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Abstract 

A temperature dependent, quantitative free energy functional was developed for the 

modeling of hydride precipitation in zirconium alloys within phase field scheme. The 

model takes into account of crystallographic variants of hydrides, interfacial energy 

between hydride and matrix, interfacial energy between hydrides, elastoplastic hydride 

precipitation and interaction with externally applied stress. The model is fully 

quantitative in real time and real length scale, and simulation results were compared with 

limited experimental data available in the literature with a reasonable agreement. The 

work calls for experimental and/or theoretical investigations of some of the key material 

properties that are not yet available in the literature. 
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1. Introduction 

Zirconium alloys are used in nuclear power plants due to good mechanical properties, corrosion 

resistance and low neutron adsorption cross-section. During the service, these alloys pick up 

hydrogen from the working environment and when the hydrogen solid solubility limit is reached, 

brittle hydrides will form, which can reduce the fracture toughness of the alloys by orders of 

magnitude. There have been extensive studies on zirconium hydrides both experimentally and 

theoretically, see for example, a recent comprehensive review by Puls [1]. There are different 

types of hydrides such as ζ (Zr2H), γ (ZrH), δ (ZrH1.6, most popular in reactor condition) and ε 

(ZrH2). Hydride growth involves plastic deformation around hydrides in the metal lattice. There 

is a significant hysteresis in hydrogen solid solubility in zirconium, depending on the thermal 

and mechanical history of the component. External stress may affect the orientation of hydrides. 

Hydride morphology (such as orientation, density and distribution, especially around cracks) will 

strongly affect the fracture behavior of the alloys. Due to the complexity of the problem, early 

theoretical studies had made simplified assumptions on hydride morphology [2-5], which is not 

realistic as compared to experimental observations. In recent years, attempts were made to model 

hydride morphology using phase field methods (PFM) [6-12]. PFM describes microstructures of 

a system using a set of conserved and nonconserved field variables that are continuous across the 

interfacial regions. The temporal and spatial evolution of the field variables is governed by the 

Cahn-Hilliard nonlinear diffusion equation and the Allen-Cahn relaxation equation. With the 

fundamental thermodynamic and kinetic information as the input, the phase-field method is able 

to predict the evolution of arbitrary morphologies and complex microstructures without 

explicitly tracking the positions of interfaces [13]. Using PFM, we had studied the effect of stress 

[6,7], grain boundary [8], and defects such as cracks [9], on the hydride morphology evolution. 
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We used a set of order parameters to describe different crystallographic variants of hydrides and 

also included the effect of plastic deformation in simulations. Thuinet et al. [11,12] considered 

only the elastic deformation and were able to predict hydride morphology with threefold 

symmetry with only one order parameter. All PFM models developed so far are not fully 

quantitative: although the effects of stress and strain are quantitatively described, the time and 

space are not in real scale and temperature effect is not fully included. It is very important to 

develop a fully quantitative PFM in order to study the effects of temperature transient and 

temperature gradient.  

 

For a fully quantitative modeling of microstructure evolution in materials by phase field method, 

the most important task is to construct the free energy functional (F) of the system. A general 

form of F for a binary alloy system is 

( ) ( ) dVWECCfF strain
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where f(C, ηp) is the chemical free energy density (also called the bulk free energy density) 

which can be a function of the composition C (conserved variable) and long-range order 

parameters ηp (non-conserved variables), followed by two gradient terms related to interfacial 

energy (κp and λ are gradient coefficients. The interfaces are assumed isotropic and coherent), 

strain energy (Estrain) and the work done (W) by other forces such as electrical or magnetic forces. 

The volumetric integration is conducted over the entire system. The latter two energy terms have 

been quantitatively examined elsewhere (see for example, references [14,15] for studies on strain 

energy). This study focuses on quantifying the chemical and gradient terms.  
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We consider Zr-H systems that undergo phase transformation according to the phase diagram, 

Figure 1. The hydrogen composition variable C refers to mole fraction or atomic fraction of 

hydrogen in zirconium. The composition C0 is the starting composition (average composition) of 

hydrogen. Cα and Cβ refer to the composition in the disordered (in solid solution) and ordered 

phases (in hydrides) at thermodynamic equilibrium, respectively. Both Cα and Cβ may be 

functions of temperature. Cα is also commonly considered the solid solubility limit of hydrogen 

in zirconium. The ordered phase may have several energetically identical but crystallographically 

different variants. In this case, a set of long-range order parameters (ηp, where p=1, 2, 3…) is 

needed to describe the ordered phases.   

 

A Landau polynomial is often used for the chemical free energy density (f). An expression of the 

chemical free energy density has been proposed [6,16,17] as follows. 
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In this expression, the phenomenological parameters A1~A7 should be positive values. Although 

A0 should come from the thermodynamic data of the alloy, its value will not affect the accuracy 

of the microstructure evolution prediction and is thus ignored in the following discussion. The 

four terms (A1~A4) provide local minima of f at C=C1, ηp=0 (the disordered phase), and at C=C2, 

ηp=ηeq, where ηeq is the equilibrium value of ηp in the ordered phases. The last three terms 

(A5~A7) ensure that, (1). it is energetically expensive to produce two or more different ordered 

variants at the same location; and (2). these parameters affect the transition path during order-

disorder transformation in the free energy surface. Later we will show that these three parameters 

are related to the interfacial energy and interfacial thickness between different variants of the β 
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phase. A schematic plot of f as a function of composition is given in Figure 2. Note the different 

definitions of C1, C2, Cα, and Cβ: the chemical free energy density (f) reaches the local minima at 

C1 (if η=0) and C2 (if ηp=±1), whereas Cα and Cβ provide the equilibrium composition when the 

disordered and ordered phases reach the state of thermodynamic equilibrium.  

 

It should be noted that most parts of the chemical free energy density expression (f) are in fact 

non-equilibrium free energies. Therefore the mathematic description of this density is not unique, 

even for the same material system. There were some efforts in the literature trying to quantify the 

chemical free energy density, such as [18-20]. However, most of them have often chosen the 

phenomenological parameters for the convenience of numerical simulation. As a result, phase 

field simulations can only provide qualitative or semi-quantitative predictions of microstructure 

evolution. In this work, we aim to develop a physically sound Landau polynomial and gradient 

coefficients that are a function of temperature and can be used to quantitatively predict the phase 

transformation and associated microstructure evolution in real time and real length scale. As is 

shown later, this task requires the accurate treatment of the free energies near compositions C1, 

C2, Cα, and Cβ, and a detailed knowledge of the thermodynamic driving force of the phase 

transformation. 

 

2. Phenomenological Parameters A1~A4 in f 

Without loss of generality, take only one variant ηp as an example (i.e., let ηp=η) and consider 

only the terms A1~A4 first. We assume that the driving force of the phase transformation is given 

by ∆g=A1/2 and is independent of the internal state variable η.  We determine the value of ∆g 

later.  The chemical free energy density is simplified to  
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From (3), the first partial derivative of f to η results in 
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If C=C2, the first term in (4) vanishes, and (4)=0 because it is in the ordered phase (at a 

minimum of f). We find that 

0)( 2
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This equation has three solutions: η=0 (f reaches a local maximum, an unstable state), and 

4

32

A
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=η ( f  reaches local minima at equilibrium state).  Thus, 
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For the sake of convenience, let A3=A4 in the following work so that ηeq=±1. The values of +1 

and -1 may represent an ordered phase and its anti-phase, respectively (Two ordered phases 

share the same crystalline orientation with mirror-image symmetry. This is true for γ-hydrides). 

Otherwise, both values of ηeq can be treated as the same variant phase. 

 

Further, from (3), the first partial derivative of f to C results in  

22
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)(2 ηACCg

C
f
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At η=±1 (in the ordered phase), C=C2. Let (7)=0 (required by the local minimum), we have 

)(4 122 CCgA −∆=           (8) 
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Inspecting (3), we see that when C=C1 and η=0, f (C1, 0)=0, f reaches its first minimum in the 

disordered phase. However, when C=C2 and η=±1, f reaches the other two minima at f(C2, ±1) in 

the ordered phase:  

( )
64

)1,( 332
122

AACCgCf +−−∆=±        (9) 

Note that we used the condition A3=A4 in (9). From (9), we find that  

)]1,()([12 2
2

1243 ±−−∆== CfCCgAA       (10) 

In general, f(C2, ±1)≠0, even when f(C1, 0) is set to 0. The value of f(C2, ±1) should come from 

the thermodynamic data of a specific alloy. However, in phase field modeling it is often adequate 

to define the relative magnitude of the minima f(C2, ±1) with reference to the magnitude of f at 

the first minimum, f(C1, 0). The determination of f(C2, ±1) can be based on the fact that the 

disordered and order phases share the same value of chemical potential at the equilibrium state - 

a common tangent line (y) at the two compositions Cα and Cβ near the two minima f(C1, 0) and 

f(C2, 1) in the f-C-η space (see Figure 2). This consideration results in 

dV
CCCf

V
CCCf α

αβα
α

α
αββ

µµ )()0,()()1,( −=+−=±     (11) 

where µα and Vα are the chemical potential and mole volume of the disordered phase, 

respectively. A solution model for the Zr-H system is required to determine the chemical 

potential µα. For a regular solution [21],  

ααα ωµ CRTC ln)1( 2 +−=         (12) 

where R is the gas constant, T is the absolute temperature, and ω is the formation energy of 

hydrogen interstitials in solid solution, which may be estimated by [21] 
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Putting (12) and (13) into (11) and ignoring the small difference between f(C2, ±1) and f(Cβ, ±1), 
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When C1 and Cα are both small, (14) simplifies to 

1
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It is clear from (15) that if C1>Cα, then f(C2, ±1)<0, resulting in a negative slope of the common 

tangent line y; otherwise the slope is positive. Using (15), (10) changes to 
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We find A1~A4 to be functions of the driving force ∆g in (8) and (16).  In the following section, 

we will discuss how to evaluate ∆g, the gradient coefficients (κ, λ), and C1. 

 

3. ∆g,  Gradient Coefficients and C1 

Let’s consider the interface between a hydride and zirconium metal phase. In this situation, the 

contribution of A5~A7 to the local free energy vanishes. We also assume that the interfaces 

between hydride and metal matrix are coherent, and that the interfacial properties are isotropic 

and independent of the ordered variants. In fact, this is not exactly true because it has been 

observed that dislocation loops can be generated from the interface when hydride size is large 

enough, which result in incoherent interfaces. However, the energy related to incoherency may 

be accounted for by introducing plastic deformation into the phase field model, as we have done 
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before [7,9]. Therefore the above assumption can greatly simplify the formulation. Then (1) 

changes to 

( ) ( ) dVWECCfF strain
p

pp∫ ∑ 
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In a one-dimensional analysis in which only one flat interface is present and when the strain 

energy and work terms are absent, the interfacial energy (γs) between the hydride and metal 

matrix phases is [21], 
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where C and η are the equilibrium distributions across the interface region, and κ and λ are 

constants for a given temperature. For simplicity, it is assumed that 1=
dC
dη

λ
κ , unless a better 

knowledge of κ and λ  is available so that 
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where y(C, η) is the common tangent line between the minima f(Cα, 0) and f(Cβ, ±1).  Following 

the same reasoning as in (11) and considering the f-η plane, a linear relationship such as 
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provides the y function as 
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In (20), η is linearly related to C along the straight line between the two minima (see Figure 

3(b)), that is,  
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This linearity, together with the assumption of 1=
dC
dη

λ
κ ,  results in  
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Putting (3), (20) and (21) into (19) and using the constants (A1~A4) developed in an earlier 

section, we arrive at 

[ ] ICCgs
22/1 )(2 αβλγ −∆=         (23) 

where 

[ ] ηηηηηη daaI ∫








−−



 −−−=

1

0

2/1
4232 1

6
1

4
11223      (24) 

and  









+

−−
−

−⋅∆⋅
= α

α

αβα

C
C

C
C

C
CCgV

RTa ln
1

ln
12
)1(

)( 1

1

1

2

     (25) 

Or, 









+

−−
−

−⋅⋅
=∆ α

α

αβα

C
C

C
C

C
CCaV

RTg ln
1

ln
12
)1(

)( 1

1

1

2

     (26) 

If both Cα and C1 are much smaller than unity (this is the case for Zr-H system at reactor 

condition), 

1
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We then rearrange (23) as 
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From (22) and (28), one can see that if a, ∆g and γs are known, the values of gradient coefficients 

(κ and λ) can be obtained. Since ∆g is determined by the parameters a and C1 through equations 

(26) or (27), we need to define a and C1 first. For a, we consider the interface thickness between 

hydride and metal matrix (l). Assume that ∆f(C, η) reaches the maximum (∆fmax) at C≈(C1+C2)/2 

and η≈1/2:  

( ) 
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The interfacial thickness (l) can then be estimated by [21] 
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Here, an approximation of C2 – C1 ≈ Cβ – Cα is used. Since I and ∆g are functions of a, (30) can 

be used to numerically determine the value of a under a given experimental condition, as long as 

C1, sγ  and l are known.  In general, C1 may be obtained by thermodynamic calculation, and sγ  

and l by first principles calculations or by experiments. For Zr-H system, there is no literature 

data on these three parameters (at least we did not find).  

 

In order to use the above scheme for hydride modeling, we estimate C1 as follows. Combining 

(27) and (30), one can find 
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When -2.5 < a < -1.8, 0.2
)1(
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It should be emphasized that both (32) and (33) are assumptions for Zr-H system. Ideally, C1 and 

C2 should be determined by thermodynamic calculations. Put (32) in (27), we have 
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The parameter a is a weak function of temperature at the reactor operating condition, as can be 

seen in Table 2.   

  

4. Phenomenological Parameters A5~A7 in f 

In order to estimate A5~A7, we further simplify our discussion by assuming that A5=A6=A7.  Here 

we ignore all possible variations in interfacial energy between two or three hydrides that are in 

contact. Consider only two hydrides (p and q) being in contact. At this interface, we assume that 

the concentration (C2 or Cβ) does not change across the interface, while the order parameter (η) 

changes from ηp to ηq, see Figure 4.  Note from Figure 4 that the interface thickness is still 

assumed to be the same l defined in (30). 

 

Then the chemical free energy density in the interface region becomes 
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(i) inside the hydride p  (0 ≤ x ≤ l/2):   
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(ii) inside the hydride q  (l/2 ≤ x ≤ l):  
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Away from the interface region and also inside the hydrides (x ≤ 0, or  x ≥ 2l), the chemical free 

energy density is 
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The interfacial energy (γh) between the two hydrides in one dimension is defined by 
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Here, the condition 0=∇C  across the interface is applied, see Figure 4.  The increase of 

chemical free energy density ( ),( 2 ηCf∆ ) due to the existence of the interface can be estimated 

using (35) and (37) with reference to the average value of (39), such that 
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In the above integrations, linear relations (36) and (38) are used.  Combine (40), (41) and (42), 

and rearrange terms, we find 
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At this point, all of the parameters in the free energy functional (17) are now in principle 

measurable or quantifiable. It should be pointed out that it is often necessary to introduce a 

modification factor to the strain energy (Estrain) and/or to the work done by external forces (W) in 

(17) in order to properly account for the effect of mechanical and/or other external forces during 

phase transformation. This factor can be determined through properly designed experimental 

tests under external forces. Thus, quantitative modeling of the microstructure evolution can be 

performed by numerically solving the following set of dynamic equations simultaneously 

ξ
δ
δ
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p
p

p
p FL
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ζ

δη
δη

+−=
∂

∂
  (p=1, 2, 3…)      (45) 

M is the chemical mobility related to the diffusion of hydrogen in the alloy [19], while Lp is the 

mobility of the order parameters ηp at the interface between two phases (α and β).  ξ and ζp are 

the terms to represent sinks, sources, or thermal fluctuation in the system. If the phase 

transformation is controlled by the diffusion process, one can set ( )2/ lMLp ∆≥  where ∆l is the 

grid size in a numerical scheme, so that the slower process (i.e. chemical diffusion) will control 

the interface movement during phase transformation. 
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5. Verification of the Model 

In order to verify the above model, one needs to compare the model predictions against 

experimental data. However, in addition to the lack of critical parameters in the literature such as 

interfacial energy (γs and γh), well-defined and quantitative experiments on hydride nucleation 

and growth in zirconium are very rare. For example, in many experiments, materials properties 

such as elastic modulus, yield strength, hydrogen diffusion coefficient and so on, were not 

measured, which are important for quantitative modeling. Bailey had conducted TEM studies on 

γ-hydride precipitation in zirconium [22]. One of Bailey’s work was the TEM observation of fast 

quenched specimen from 800 oC with about 4 at% of hydrogen. γ-hydrides are needle-shaped 

particles formed by fast cooling. The needle axis has three equivalent directions of the [ ]0211  

type on the basal plane of the hexagonal zirconium single crystal. Bailey had observed micro 

meter sized needle shape hydrides with dislocation loops around them, indicating plastic 

deformation during hydride growth.  

 

To simulate hydride formation under Bailey’s experimental condition, we need to first quantify a 

using (28) and then ∆g using (25). The material properties such as Vα, Cα (hydrogen solid 

solubility in zirconium), and Cβ (hydrogen composition in hydride) were measured, see Table 1.  

Since the interfacial properties were never measured or theoretically estimated. Therefore, we 

assume γs = 0.1 J/m2, l = 0.5 nm, and A5 = 0.08A3.  We used (32) and (33) to define C1 and C2, 

respectively. Cα is defined by the terminal solid solubility of hydrogen for hydride precipitation 

in zirconium (TSSP). Slattery’s result was converted to atomic percent and applied to Cα [23]. 

For γ-hydrides, Cβ = 0.50. The mobility coefficient M for hydrogen in zirconium was estimated 
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in terms of f and the hydrogen diffusion coefficient D by 
g

D
Cf

DM
∆

=
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=
2/ 22 .  The strain 

energy term in (17) must include the effect of plastic deformation, especially during the hydride 

growth stage. This requires an additional set of phase field equations for plastic deformation. 

Detailed descriptions of the computational procedures were given elsewhere [7,9,15]. Applying 

the scheme developed in this work and using the material parameters listed in Table 1 (Bailey 

did not provide these materials properties [22]), we are able to predict the evolution of hydride 

precipitation morphology in real-time and real-length scales, see Figure 5. The prediction 

compares reasonably well to Bailey’s observation in terms of both the hydride size and density.      
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Table 1. Material parameters used in the modeling of γ-hydride precipitation in zirconium. 

T=300 K 

R=8.314 J/mole K 

C0=0.04,  Cα= 3.75exp(-28000/RT),  Cβ=0.50 

γs=0.10 J/m2,   l = 0.50nm,  
l
sγ =2×108 J/m3 

Vα=1.67×10-6 m2/s 

D=4.1×10-7 exp(-38400/RT) m2/s 

A5 = 0.08A3 

Yield stress is 782 MPa, Young's modulus 94.35 GPa, Poisson 

ratio 0.436. Plastic effect is applied at 0.15 second. 

Modification factor on strain energy = 4.0 

Eigen strains of hydrogen interstitials and γ-hydride as well as 

elastic and plastic constants of zirconium are given in reference 

[7]. 

     

 

Table 2. Parameter a calculated by (30) 

T(K) a 
300 -2.139 
350 -2.123 
400 -2.093 
450 -2.052 
500 -2.015 
550 -2.003 
600 -2.037 
650 -2.141 
700 -2.347 
750 -2.698 
800 -3.270 
850 -4.207 
900 -5.811 
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The following figures are not included in the above manuscript, but it may be a good idea to 

include. 

  
 




