This is the Pre-Published Version.

Two semi-online scheduling problems on two uniform machines

C. T. Ng®* Zhiyi Tan® Yong He’ T. C. E. Cheng® *

¢ Department of Logistics and Maritime Studies, The Hong Kong Polytechnic University,
Hung Hom, Kowloon, Hong Kong SAR, P. R. China
b Department of Mathematics, State Key Lab of CAD & CG, Zhejiang University,
Hangzhou 310027, P. R. China

Abstract

This paper considers two semi-online scheduling problems, one with known optimal value
and the other with known total sum, on two uniform machines with a machine speed ratio
1+v3 14+v21]

2 0 4

of s > 1. For the first problem, we provide an optimal algorithm for s € | , and

improved algorithms or/and lower bounds for s € [%ﬁ , \/g], over which the optimal algorithm
is unknown. As a result, the largest gap between the competitive ratio and the lower bound
decreases to 0.02192. For the second problem, we also present algorithms and lower bounds for
s > 1. The largest gap between the competitive ratio and the lower bound is 0.01762, and the
length of the interval over which the optimal algorithm is unknown is 0.47382. Our algorithms
and lower bounds for these two problems provide insights into their differences, which are unusual
from the viewpoint of the known results on these two semi-online scheduling problems in the
literature.

Mathematics Subject Classification (1991). 90B35, 90C27

Key words: analysis of algorithm, scheduling, semi-online, competitive ratio.

1 Introduction

In this paper we consider semi-online scheduling problems. We are given a sequence J of inde-
pendent jobs with positive sizes p1,po, ..., Pn, which must be non-preemptively scheduled onto m
uniform machines My, Ms, - - -, M,,,. We identify the jobs with their sizes. Machine M; has speed s;.
Without loss of generality, we assume 1 = 51 < s9 < -+ < 55, If job p; is assigned to machine M;,
then p;/s; time units are required to process this job. If all the machines have the same speed 1,
they are called identical machines. The jobs arrive online over list, i.e., each job should be assigned
to a machine before the next job is revealed. The goal is to minimize the makespan, which is the

maximum completion time among the machines. Further we assume that the smallest makespan

*Supported by The Hong Kong Polytechnic University under grant number G-UO060. Email address:
Igtctng@polyu.edu.hk.

fSupported by the National Natural Science Foundation of China (10671177, 60021201) and Zhejiang Provincial
Natural Science Foundation of China (Y607079). Email address: tanzy@zju.edu.cn.

tSupported by The Hong Kong Polytechnic University under grant number G-U060. Email address:
Igtcheng@polyu.edu.hk.

is achievable (i.e., the optimal value) for the sequence is known in advance. We call this problem
the semi-online scheduling problem with known optimal value, and denoted it by Pm|opt|Cpax if
all the machines have the same speed 1, and by Qm|opt|Crax otherwise. Azar and Regev [2] gave

an application of this problem in file allocation.

A closely related problem is the semi-online scheduling problem with known total sum, where
the total sum of all the job sizes is known in advance [7]. We denote this problem by Pm/|sum|Cpax
if all the machines have the same speed 1, and by Qm/|sum|Cyax otherwise. As the total sum of all
the job sizes gives a trivial lower bound for the optimal value, the problem with known total sum
may be viewed as a relaxation of the problem with known optimal value. But these two problems
are clearly different, since, among other reasons, some jobs may have sizes greater than the average

and hence the optimal makespan is still unknown.

The quality of the performance of an on-line or a semi-online algorithm is measured by its
competitive ratio. For a job sequence J and an algorithm A, let C4(J) (or briefly C4) denote
the makespan produced by A and let COPT(J) (or briefly COFT) denote the optimal makespan
of the off-line version. Then the competitive ratio of A is defined as Ry = sgp{cgﬁi%}. An

online (semi-online) scheduling problem has a lower bound p if no online (semi-online) algorithm
has a competitive ratio smaller than p. An online (semi-online) algorithm A is called optimal if its

competitive ratio matches the lower bound of the problem.

Previous work: For the problem Pm|opt|Cpax, Azar and Regev [2] presented an algorithm
with a competitive ratio of 13/8, which is a combination of two families of algorithms all with
a competitive ratio of 5/3. They showed that a lower bound for the problem is at least 4/3.
Furthermore, they presented an optimal algorithm with a competitive ratio of 4/3 when m = 2. If
the information that all the jobs arrive in non-increasing sizes is known in advance for P2|opt|Cyax,
Epstein [5] provided an optimal algorithm with a competitive ratio of 10/9.

For the problem Q2|opt|Ciax, Epstein [5] provided a comprehensive study of the competitive
ratio as a function of s, where s = s9/s; is the speed ratio of the two machines. She provided two
algorithms FAST and SLOW. Algorithm FAST is for s € [1,4/2] and SLOW for s € [v/2,00).

The competitive ratios are as follows:

25+2 for 1<s< LVIT 1.28078,

2542 2517 4
{ Eria;({s, Serit, for 1<s< V2, — SS for VAT < 5 < /2 & 1.41421
S+ for 5> 2, 2 g >3 |

To evaluate the optimality of the algorithms, she further presented the following lower bounds for

the problem

3s+1

3o for 1 <s<gq ~1.12433,
(3 + \é—ﬁg’)s, for ¢1 <s< 1+§/ﬁ ~ 1.13278,
for L/ < o < LT
s, for 1T < 5 < 1433 ~ 1.36603,
2541, for 158 < g < 1435 ~ 161803,
el for 155 < 5 < /3~ 1.73205,
%, for s > /3,

where ¢ is a solution of the equation 36z* — 13523 + 4522 + 602 + 10 = 0. Hence the algorithms are

[H—g/@, 1+2—\/§] U[v/3, 00); the length of the interval over which the algorithms

optimal in the intervals
are not optimal is about 0.4987, and the largest gap between the competitive ratio and the lower
bound is about 0.07295. Furthermore, the overall competitive ratio is v/2 while the overall (highest)

lower bound is #

There are several papers studying the semi-online problem with known total sum, which are
extensions of the basic semi-online model presented by Kellerer et al. [7]. It is interesting to
note that the results (e.g., competitive ratios, even optimal algorithms), which were obtained
independently by different authors, resemble those mentioned above for the problem with known
optimal value. For example, Kellerer et al. [7] gave an optimal algorithm with a competitive ratio
of 4/3 for P2|sum|Cpax. If it is further known that the jobs arrive in non-increasing processing
times for P2|sum|Cmax, Tan and He [9] presented an optimal algorithm with a competitive ratio of
10/9. For the general m machine case, an algorithm with a competitive ratio of 8/5 was provided
by Cheng et al. [4], and a lower bound of 1.565 was given by Angelelli et al. [1]. For the problem
Q2|sum|Ciax, Tan and He [8] presented an algorithm with an overall competitive ratio of v/2 and

a lower bound of 1+\/_ (

the algorithm and its competitive ratio are independent of s). Moreover,
it is trivial that the lower bounds for Q2|opt|Crax given in [5] and in a later section of this paper
are also lower bounds for Q2|sum|Cpax. And it can be verified that algorithms FFAST and SLOW

retain the same competitive ratios for solving Q2|sum|Ciax.

Our results: In this paper we focus on the two uniform machines case. We assume s > 1, since
the case of s < 1 can be converted to the case of s > 1 by scaling the job sizes. The contribution

of this paper consists of two parts.

(1) We improve the results of [5] by studying the problem Q2|opt|Cyax for s € |

1+2\/§, 3|, over
which the optimal algorithm is unknown. To obtain improved algorithms for the considered interval,
we develop a new unified procedure. By properly choosing the parameters of the procedure, we

obtain an algorithm STATUS1 with a competitive ratio of

2s+1 1+V3 1421
max{28+1,68+6}= o, for S5 < s < S & 1.39562,
2s 4s+5 0546 for 1HY2L < 5 < 1413 & 1535187,

and an algorithm STATUS2 with a competitive ratio of

s < DEV2L 1 71035,

ax{

125410 2543, 125410 for 1£VI3
9s+7 " s+37

o
Y
+
w
o
=
o
T
)
=
—
IA IN
V2)
IN
By

Furthermore, we present improved lower bounds for the interval [v/2, 5+§/ﬁ ~ 1.69300] as follows:

548 for 2 < s < Y2~ 152753,

S48 for V2L < 5 < SRV) 57437,
B2 gor S <o < T o sags
B2 gor TRV < g < SEVIOE 63517,
Tebd - for SV < g < B

B for J<s< D

Then we can conclude that STATUS1 is optimal for s € [HT\B? %] By combining our algo-
rithms with those in [5] for different intervals, we have an algorithm COMBINE1 for the whole
interval [1,00). Then the length of the interval over which COM BINE1 is not optimal decreases
to 0.46914, and the largest gap between the competitive ratio and the lower bound decreases to
8/365 ~ 0.02192. Besides these, the overall competitive ratio of COMBINE1 is 1+T\/§, which

matches the overall lower bound.

Figure 1 shows that the competitive ratios of the new algorithms and the new lower bounds for
the interval [HT\B? /3], compared with those given in [5].

1.42}
1.4}

1.38¢

1.36¢

1.34}

1.32}

Figure 1: The upper and lower bounds for the interval [1+2\/§, V/3]. The bold lines are the new upper and

lower bounds.

(2) As mentioned above, from the relevant literature on the two problems Q2|opt|Cpax and
Q2|sum|Ciax, we know that information on the total sum seems strong enough to get the same
competitive ratio as that of the problem with known optimal value; even the algorithms resemble
or are almost the same. Moreover, it can also be shown that algorithms FAST and SLOW retain

the same competitive ratios when they are used to solve Q2|sum|Cpax. Hence it is interesting to

identify the differences between these two problems. In this paper we make an attempt to address
this question. We provide job sequences to show that algorithms STATUS1 and STATUS?2 for
Q2|opt|Cinax no longer attain their competitive ratios in solving Q2|sum|Ciax. We then provide
new algorithms STATUS3 and ST ATU S4 for the interval [1+T\/§, V/3] with competitive ratios of

2541 for 183 < 5 < gy ~ 1.3915,
\/29 24595430 ~

st e P for g2 < s < g3 =~ 1.5062,

/365449533252 — 2s+9+63 +9s+3

952 +7s

for g3 < s < g4~ 1.6932
\/W
45%+8s 5122213:-)23 +3s+2 for qu <s< \/g’

where g2, g3 and ¢4 are the roots of the following equations, respectively:

2s+1 _ 5+v2952+595+30
2s - 4s+5 ’
5429524595430 __ /36514953 325225494652 +93+3
4s+5 - 952 +7s
V36514953 —-3252—254+94+65%249s+3 /4514853 +52+44252 +3s+2
9s2+7s - 2(s2+3s)

Algorithms STATUS3 and STATUS4 utilize the new procedure proposed in this paper, with

different parameters.

The provided sequences also illustrate that algorithms FAST, SLOW , STATUS1 and STATUS?2
cannot guarantee competitive ratios smaller than those of STATUS3 and STATUS4. Hence we
can conclude that algorithms ST ATUS3 and ST ATU S4 are necessary for Q2|sum|Cpax. Further-
more, we give a lower bound for the problem Q2|sum|Cyax for s € [g5 ~ 1.62803, /3], which is

strictly larger than that for Q2|opt|Chax, where g5 is a value of s in the following group of equations:

Vst +4s(s+1—x)+sx 5s+2 s(2s+2—ux)
2s Cds+1 (s+D)(z+2)

Based on the above results, we may conclude that the optimal algorithms for these two problems

should be different for some interval of s.

By combining algorithms FAST, SLOW, STATUS3 and STATUS4, we have an algorithm
COM BIN E2 for the whole interval [1,00). The algorithm is optimal for s € [1+\/_, q2) U[V3, 0).
The length of the interval over which COM BIN E2 is not optimal is about 0.47328, and the largest

gap between the competitive ratio and the lower bound is about 0.01762, which is even smaller

than 0.02192, the gap existing for Q2|opt|Cpax. The overall competitive ratio of the algorithm is
1+v3
2

1.3692, which is achieved at g3 and only 0.0032 larger than the overall lower bound, . Figure
2 shows the differences between the competitive ratios and lower bounds of the two problems in

the interval [g2, v/3].

The structure of the paper is as follows. In Section 2 we give descriptions of our algorithms for
the two problems. In Section 3 we prove the competitive ratios of the algorithms. In Section 4 we

present lower bounds for the two problems.

1.375¢

1.37¢

1.365¢

1.355¢

1.345¢

1.4 1.45 1.5 1.55 1.6 1.65 1.7

Figure 2: The differences between the upper and lower bounds for the two problems in the interval [g, v/3].
The bold lines are for Q2|sum|Cpax-

2 Descriptions of algorithms

In this section we give descriptions of our algorithms. We first introduce some notation and def-
initions. In the remainder of this paper, without loss of generality, we assume that COF7T = 1
when studying Q2|opt|Ciax, and the total sum is 1 + s when studying Q2|sum|Chax. We define
the current load of a machine as the total size of all the jobs currently assigned to it. Let p be a
newly-arrived job, and let T; be the current load of M; right before p arrives, ¢ = 1,2. Let r > 1
and t > 0 be two parameters that will be specified later. In fact, » will be the desired competitive
ratios of our algorithms. We call the process that assigns jobs one by one by an algorithm as a

scheduling process.

Definition 2.1 If Ty <1+ s—rs and Ty +p € [1 + s — rs,r], we say that a scheduling process is
in Normal Stopping Status 1 (NSS1 for short). If To <1+ s—r and To+p € [1 + s —r,rs], we
say that a scheduling process is in Normal Stopping Status 2 (NSS2 for short).

Definition 2.2 If (1) T <1+s—rsand Ty +p>r and (2) To <1+s—r and To +p > rs, we
say that a scheduling process is in Abnormal Stopping Status (ANSS for short).

Let NSS = {NSS1,NSS2} and SS = NSSU{ANSS}. Remember that if a scheduling process
is in the status of NSS1 and NSS2, it is impossible that it is in the status of ANSS, and vice

versa.

Definition 2.3 If To <54 6s —4r —4rs—t and To +p € [5+ 6s — 4r — drs —t,2rs — 2s — 1], we
say that a scheduling process is in Transition Status 1 (T'S1 for short). If Ty < 3+ 4s — 2r — 3rs
and Ty +p € [3+4s — 2r — 3rs, t], we say that a scheduling process is in Transition Status 2 (T'S2
for short). If To < 2+2s—2r —rs and To+p € [2+2s—2r —rs, (r—1)s]|, we say that a scheduling
process is in Transition Status 3 (T'S3 for short).

1 TS2

S TS1

Figure 3: Normal Stopping Status and Transition Status.

Note that a scheduling process may be in more than one status simultaneously. For example,
let r satisfy r > % and r > gzﬁ, and let the first job p; = % Then clearly 1+s—rs<pi <r
and 24 2s —2r —rs < p; < (r — 1)s hold, and 77 = Ty = 0 right before an algorithm assigns p;.
Hence, according to Definitions 2.1 and 2.3, the scheduling process can be in both 7'S3 and N 551

status. In such a case, we will stipulate in our algorithms that it is in NVSS1 rather than TS3,

which determines the assignment of the current jobs and those that come later (see the procedure
defined below). Figure 3 shows which status a scheduling process may be simultaneously in. In
general, we will always stipulate in our algorithms that the scheduling process is in §S rather than
TS, TSj rather than T'S%, j > i, and NSS1 rather than NSS52.

We now describe an assignment procedure with parameters r and t. It assigns jobs in a way
that a schedule process ends in Stopping Status, which guarantees that the yielded solution has
the desired competitive ratio. The schedule process may be first in Transition Status (for example,
T'Si). If so, the assignment procedure assigns the later-coming jobs such that it will be in the next
Transition Status (i.e., T'Sj with j > 7) or Stopping Status. In the following, let T'S be a subset of
{T'S1,T52,TS53}.

Assignment Procedure AP(r,t, TS, M;)

‘While there exists at least one unassigned job, and p is the first such job, we do:

1. (NSS Rule) (1.1) If assigning job p to M; makes the scheduling process in NSS1, then
assign p to M7, and all the remaining jobs to Ms. Stop.

(1.2) If assigning job p to My makes the scheduling process in NSS2, then assign p to M,
and assign all the remaining jobs to M. Stop.

2. (ANSS Rule) If assigning job p makes the scheduling process in ANSS, assign p to the
machine that can complete it earlier, and assign all the remaining jobs to another machine.

Stop.

3. (T'S Rule) If assigning job p to a machine makes the scheduling process in T'Si € TS,
then assign it to this machine, and assign the later-coming jobs to another machine until the
scheduling process in T'Sj € T'S, j > i, or one of SS.

4. If assigning p to a machine cannot make the scheduling process in any of SS and T'S, assign
it to Ml

The above Assignment Procedure originated from He, Kellerer and Kotov [6], and Burkard,
He and Kellerer [3]. They designed a procedure with parameters for solving the offline problems
P2||Chax and Q2||Cpax. By a combination of three such procedures with different parameter
values, they obtained a linear time algorithm with a worst-case ratio 12/11 for the former problem,
and a linear time algorithm with a worst-case ratio 7/6 for the latter problem. Furthermore, an
essentially similar procedure can be used to obtain algorithms for Q2|sum|Cpax [8] and Q2|opt|Cinax
[5] (see below). Note that in that procedure, the authors introduced Stopping Status, although
not explicitly mentioned; however they did not introduce Transition Status. Our above assignment
procedure substantially extends that procedure. In fact, the algorithm of Tan and He [8] for
Q2|sum|Cinax, SUM, and the algorithms of Epstein [5] for Q2|opt|Cipax, FAST and SLOW, can
be re-stated through the new procedure as follows. Here the notation ¢t = oo means that the value of
t is unnecessary, and the notion 7'S = () means that the 7'S rule is deleted in the above Assignment

Procedure.
Algorithm SUM [8]: Call AP(v/2, 00,0, My).
Algorithm SLOW [5]: Call AP(52 00,0, My).
Algorithm FAST [5]:

2

1. Let r = giﬁ if s € [1, 4] and r =sif s € [1+}1/ﬁ,\/§]. Let t = co and T'S = ().

2. Call AP(r,t, TS, Ms).

Tan and He [8] proved that SUM has a competitive ratio of v/2 for Q2|sum|Cyax for any s > 1.
Epstein [5] proved that for Q2|opt|Ciax, FFAST has a competitive ratio of gzﬁ for s € [1, 1+Z/ﬁ],
and s for s € [HT‘/ﬁ, V2], and SLOW has a competitive ratio of zi—f for s > /2.

Now we give the descriptions of our improved algorithms. STATUS1 and STATUS2 are de-
signed for Q2|opt|Cinax, while STATUS3 and STATUS4 are designed for Q2|sum|Ciyax. Note that
STATUST and STATUS3 use T'S2 and T'S3, together with SS; and STATUS2 and STATUS4

use all the status we have defined above.

Algorithm STATUS1:

1. Let r = max{25tL, gzig}, t=r—1and TS = {T52,TS3}.

2. Call AP(r,t, TS, My).

Algorithm STATUS2:

1. Let r = max{ 1321%0, 2::33}, t=r—1and TS = {T'S1,752,TS3}.

2. Call AP(r,t, TS, Ms).

Algorithm STATUS3:

q2,q3). Let t = r — 5 and

J— M S .
1. Letr—ﬁlfse[lﬂ/g,qg], andr-‘”’—mﬁiﬂ_w&.se[|

2s

2
TS = {TS2,TS3}.
2. Call AP(r,t, TS, My).

Algorithm STATUS4:

4 3_ 2_ 2 .
1. Let r = ¥30s749s 820 2o t040s 29583 if 5 € [g3,qu], and r =

[q4,V/3]. Let t = r — LE=L and T'S = {T'S1,T52,TS3}.

V452 48534+5244+425% 43542 -
2(s2+3s) if s

2. Call AP(r,t, TS, Ms).

Note that in the above description of the algorithms, g9, g3 and ¢4 are defined in Section 1, and

s+1v29524595430 /36544953 —3252—25+9+6524+95+3 V45248534 5244425243542
4s+5 ’ 9s2+7s 2(s243s)

following equations regarding r:

are the solutions of the

and

5465 —4r —4rs = r— 3t
9+ 125 —6r —9rs = r— Lt=r
2425 —2r—rs = p-— it

respectively.

We first show that, after all the jobs have been assigned by Assignment Procedure, the schedul-
ing process must be in SS. Otherwise, we have T1 +p, < 1+s—rs<land To+p, < 14+s—r < s.
Hence there exists a solution such that the makespan is less than 1, and the total sum of sizes is
less than 1 4 s, which violates the assumption that COT = 1 for Q2|opt|Crax or T = 1 + s for
Q2|sum|Chax-

Lemma 2.1 If the scheduling process of algorithm A ends in NSS, we have 5%% < r. If the
scheduling process ends in ANSS by assigning p, we have C4 = min{T; + p, @}

Proof. If the scheduling process ends in NSS1, then 1 + s —rs < T} + p < r. It follows that the
completion time of Mj is less than r. Furthermore, the load of My after assigning all the jobs is
less than Y7y p; — (Th +p) < (1+5s)— (1 +s—rs) =rs. It follows that the completion time of M
is less than r, too. Hence we have WC% < r. The case that the scheduling process ends in N 552
can be proved similarly.

Suppose that the scheduling process ends in ANSS. (1) If T} +p < @, then p is assigned
to machine M; and all the remaining jobs to Ms by the rule of Assignment Procedure. From
T +p > r, we know that the load of M after assigning all the jobs is less than 7' p; — (T1 +p) <
(1+s)—r < rs. It follows that C4 = T} + p = min{T} +p, 2L}, (2) I T} +p > X2 the result

S S

can be obtained similarly. O

In fact, we will see that for Q2|opt|Cpax, the algorithms must end in NSS, resulting in the

desired competitive ratios. However, for Q2|sum|Chax, the algorithms may end in ANSS, but it

can be proved that the desired competitive ratios are still valid because of the assignment rule in
the algorithms. From this point, we can obtain some insights into the algorithms for these two
problems.

3 Competitive ratios of algorithms

3.1 Algorithms for Q2|opt|Chax

Theorem 3.1 For s € [1+—2*/§, 1+3—\/ﬁ], STATUS1 has a competitive ratio of r = max{ 2S2Jg1, gzig .

Proof. Tt is easy to verify that for s € [1+T\/§, Hg—\/ﬁ], the values of r and t defined in the algorithm

satisfy the following group of inequalities

0<242s—2r—rs<(r—1)s<l+s—r<rs,
0<3+4s—2r—3rs<t<l+s—rs<r. (1)

Hence all SS and T'S are well-defined. If the scheduling process of STATUS1 ends in NSS, it
follows that 5@% < r (due to Lemma 2.1). Hence we suppose that the scheduling process ends in
ANSS. Noting that T'S = {T'S2,TS3} in algorithm ST ATUS1, we distinguish three cases to get
a contradiction as follows:

Case 1 The scheduling process is first in T'S3 before it ends in ANSS.
On the arrival of job p, the scheduling process is in T'S3, i.e.,

2425 —2r—rs<To+p<(r—1)s. (2)

By the T'S Rule, the later-coming jobs are assigned to M until the scheduling process is in another
status. Since the new status is not NSS1 according to the hypothesis, there exists a job, denoted
by pa, such that the current load of M;j is increased from less than 1 + s — rs to greater than r if
pa is assigned to M. Hence p, > r— (1 +s—1rs) =rs+r—s— 1. Combining it with the first
inequality of (2), we obtain T5 +p 4+ ps > 14 s — 7. On the other hand, COFT = 1 implies p, < s.
Combining it with the second inequality of (2), we then have Th + p + p, < rs. Hence, we have
To +p+pa € [1 +s—r,rs], which implies that the new status of the scheduling process must be
NSS2 by assigning p, to Mo, a contradiction.

Case 2 The scheduling process is first in T'S2 before it ends in the status ANSS.
On the arrival of job p, the scheduling process is in T'S3, i.e.,

3+4s—2r—3rs<Ti+p<r-—1. (3)

By the T'S Rule, the later-coming jobs are assigned to Ms until the scheduling process is in another
status. If the next status is 7'S3, then a similar argument as that in Case 1 can reach the conclusion.

Otherwise, as no job makes the scheduling process in T'S3, there exists a job, denoted by pp, such

10

that the current load of Ms is increased from less than 2 + 2s — 2r — rs to greater than (r — 1)s
if py is assigned to Ma. Hence py, > (r — 1)s — (2 + 2s — 2r — rs) = 2rs + 2r — 3s — 2. Combining
it with the first inequality of (3), we obtain 7Y +p+p, > 1 +s—rs. If T1 +p+p, < 1, ie,
Ty +p+py, € [1 +s—rs,r|, the scheduling process is in NSS1 by assigning p, to M;. Hence
T) + p + pp > r. Substituting the second inequality of (3) into it, we have p, > 1.

pp and the later-coming jobs are assigned to My by the T'S Rule. Since the scheduling process
is never in NSS2, similarly there exists a job, denoted by p., such that p. > rs — (1 +s—1r) =
(r —1)(s +1). Combining it with the first inequality of (3), we obtain

Ti+p+p.>B+4s—2r—=3rs)+(r—1)(s+1)=24+3s—r—2rs >1+s—rs,

where the last inequality is from r = max{ 282Jsr1, giig} < 288111. To avoid the situation that the
scheduling process is in NSS1 by assigning p. to My, 11 + p + p. > r must hold. We thus have
pe > 1 because of the second inequality of (3). Now we have two jobs with sizes of greater than 1.

Since s < 2, we obtain COFT > 1, a contradiction.
Case 3 The scheduling process is never in T'S2 or T'S3 before it ends in ANSS.

According to the algorithm, jobs are always assigned to M; if the scheduling process is never
in S and T'S. Denote by py the first job that forces the load of M7 to exceed 3+ 4s — 2r — 2rs. If
pa < (r—1)—(34+4s—2r—3rs) = 3rs+ 3r — 4s — 4, assigning p,; to M; makes the new load of M;

lie in [3+4s— 2r —3rs,r — 1], which implies that the scheduling process is in 7'S2, contradicting our

s+1 65+6} > 65+6
2s 7 4s+5J) = 4s457

assumption. Hence we obtain pg > 3rs+3r—4s—4. Combining it with » = max{ 2
we obtain
pd > 2+ 2s —2r —rs. (4)

As there is no job on M yet, if py < (r—1)s, clearly assigning pg to My makes the scheduling process
in T'S3, which again contradicts our assumption. So we obtain pg > (r — 1)s. Combining it with
S;Srl, giig} > 2‘;1, we have pg > 1+ s —rs. To avoid the situation that the scheduling
process ends in NSS1 by assigning pg to M7, the load of machine M; would be increased from less
than 3+4s—2r —3rs to greater than r, which implies pg > r— (3+4s—2r—3rs) = 3rs+3r—4s—3.
Combining it with r = max{ 252ng, Ziig} > gzij, we have pg > 1+ s — r. On the other hand,
COPT = 1 implies py < s < rs. Now we have 1 4+ s — r < pg < s, then by assigning pg to My the

r = max{2

scheduling process is in NSS52, a contradiction. The proof is complete. O

Theorem 3.2 For s € [%ﬁ, V3], STATUS?2 has a competitive ratio r = max{ 13?1%0, 28815)

Proof. It is easy to verify that for s € [H—g/ﬁ, V3], the values of r and ¢ defined in algorithm
STATUS?2 satisty (1) and

0<b5+4+6s—4r—4rs—t<2rs—2s—1<2+42s—2r —rs. (5)

So all the status are well-defined. Similar to the proof of Theorem 3.1, we show the result by
contradiction. We still suppose that the scheduling process of STATUS2 ends in ANSS. Noting

11

that T'S = {T'S1,752,TS3} in algorithm STATUS2, we distinguish four cases. The first two
cases, together with their proofs, are the same as the corresponding parts in the proof of Theorem
3.1 and omitted.

Case 3 The scheduling process is first in T'S1 before it ends in ANSS.
On the arrival of job p, the scheduling process is in T'S1, i.e.,

64+6s—5r—4rs=5+6s—4r —4drs —t <To+p<2rs—2s—1. (6)

By the T'S Rule, the later-coming jobs are assigned to M; until the scheduling process is in the
next status. If the next status is T'S2, then the same argument as that in Case 2 of Theorem 3.1
can reach the conclusion. Otherwise, as no job makes the scheduling process in T'52, there exists a
job, denoted by pe, such that the current load of M is increased from less than 3+ 4s— 2r — 3rs to
greater than r—1 if p. is assigned to M;. Hence p. > (r—1)— (3+4s—2r—3rs) = 3rs+3r—4s—4.
If p. <1+ s—rs, by (6), we obtain

2425 —2r—rs (6+6s—5r —4rs)+ (3rs+3r —4s —4) <Th +p+ pe

z (2rs—2s—1)+(1+s—rs)=(r—1)s.

Hence assigning p. to Ms makes the scheduling process in T'S3, and thus the proof of Case 1 of
Theorem 3.1 can reach the conclusion. Therefore we assume p. > 14 s —rs. To avoid the situation
that the scheduling process is in NSS1 by assigning p. to M7, we have p. > r— (3+4s—2r—3rs) =
3rs + 3r —4s — 3. Combining it with the first inequality of (6), we have

To+p+pe>(6+6s—5r—4rs)+ (3rs+3r—4s—3)>1+s—r,

where the last inequality is from r = max{ 13‘21%0, 258:33} < ‘;i—% If further 75 + p 4+ pe < rs, the

scheduling process is in N.SS52 by assigning p. to M. Hence T5 4+ p + p. > rs. Combining it with
the second inequality of (6), we obtain p, > rs — (2rs — 25 — 1) > s, which contradicts COF7 = 1.
Case 4 The scheduling process is never in T'S before it ends in ANSS.

According to the algorithm, jobs are always assigned to M, if the scheduling process is never
in $S and T'S. Denote by ps the first job that forces the load of M; to exceed 6 + 6s — 5r — 4rs.
We next prove py > s, which implies COPT > 1. This contradiction will complete the proof of
Theorem 3.2.

In fact, if py < (2rs —2s — 1) — (6 + 65 — 57 — 4rs) = 6rs + 5r — 8s — 7, assigning py to M»
makes the new load of My lie in [6 + 6s — 5r — 4rs, 2rs — 2s — 1], which implies the scheduling

process is in T'S1, contradicting our assumption. Hence py > 6rs + 5r — 85 — 7. Combining it

2s5+10 2s+3} > 125410
9s+7 ’ s+3 = 9s+7 >

My yet, if py <t =1 — 1, assigning py to M makes the scheduling process in 17'S2, contradicting

2s5+10 2s+3} > 2543
9s+7 7 s+3 J = 543

have py > 2+ 2s — 2r —rs. If py < (r — 1)s, assigning py to M; makes the scheduling process

with r = max{1 we obtain py > 3 + 4s — 2r — 3rs. As there is no job on

our assumption. Hence we have py > r — 1. Combining it with r = max{l we

in T'S3, which again contradicts our assumption. Therefore, we have ps > (r — 1)s. Combining

12

SZI%O, 2;:33} > 2821—17 we obtain p; > 1+ s —rs. To avoid the situation that

the scheduling process is in NSS1 by assigning py to My, py > r must hold. Combing it with
1321%0, 258:5} > %1, we get py > 1+ s —r. Recall that the current load of M; is no

greater than 6 + 6s — 5r — 4rs. If py < rs — (6 4+ 6s — 5r — 4rs) = 5rs + 5r — 65 — 6, assigning py

it with » = max{?1

r = max{

to Ms makes the scheduling process in N.SS2. Hence we get py > 5rs + 5r — 6s — 6. Combining it

2s+10 2s+3} > 7s+6

. _ 1
with r = max{~5+, 295 5515’

we get py > s. Thus the proof is completed. O

By combining our algorithms with those of Epstein [5], we have an algorithm COM BINE1 for

the whole interval [1,00) as follows:

FAST, for 1<s< 1+2\/§,
STATUS1, for Y3 <5< 1HY13
STATUS2, for L+y13 < s <+/3,

3
SLOW, for s> /3.

The overall competitive ratio of COMBINE]1 is 1+2‘/§, which matches the overall lower bound.
Algorithm COMBINE1 can be viewed as an optimal algorithm in the sense that it yields an

overall competitive ratio.

3.2 Algorithms for Q2|sum|Ciax

As mentioned before, Q2|sum|Ciax is a relaxation of Q2|opt|Ciax, so any algorithm for the latter
problem must have a competitive ratio of no greater than one if it can be used to solve the former
problem. The next Theorem 3.3 states that F'AST and SLOW retain the same competitive ratios
for any s > 1, while the next Examples 1-2 state the contrary when s € [1+T\/§, v/3], which show
that algorithms STATUS1 and STATUS2 may achieve worse competitive ratios when applying
them directly to the former problem. Hence new algorithms, such as STATUS3 and STATU 54,
are necessary for this interval. Further, Theorems 3.4-3.5, together with the sequences given in the
proof of Theorem 3.3, show that STATUS3 and STATUS4 have smaller competitive ratios than
those of FAST and SLOW for the considered interval.

Combining these with the lower bound for Q2|sum|Cy,ax presented in the next section, which

is not valid for Q2|opt|Cpax, we conclude that these two problems are indeed different.

Theorem 3.3 For Q2|sum|Cpax, if s € [1, 1+2\/§], FAST has a competitive ratio of

max(s 2s+2}_ gzﬁ, for sell, 1+Z/ﬁ],
2s+10 s, for s e [M58 1T,

. .y . . S 2
and if s € [\/3,00), SLOW has a competitive ratio of si—l

Proof. By an easy modification of the proofs in [5] we can get the result. The proofs are quite
similar to those of Theorems 3.4-3.5 and are omitted. The following sequences show that the

algorithms cannot have competitive ratios smaller than those claimed in the theorem:

13

For 1 <s < 1++ﬁ7 let 7 ={p1 = 27451 o =] py = ﬁ} Then FAST assigns p; to Mo,

2s+1
po and p3 to M;. We have CFAST = %z—ﬁ, COPT =1, and thus %F;—‘ff = gzﬁ
For Y17 <s<+v2 let J ={pi =1,p» =s}. Then FAST assigns p; to My, ps to M;. We
4

FAST
have CFAST — 5 COPT = 1, and thus %W = s.

For s > /2, let J = {p; = ﬁ,pg =s,p3 = 54%1} Then SLOW assigns p; to My, and py and
SLOW o ﬁ 0O

FAST _ s+2 ~OPT _ C
p3 to Ms. We have C =5, C =1, and thus “opr = 5.

Example 1: Let s = % € [HT\@,H?)—\/E], where STATUS1 is used to solve Q2|opt|Cax.

The competitive ratio of STATUS1 is % for s = % Let 7 = {p1 = % —€,p2 = % —€,p3 =
1+ 3¢6,p4 = % — ¢}, where € is a sufficiently small positive number. In an optimal schedule,

p3 is assigned to M; and the remaining jobs are assigned to M. We thus have COT =1 + €.
According to STATUS1, p1 and py are assigned to M7 and the scheduling process is in T'S2. As
p1+p2+p3 = % + ¢, the scheduling process cannot be in NSS1, ps is thus assigned to Ms by
the T'S rule. ps; makes the scheduling process end in ANSS by assigning it to a machine such
that CSTATUS1 — min{p; + p2 + p4, %} = % + %e. It follows that % — % > % when
€ — 0. We conclude that STATUS1 cannot retain the same competitive ratio for both problems.
Furthermore, as g—g ~~ 1.42424 is even larger than the competitive ratio of % ~ 1.36868 of
STATUS3 when s = % (see Theorem 3.4), we conclude that STATUS3 is definitely better than

STATUS1 when both are used to solve the same problem @Q2|sum|Cpax.

Example 2 Let s = % IS [H—g/ﬁ,\/g], where STATUS?2 is used to solve Q2|opt|Cipax- The
competitive ratio of STATUS?2 is % for s = 1—72 Let 7 ={p1 = 3—? —€,p2 =1+ 2¢,p3 = % — €},
where € is a sufficiently small positive number. In an optimal schedule, ps is assigned to M; and
the remaining jobs are assigned to M. We have COPT = 1 + . On the other hand, it can be
easily verified that STATUS2 assigns p; to M, and ps and p3 to M. We have CSTATUS2 —
% + €. Thus % — % > % when € — 0. We conclude that STATUS2 cannot retain
the same competitive ratio for both problems. Furthermore, as % ~ 1.37121 is even larger than
the competitive ratio 1.36507 of STATUS4 when s = % (see Theorem 3.5), we conclude that
STATUS4 is definitely better than ST ATUS2 when both are used to solve the same problem

Q2|sum|Ciax-

The above examples can be easily extended to other values of s.

Theorem 3.4 For s € [1+—2\/§, q2], STATUS3 has a competitive ratio of

2s5+1 1+v3
r_{—ZS,Q for 153 <5 < gy,

+v295%+595+30

s for g2 <s < gs.

Proof. Similarly we can show that all the status used in STATUS3 are well-defined. We will again
. CSTATUS3
prove the result by contradiction. Suppose that there exists a sequence satisfying ~opr— > 1.

By Lemma 2.1, we only need to consider the case that the scheduling process ends in ANSS.
Case 1 The scheduling process is first in T'.S3 before it ends in ANSS.

14

On the arrival of job p, the scheduling process is in 7'S3, i.e., 2+2s—2r—rs < To+p < (r—1)s.
By the same argument as that in the proof of Case 1 of Theorem 3.1, we know that there exists a
job pg such that p, > rs+r—s—1and To+p+p, > 1+ s—r. Since the scheduling process ends in
the status ANSS instead of N.SS2, we have Ts + p+ p, > rs. Combining it with T +p < (r—1)s,
we have p, > 5. AsTo +p+pg > rs and T1 + pg > pg > s > 1, p, makes the scheduling process
end in ANSS. Noting that the current load of machine Mj is Ty + p (not T5) when assigning p,,

by Lemma 2.1, we have

(O STATUS3 To+p+pa T T
coPT— S~ = 2¥P¥Pa _D2EP oy 141=1
e DPa DPa

s

Case 2 The scheduling process is first in T'S2 before it ends in ANSS.
Assume that assigning job p makes the scheduling process in 7'52, i.e., 3+ 4s — 2r — 3rs <

T1 + p < t. Using an argument analogous to that in the proof of Case 2 of Theorem 3.1, we know
that there exists a job satisfying p, > r — (11 +p) > r —t > 1. Furthermore, there exists another
job pe such that p. > r — (T1 + p) > r—t > 1 and all the jobs coming later than p, but earlier
than p., together with p,, are assigned to M,. Note that Z;szj >PpF+pe>2>s>14+s—r. If
Z;Zb pj < rs, assigning p. to Mo makes the scheduling process end in N§S52, which contradicts our
assumption. Thus we have »°7_, p; > rs. Combing it with T1 +p +p. > 7, we know that assigning
pe makes the scheduling process end in ANSS. By Lemma 2.1, we get COTATUS3 < T 4 p+ p,.

We next show COPT > min{py, p.}. In fact, if p, and p. are processed on the same machine,
we have COPT > ’% > min{py, p.} (due to pp,p. > 1 and s < 2). Otherwise, at least one of
them is assigned on M, and we also have COPT > min{p,, p.}.

If COPT > py, we have

CSTATUS3<T1+p+pc<2?:1pj—pb_1—|—s—pb_l+s_1<1+S_1_r (7)
cort = Db - Db Db Db Tr—t ’
where the last equality is due to t =7 — f,iﬁ If COPT > p., we have
CSTATUSS Ty 4p+p. _t+p. ¢ t r
< < = +1<—+1= <r, 8
COPT o Pc o Pc pc+ _T_t+ r—t ()

where the last inequality is due to r — ¢ > 1.
Case 3 The scheduling process is never in T'S2 or T'S3 before it ends in ANSS.

By an argument analogous to that in the proof of Case 3 of Theorem 3.1, there exists a job pg
satisfying pg > t—(3+4s—2r—3rs). By the definitions of t and r, we have pg > t—(3+4s—2r—3rs) >
2+42s—2r —rs, which is just inequality (4) in the proof of Theorem 3.1. By following the argument
after inequality (4) in that proof, we obtain p; > rs. Obviously, all the jobs earlier than py are
assigned to My. Then we are confronted with 77 + pg > rs > r and pg > rs, which means that
pq makes the scheduling process end in ANSS. By Lemma 2.1 we have CSTATUSS — P4 On the

other hand, COFT > ‘% trivially. We thus have % =1l<r. O

15

Theorem 3.5 For s € [q3,V3], STATUS4 has a competitive ratio of

952475 ; for qs3 <s< 44,

1 3142 2
V4s5*4+8s 2—?:2132-)23 +3s+2’ for qu <s< \/g

{ /3651 19533252251 9465249543
r =

Proof. Similarly we can show that all the status used in ST ATU S4 are well-defined. We prove the
result by contradiction, too. Hence we only need to consider the case that the scheduling process
of STATUS4 ends in ANSS.

Case 1 The scheduling process is first in T'S3 before it ends in ANSS.

Using the same argument as that in Case 1 of Theorem 3.4 can reach the conclusion.

Case 2 The scheduling process is first in 7'S2 before it ends in ANSS.

Using an argument analogous to that in the proof of Case 2 of Theorem 3.4, we know that there
exists a job satisfying pp > r — (T4 +p) > r —t > 1, and a job p, satisfying p. > r — (T1 + p) >
r —t > 1. Moreover, assigning ps makes the scheduling process end in ANSS. Noting that all

the jobs arriving later than p, but earlier than p., together with py, are assigned to Ms, we have
CSTATUS4 — min{T1 +p+ pe, Zj:bpj

s

}. Since pp > r — (T1 + p), we have

ostaruss o 2g=bPi NP = (Tidp) 1+s—(Tit+p) 1+s—(r—p)
- s - s s - s

(9)
On the other hand, we can obtain COFT > max{py, p.} similarly. If COPT > p,, from (9) we obtain

CSTATUSA 1+3_(r—pb)_1+8—7‘ 1 1+s—7r 1

+-<—+-=7 10

corr = Spp Spp s s(r—t) s (10)
where the second inequality is due to pp > r — t, and the last equality is due to the definition of
t=1r— % If COPT > p., we get % < r in the same way as the proof of (8).

Case 3 The scheduling process is first in T'S1 before it ends in ANSS.
On the arrival of job p, the scheduling process is in T'S1, i.e.,

546s—4r—4drs—t<Tp+p<2rs—2s—1. (11)

Using an argument analogous to that in the proof of Case 3 of Theorem 3.2, we find that there
exists a job p. such that the current load of M is increased from T} < 3+ 4s — 2r — 3rs to greater
than t if p. is assigned to M;. Hence

Pe >t — (3+4s —2r — 3rs). (12)

We classify four subcases according to the value of pe.

Subcase 3.1 p. < 1+s—rs. From the second inequality of (11) and this subcase’s assumption,
we have To +p+pe < (r—1)s. From the first inequality of (11) and (12), we have 2+2s—2r —rs <
T5 + p + pe. These inequalities imply that the scheduling process is in T'S3 by assigning p. to M.

Hence using the same argument as in Case 1 can complete the proof.

16

Subcase 3.2 14+s—rs<p.<r—T1T;. Wehave 1 +s —rs < p. <171 + p. < r. Hence the
scheduling process can be in NSS1 by assigning p. to M;, which violates the hypothesis that the
scheduling process ends in ANSS.

Subcase 3.3 r—T1 <p. <rs— (T +p). From 71 < 3+ 4s — 2r — 3rs and (11), we get
l+s—r<(b+6s—4r—4drs—t)+r—3+4s—2r—3rs) <To+p+r—T1 <To+p+pe <rs.

Hence the scheduling process can be in NSS52 by assigning p. to Mas, a contradiction again.

Subcase 3.4 p. > rs— (15 + p). By the second inequality of (11) and the definition of r, we
have To+p < (r—1)s. Hence p. > s. Now we have To+p+pe > rsand To+p < (r—1)s < 14+s—r,
aswell as Ty < 3+4+4s —2r —3rs < 14+ s—rs and 11 + p. > r, which states that p. makes the
scheduling process end in ANSS. By Lemma 2.1, we know

TATUS4 To+p+pe
CS US<2183P<T2+p

COPT e . +1<r—14+1=r.
S

Case 4 The scheduling process is never in one of T'S before it ends in ANSS.

By an argument analogous to that in the proof of Case 4 of Theorem 3.2, there exists a job p;
such that the current load of M5 is increased from 15 < 54+6s—4r—4rs—t to greater than 2rs—2s—1
if py is assigned to My. Hence py > (2rs —2s —1) — (5465 —4r —4rs —t) =t +6rs+4r —8s — 6.
By the definitions of ¢ and r, we have py > 3 +4s —2r — 3rs and t > 2+ 2s — 2r — rs. We classify
five subcases according to the value of p;.

Subcase 4.1 py <t. Since there is no job processed on M yet, from py > 3 +4s — 2r — 3rs
and py < t, we know that the scheduling process is in T'S2 by assigning py to M. Hence using the
same argument as in Case 2 can complete the proof.

Subcase 4.2 t <p; < (r—1)s—=T,. By t > 2+ 2s—2r —rs, we know that 2+2s —2r —rs <
Ty +t <To+ps < (r—1)s. Then the scheduling process is in 7'S3 by assigning p; to M,. Hence
using the same argument as that in Case 1 can complete the proof.

Subcase 4.3 (r—1)s =Ty <py <r. By Tp < 54 65 — 4r — 4rs — t, and the definitions of ¢

and r, we have
pr>(r—1)s=To>(r—1)s—(5+6s—4r —4drs—t) > 1+s—rs.

As 1+ s—rs < py <, the scheduling process is in NSS1 by assigning py to My, which violates
the hypothesis that the scheduling process ends in ANSS.

Subcase 4.4 7 < py < rs—1Ty. Then T5 +py > py > r > 1+ s —r. Combining it with
Tr+py < rs, we know that the scheduling process is in N.SS2 by assigning p; to Ms, a contradiction
again.

Subcase 4.5 py > rs—T5. By (1) and (5), we have 75 < 54+6s5—4r—4rs—t < 2+25—2r—rs <

(r —1)s, and thus py > s. Hence, similar to Subcase 3.4, assigning ps to any machine makes the

17

scheduling process end in ANSS. By Lemma 2.1, we have

CSTATUS4 T2Jsrpf Ty (r—1)s
<—4+1<—4+1<r—-141=r.
COPT Il% pr s
The proof is thus completed. O

Based on Theorems 3.3-3.5, we have an algorithm COM BIN E2 for the whole interval [1, c0)
as follows:
FAST, for 1§s§1+T\/§,
STATUS3, for 13 <5 < gy,
STATUS4, for g3 <s<+3,
SLOW, for s> /3.

The overall competitive ratio of the algorithm is 1.3692, which is achieved at g3 and only 0.0032

larger than the trivial overall lower bound of #

4 Lower bounds

This section considers lower bounds for Q2|opt|Ciax and Q2|sum|Ciax. The proof will be com-
pleted by using an adversarial method. We will present a series of sequences and show that no
semi-online algorithm can work well on all of them simultaneously, i.e., for any semi-online al-
gorithm A, there always exists a sequence such that C4 JCOOPT is no less than our desired lower
bound.

4.1 Lower bounds for Q2|opt|Ciax

This subsection focuses on the problem Q2|opt|Cpax. We present improved lower bounds for s €

V2, 5+\/ﬁ]‘

All the sequences used in this subsection have the optimal value COFT = 1 (and

the total sum of sizes 1 + s), thus C4/COPT = C4. We prove the case s € [/2, \ﬁ] in detail.

The remaining cases of s € [\/_1 5+\/_]

can be verified by essentially similar arguments, hence we
sketch the proof by listing the schedules of algorithm A and the adversarial sequences for all the

possible situations, which are given case by case in the ensuing Tables 1-3.

Theorem 4.1 For s € [V/2, @], any semi-online algorithm A for Q2|opt|Cpaxhas a competitive

ratio of at least 3555

2s+4
Proof. Let p1 = 25 + 4 We first consider the case that py is assigned to M. Let po = S;g_if. If po
is also assigned to M, let the last two jobs be p3 =1 and py = %. Then we have
CA > P1+Dp2+p3= giii, if p3 is assigned to My,
= | min{py + p2 +ps, EIPL} = min{s, 25> ijfjg} > gjfri, otherwise.

18

If po is assigned to My, let p3 = St

If further p3 is assigned to My, let the last two jobs be

5 2s+4"
pa = ps = 2525 We obtain
cAs) P +Pp3+ps= gzii, if py is assigned to M,
~ | min{p; + p3 + ps, p2+ps4+p5} = g‘;ii, otherwise.
If p3 is assigned to Ma, let the last two jobs be py = s are p; = 5 + 7- We also have
. P2+ p3+p4 2 4+4s+3 3s2+6s+1 3545
C4 > min , —————} =min ; .
2 min{pi +p4 } = 4l 22534
Now we consider the case that A assigns p; to M. In this case, let ps = 4;35 — j If po is assigned
to Mo, let the last two jobs be p3 = s and py = 23%&3 We have
5s + 7 35+ 5
CA > min{ps, w} — min{s, + +

(2s+4)}— 25 +4°

If py is assigned to My, let p3 = 242541 and D4 = 3824354 YW have

2s5+4 2s5+4
35145 . . .
oA~) P2 +p3 = 5507, o . . if p3 is assigned to Mj,
- 3 p2rp3tpa : s+ s+ :
min{pi + p4, S } = min{s, etd) = heras otherwise.
We are done. O

Theorem 4.2 For s [\/_1 5+V 1931 any semi-online algorithm A for Q2|opt|Cmax has a compet-

3s+3

itive ratio of at least 3541-

Proof. Consider Table 1. It is easy to verify that all the values in the last column of the table are

3543 V2 5+\/ 193]
7

greater than or equal to 37

for any s € [¥5= The theorem is thus proved. O

Theorem 4.3 For s € [5+v 193 g] any semi-online algorithm A for Q2|opt|Cnax has a competitive

ratio of at least

4542 5+VI03 o o o T4VIE5
25437 12 >85> "3 >
5542 74/145 9+/193
Is1° R
7st4 944/103 5
Ts 1 =s5=3-

Proof. Consider Table 2. If s € [21Y193 7+\/E] we set

=257 4+3s+1 4s?—4s—1 2P —s-—2 2
- 2s+3 77 2543 7 2s+3 ' 2s+3
Substituting these values into the expressions in the last column in Table 2, we have
. 1+s—y — i [48242542 4522542 451 —2s249s+4) _ —2s249s+4
mln{l +s—z,y+1ls—u=x } mln{ 823-1-83 ’ S2s+§ ’ 2Ss+3 ’ si2s+§) - 8?284—5) ’
min{1 s - o - y,s, U 1) it s g2 =l

l4s—xz—=z 4s+2 2s%243s+4 4542
min{s + 1,2+ + 1, 2252 o) = minfs 4 1 4252 250 o) = 2,

min{l +s—z,x+w+ 1,8 -z, 1+s—sgc—w} — min{6s+5 —25°+55+6 4s5+2 4s+2} __ 4542

25437 2543 ’ 2s+3’ 2s+3J 7 25437
: . stz4w 1d4s—zy _ o+ 6543 6541 4542 45242542\ _ 4542
min{l +s — 2z —w, s + x, =55, =L = min{ gy, 953, 50 s(2s+3) J = 2s+3°

19

Schedule by A

M, 7, Adversary sequence cA
{p1,p2,p3,p1} 0 s+1
2 _
{plap2ap3} {P4} s—1 3s2—s—4 1 545 383—:—?-81 .
{p17p27p4} {p3} 3s+1° 3s+1 777 3s+1 s
{p1,p2} {p3,pa} SGorT]
{p1.p3.p1,p5} {p2} o
{Pl,p3,p4} {p2,p5} s—1 3s2—s—4 2 2542 2542 3543
{p1,p3, 05} {p2,pa} 35+1° 3s+1 7 3s+1’ 3s+1’ 3s+1 —3;911
{p1,p3} {p2.p4,p5}
{p1,p4. 05} {p2,p3} e
2 _
{p1,pa} {p2, 3,05} C1 aen | et 33333,1 1
{p1,ps5} {p2,p3,p4} 3s+17 3s+l 7 3s+12™ 35+l 352%?%22
S S
{p1} {P2,p3, 4,05} SSBet D)
2
{p2,p3,pa} {p1} > 3;ris1_+2
{p2,pa} {p1,p3} s—1 sl 2542 3521 s
{p27p3} {pl;p4} 35417 3s+17 3s+17 3s+1 3543
{p2} {p1.p3, P4} 3st1
2
{p3,ps} {p1,p2} Sr Al
{ps} {p1,p2, s} o1 st st s
{ps} {p1,p2, 3} 3s+17 3s+1°°7 3s+1 gzﬁ
0 {p1,p2,p3. P4} =

S

Table 1: The case s € [@7

5+1/2@] for Theorem 4.2

20

Schedule by A A
M I, Adversary sequence C
{p2,p3, P4} {p1 1+s—=x
{p2,p3} {p1,p4} y+1
{p2,pa} {p1,p3} {zyLs—z—y} s—
{p2} {p1,p3,pa} e
{p3,pa} {p1,p2} l+s—az—y
{ps} {p1,p2,p4} s
{pa} {p1,p2,p3} {wys 1 -z—y} TEIES
0 {p1, P2, p3, P4} It
{p1,p2,p3,p4} 0 s+1
{p1,p2, p3} {pa} r+z+1
{p1,p2} {ps,pa} {2,215 -2 -2} Ite—z—z
{p1,p2,p4} {ps} s
{P1,p3,p1,P5} {p2} 1+s—2
{p1,p3, P4} {p2,p5} r+w+1
{p1,p3,p5} {p2,pa} {z2,w s —z—w-—2} s—z
{p1,ps} {p2,p4,p5} TE—rw
{p1,p4,p5} {p2,p3} l1+s—z—w
{p1,pa} {p2,p3,P5} s+
{p1,p5} {p2,p3, P4} @2,w,81-2-2-w} stetw
{p1} {p2,p3,pa. ps} T

Table 2: The case

5+V12193 <s< g for Theorem 4.3

{p1,P4.D5, D6} {p2,p3} l+s—z—w
{P1,p4,p5} {p2,p3, 06} r+uv+1
{p1,p1,p6} {p2,p3,p5} B 200,15 2=z —w-v} §—2—w

{p1,pa} {p2,p3, 5,6} Te—z=v
{p1,p5,p6} {p2,p3,p4} l+s—z—w—v
{p1,p5} {p2,p3,p4,D6} s+
{p1,p6} {p2,ps, pips} | (BB WSl —a—z—w—v) STETUED
{p1} {p2, 3, pa, 5, P6 } et

Table 3: The case % <s< 54V73 for Theorem 4.4

8

21

Hence we have
—252+9s+4 4s+2, 4s+2

C4 > mi : = .
Z i S %13 2543
Similarly, by setting
x_282—28—1 _—82+38—|—1 _482—48—2 _—382—1-53—1-2
o o4s+1 77 4s+1 7T 4s+1 7 T 4s+1
if se [”17 V2145, %17 V4193], and setting
1 3 2
Tr =z = —, Z=W= =
7 YT 7
if s € [9+1V4193, %], we can get the desired lower bounds for these intervals, too. O

Theorem 4.4 For s € [g, 5+§/ﬁ], any semi-online algorithm A for Q2|opt|Cpax has a competitive

7s+4

ratio of at least 7—=.

Proof. Replace the last four rows in Table 2 with all the rows in Table 3, and set

—2s% +4s+1 5s2 —bs—1 252 —5—2 —s?+s+4
= = = ==
4s+5 7 4s+5 4s+5 4s+5
By a similar argument as that in the proof of Theorem 4.3, we can reach the conclusion. O

Combining Theorems 3.1-3.2 and 4.1-4.4, we have improved the known results for Q2|opt|Cipnax
as follows: we have decreased the largest gap between the competitive ratio and the lower bound
from 0.07295 to 0.02192, and the length of the interval over which the algorithm is not optimal
from 0.4987 to 0.46814. Figure 4 shows the competitive ratios of algorithm COM BIN E1 and the
lower bounds for the problem.

1.2 1.4 1.6 1.8 2

Figure 4: The competitive ratio of algorithm COM BINE1 and the lower bound.

22

4.2 Lower bound for Q2|sum|Chax

Finally, we give a lower bound for Q2|sum|Ci,ax in this subsection.

Theorem 4.5 Any semi-online algorithm A for Q2|sum|Cnax has a competitive ratio of at least

dstl for 1<s<q~1.12433,

(3 + \é—ﬁg’)s, for ¢1 <s< 1+§/ﬁ ~ 1.13278,
ey for B <5 < WAL,

s, for AT < 5 < 1143 ~ 136603,
2822'1, for 1+2\/§ < s <2~ 141421,
;’iii, for V2<s< % ~ 1.52753,
S48 for V2L <5 < 519 1 57437,
gzig, for 5+12193 <s< ”17@ ~ 1.5868,
et for THHE < s < SIS o g5,
c(s), for g5 <s < V3,

%%, for s> \/3,

s222+44s(s+1—z)+sx
2s

where ¢(s) = , x is a root of the equation

Vst +ds(s+1—x)+sz s(2s+2—x)
2s s+ 1)(z+2)

and qs is defined in Section 1.

Proof. For s € [1,q5] U [V/3,00), the lower bound for Q2|sum|Cpay is the same as that for the
problem Q2|opt|Cpax. In fact, for /2 < s < gs, since all the sequences in the proof of Theorems
4.1-4.4 have the same total sum of sizes of 1 + s, we know that the lower bound remains valid. For
1 <s<+?2and s> 3, the sequences used in [5] may have a total sum of less than 1+ s although
COPT = 1. If so, we can add a sufficient number of small jobs at the end of each such sequence
such that the total sum becomes 1 + s and COPT = 1 still holds, which suffices to get the same

lower bound.
. \/82x2+4s(s+1—z)—sz
We consider the case of s € [g5,V/3] as follows: Let y = or = ¢(s) — x be the

s : _ l4s— — —x? I4s—g—z _ l4s—
positive root of the equation z+y = %, and let z = 1+ *=3- be the root of z4 5552 = ~2==,

It can be verified that for s € [gs5, v/3], the following inequalities are satisfied:

r+y<s, x+z<lI, (13)
1 _

Ts—y> 1 (14)

y>1, (15)

T+z+s S 5(2s+2—x)
s (s+1)(z+2)

= c(s), (16)

23

r+z>s—1 (17)
Note that (13) guarantees that all the job sizes in the below sequence are positive.
Let p1 = z. We first consider the case that A assigns p; to M;. Then let po = y. If py is
assigned to M, let p3 =1 and py = s —x —y. We have C4 > x4y and COFT = 1. Tt follows that
ﬁg% >x+y=c(s). If py is assigned to Ma, let p3 =1+ s —z —y. We have

1 - 1 -
p2+p3}:min{1+s—y, + s x}: +s a:7

C4 > min{p1 + ps,
S S S

where the last equality is due to (14). On the other hand, the optimal makespan must be no greater
than the makespan of the following feasible schedule: assign ps to M7 and the remaining two jobs
to Ms. It follows that

p1+p3 I+s—y
COPT < max{ps, = max{y, ——} =y,

where the last equality holds because of (15). Thus we have
c4 1+s—=z

COPT > ” =x+y=c(s).

Now we consider the case that A assigns p; to Ms. Let py = z. If po is assigned to Ms, let
r+z+s < s+1
S

p3 =s and py =1 —x — z. Since == < s for s > g5, we have

W}:min{s II)‘+Z+S}:IE+Z+S
) s Y

S

C4 > min{ps,

while COPT = 1 holds trivially. Hence, by (16) we have

cA T+ z+s
COPT = . > c(s).

If ps is assigned to My, let p3 = ps = HS_% We have
+s—x—=z 1—|—S—Z}_1—|—S—:L'—|—Z_2S+2—l‘
2 ’ s B 2 o os+2

On the other hand, the optimal makespan must be no greater than the makespan of the following

1
p1+ p3 +p4} — min{z+
S

C* = min{py+ps,
feasible schedule: assign ps to M; and the remaining three jobs to Ms. It follows that

1+s—:n—z) s+ 1)(z+2)
2 o s(s+2)

where the first equality holds, because py < 1 and p; + pa + p3 > s (due to (17)). We thus have

c4 5(2s+2—x)
CoPT = i (w2 -)

p1+ P2 +p3} _Pitp2tps 1

COPT < max{py, == (3: SR
S S S

9

a

Through Theorems 3.3-3.5 and 4.5, we conclude that for Q2|sum|Cyax the largest gap between
the competitive ratio of COM BIN E2 and the lower bound is about 0.01762, and the length of the
interval over which COM BIN E?2 is not optimal is about 0.47328. Figure 5 shows the competitive
ratios of algorithm COM BIN E2 and the lower bounds.

24

1.2 1.4 1.6 1.8 2

Figure 5: The competitive ratio of algorithm COM BIN E2 and the lower bound.
Acknowledgement

We are thankful to an anonymous referee for their helpful comments on an earlier version of our

paper.

References

[1] E. Angelelli, A. B. Nagy, M. G. Speranza, Z. Tuza, The on-line multiprocessor scheduling
problem with known sum of the tasks, Journal of Scheduling, 7, 2004, 421-428.

[2] Y. Azar, O. Regev, On-line bin-stretching, Theoretical Computer Science, 168, 2001, 17-41.

(3] R. E. Burkard, Y. He, H. Kellerer, A linear compound algorithm for uniform machine schedul-
ing, Computing, 61, 1998, 1-9.

[4] T. C. E. Cheng, H. Kellerer, V. Kotov, Semi-on-line multiprocessor scheduling with given total
processing time, Theoretical Computer Science, 337, 2005, 134-146.

[5] L. Epstein, Bin stretching revisited, Acta Informatica, 39, 2003, 97-117.

[6] Y. He, H. Kellerer, V. Kotov, Linear compound algorithms for the partitioning problem, Naval
Research Logistics, 47 2000, 593-601.

[7] H. Kellerer, V. Kotov, M. G. Speranza and Z. Tuza, Semi on-line algorithms for the partition
problem, Operations Research Letters, 21, 1997, 235-242.

[8] Z. Y. Tan, Y. He, Semi-online scheduling on two uniform machines, System FEngineering-
Theorey and Practice, 21, 2001, 53-57. (in Chinese)

9] Z. Y. Tan, Y. He, Semi-on-line problems on two identical machines with combined partial
information, Operations Research Letters, 30, 408-414, 2002.

25

