any semi-online algorithm A for Q2|sum|Cmax has a competitive ratio of at least































































































3s+1
3s

, for 1 ≤ s ≤ q1 ≈ 1.12433,

(3
4 +

√
65

20)s, for q1 ≤ s ≤ 1+
√

65
8 ≈ 1.13278,

2s+2
2s+1 , for 1+

√
65

8 ≤ s ≤ 1+
√

17
4 ,

s, for 1+
√

17
4 ≤ s ≤ 1+

√
3

2 ≈ 1.36603,
2s+1
2s

, for 1+
√

3
2 ≤ s ≤

√
2 ≈ 1.41421,

3s+5
2s+4 , for

√
2 ≤ s ≤

√
21
3 ≈ 1.52753,

3s+3
3s+1 , for

√
21
3 ≤ s ≤ 5+

√
193

12 ≈ 1.57437,
4s+2
2s+3 , for 5+

√
193

12 ≤ s ≤ 7+
√

145
12 ≈ 1.5868,

5s+2
4s+1 , for 7+

√
145

12 ≤ s ≤ 9+
√

193
14 ≈ q5,

c(s), for q5 ≤ s ≤
√

3,
s+2
s+1 , for s ≥

√
3,

where c(s) =

√
s2x2+4s(s+1−x)+sx

2s
, x is a root of the equation

√

s2x2 + 4s(s + 1 − x) + sx

2s
=

s(2s + 2 − x)

(s + 1)(x + 2)
,

and q5 is defined in Section 1.

Proof. For s ∈ [1, q5] ∪ [
√

3,∞), the lower bound for Q2|sum|Cmax is the same as that for the

problem Q2|opt|Cmax. In fact, for
√

2 ≤ s ≤ q5, since all the sequences in the proof of Theorems

4.1-4.4 have the same total sum of sizes of 1 + s, we know that the lower bound remains valid. For

1 ≤ s ≤
√

2 and s ≥
√

3, the sequences used in [5] may have a total sum of less than 1+ s although

COPT = 1. If so, we can add a sufficient number of small jobs at the end of each such sequence

such that the total sum becomes 1 + s and COPT = 1 still holds, which suffices to get the same

lower bound.

We consider the case of s ∈ [q5,
√

3] as follows: Let y =

√
s2x2+4s(s+1−x)−sx

2s
= c(s) − x be the

positive root of the equation x+y = 1+s−x
sy

, and let z = 1+ sx−x2

s+2 be the root of z+ 1+s−x−z
2 = 1+s−z

s
.

It can be verified that for s ∈ [q5,
√

3], the following inequalities are satisfied:

x + y < s, x + z < 1, (13)

1 + s − y >
1 + s − x

s
, (14)

y > 1, (15)

x + z + s

s
>

s(2s + 2 − x)

(s + 1)(x + 2)
= c(s), (16)

23

x + z > s − 1. (17)

Note that (13) guarantees that all the job sizes in the below sequence are positive.

Let p1 = x. We first consider the case that A assigns p1 to M1. Then let p2 = y. If p2 is

assigned to M1, let p3 = 1 and p4 = s− x− y. We have CA ≥ x + y and COPT = 1. It follows that
CA

COPT ≥ x + y = c(s). If p2 is assigned to M2, let p3 = 1 + s − x − y. We have

CA ≥ min{p1 + p3,
p2 + p3

s
} = min{1 + s − y,

1 + s − x

s
} =

1 + s − x

s
,

where the last equality is due to (14). On the other hand, the optimal makespan must be no greater

than the makespan of the following feasible schedule: assign p2 to M1 and the remaining two jobs

to M2. It follows that

COPT ≤ max{p2,
p1 + p3

s
} = max{y,

1 + s − y

s
} = y,

where the last equality holds because of (15). Thus we have

CA

COPT
≥ 1 + s − x

sy
= x + y = c(s).

Now we consider the case that A assigns p1 to M2. Let p2 = z. If p2 is assigned to M2, let

p3 = s and p4 = 1 − x − z. Since x+z+s
s

< s+1
s

< s for s ≥ q5, we have

CA ≥ min{p3,
p1 + p2 + p3

s
} = min{s, x + z + s

s
} =

x + z + s

s
,

while COPT = 1 holds trivially. Hence, by (16) we have

CA

COPT
≥ x + z + s

s
> c(s).

If p2 is assigned to M1, let p3 = p4 = 1+s−x−z
2 . We have

CA = min{p2+p3,
p1 + p3 + p4

s
} = min{z+

1 + s − x − z

2
,

1 + s − z

s
} =

1 + s − x + z

2
=

2s + 2 − x

s + 2
.

On the other hand, the optimal makespan must be no greater than the makespan of the following

feasible schedule: assign p4 to M1 and the remaining three jobs to M2. It follows that

COPT ≤ max{p4,
p1 + p2 + p3

s
} =

p1 + p2 + p3

s
=

1

s

(

x + z +
1 + s − x − z

2

)

=
(s + 1)(x + 2)

s(s + 2)
,

where the first equality holds, because p4 < 1 and p1 + p2 + p3 > s (due to (17)). We thus have

CA

COPT
≥ s(2s + 2 − x)

(s + 1)(x + 2)
= c(s).

2

Through Theorems 3.3-3.5 and 4.5, we conclude that for Q2|sum|Cmax the largest gap between

the competitive ratio of COMBINE2 and the lower bound is about 0.01762, and the length of the

interval over which COMBINE2 is not optimal is about 0.47328. Figure 5 shows the competitive

ratios of algorithm COMBINE2 and the lower bounds.

24

1.2 1.4 1.6 1.8 2

1.28

1.3

1.32

1.34

1.36

Figure 5: The competitive ratio of algorithm COMBINE2 and the lower bound.

Acknowledgement

We are thankful to an anonymous referee for their helpful comments on an earlier version of our

paper.

References

[1] E. Angelelli, A. B. Nagy, M. G. Speranza, Z. Tuza, The on-line multiprocessor scheduling

problem with known sum of the tasks, Journal of Scheduling, 7, 2004, 421-428.

[2] Y. Azar, O. Regev, On-line bin-stretching, Theoretical Computer Science, 168, 2001, 17-41.

[3] R. E. Burkard, Y. He, H. Kellerer, A linear compound algorithm for uniform machine schedul-

ing, Computing, 61, 1998, 1–9.

[4] T. C. E. Cheng, H. Kellerer, V. Kotov, Semi-on-line multiprocessor scheduling with given total

processing time, Theoretical Computer Science, 337, 2005, 134-146.

[5] L. Epstein, Bin stretching revisited, Acta Informatica, 39, 2003, 97-117.

[6] Y. He, H. Kellerer, V. Kotov, Linear compound algorithms for the partitioning problem, Naval

Research Logistics, 47 2000, 593–601.

[7] H. Kellerer, V. Kotov, M. G. Speranza and Z. Tuza, Semi on-line algorithms for the partition

problem, Operations Research Letters, 21, 1997, 235-242.

[8] Z. Y. Tan, Y. He, Semi-online scheduling on two uniform machines, System Engineering-

Theorey and Practice, 21, 2001, 53-57. (in Chinese)

[9] Z. Y. Tan, Y. He, Semi-on-line problems on two identical machines with combined partial

information, Operations Research Letters, 30, 408-414, 2002.

25

