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Abstract  

In a flood-prone region, quick and accurate flood forecasting is imperative. It can extend 
the lead time for issuing disaster warnings and allow sufficient time for habitants in hazardous 
areas to take appropriate action, such as evacuation. In this paper, two hybrid models based on 
recent artificial intelligence technology, namely, genetic algorithm-based artificial neural 
network (ANN-GA) and adaptive-network-based fuzzy inference system (ANFIS), are 
employed for flood forecasting in a channel reach of the Yangtze River in China. An 
empirical linear regression model is used as the benchmark for comparison of their 
performances. Water levels at downstream station, Han-Kou, are forecasted by using known 
water levels at the upstream station, Luo-Shan. When cautious treatment is made to avoid 
overfitting, both hybrid algorithms produce better accuracy performance than the linear 
regression model. The ANFIS model is found to be the optimal, but entails a large number of 
parameters. The performance of the ANN-GA model is also good, yet requires longer 
computation time and additional modeling parameters.  
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1. Introduction 

A quick and accurate flood forecasting is required, in particular in a flood-prone region, 
for the issue of disaster warnings in order to allow ample time for the evacuation of 
populations endangered by imminent rising water levels. Models for flood propagation in a 
channel reach can broadly be classified into two main categories: conceptually based models; 
and, empirical models based on system analysis or “black-box” approach. In conceptually 
based models, the flood propagation process is usually described by the de Saint Venant 
equations comprising partial differential equations of continuity and momentum. These 
equations are not amenable to analytical solutions. During the past few decades, many 
conceptually based numerical schemes have been proposed to solve the problem (Chau and 
Lee 1991a & 1991b). Whilst conceptually based models have advantages in describing the 
mechanisms of the hydrological process, they require large amount of data (for example, 
characteristics of terrain and river networks, rainfall, and runoff) for calibration. In many 
occasions, these data may be unavailable, or expensive and time consuming to collect. 
Sophisticated physical models may not be ideal for real-time forecasting due to the 
tremendous data requirement and the associated long computation time for model calibration. 
On the other hand, empirical models are based on an evidence of relationships manifested in 
historical records of input and output records without analyzing the internal structure of the 
physical process.  

In many practical situations, the main concern is about making accurate and timely 
predictions at specific locations. Then a simple “black box” model is preferred in identifying 
a direct mapping between inputs and outputs. In recent years, many nonlinear approaches, 
such as, artificial neural network (ANN), genetic algorithm (GA), and fuzzy logic, have been 
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used in solving flood forecasting problems.  
Smith and Eli (1995) applied a back-propagation ANN model to predict discharge and 

time to peak over a hypothetical watershed. Tokar and Johnson (1999) compared ANN 
models with regression and simple conceptual models. Liong et al. (2000) employed an ANN 
approach for river stage forecasting in Bangladesh. Chau and Cheng (2002) performed a real-
time prediction of water stage with ANN approach using an improved back propagation 
algorithm. Chau (2004a & b) employed particle swarm optimization in river stage forecasting 
and rainfall-runoff correlation. The ASCE Task Committee (2000) summarized the state-of-
the-art applications of ANN in hydrology and posed some future directions.  

The literature describing the application of GAs to hydrological problems is not abundant. 
Olivera and Loucks (1997) employed a GA to formulate operating rules for multireservoir 
systems. Wardlaw and Sharif (1999) evaluate a GA for optimal reservoir system operation. 
Cheng et al. (2002) applied a GA to calibrate conceptual rainfall-runoff models. Chau (2002) 
calibrated flow and water quality modeling using a GA.  

Fuzzy logic has been employed in a variety of hydrological applications. Russell and 
Campbell (1996) developed some reservoir operating rules with fuzzy programming and 
made comparison with deterministic dynamic programming. Fortane et al. (1997) planned 
reservoir operations through fuzzy set theory. Yu et al. (2000) forecasted rainfalls with 
combined gray and fuzzy methods. Cheng and Chau (2001) applied a fuzzy iteration 
methodology for reservoir flood control operations. Dubrovin et al. (2002) used total fuzzy 
similarity for real-time reservoir operations. Tilmant et al. (2002) compared reservoir 
operating policies from fuzzy and nonfuzzy explicit stochastic dynamic programming. 
Ponnambalam et al. (2002) employed a fuzzy system to minimize variance of operation 
benefits for reservoir systems. 

The objectives of this study are to use hybrid algorithms for flood forecasting in a channel 
reach of the Yangtze River. This paper is organized as follows: algorithms of the genetic 
algorithm-based artificial neural network (ANN-GA) and adaptive-network-based fuzzy 
inference system (ANFIS) models are introduced; data mining and division for flood 
forecasting analysis in Yangtze River are presented; prediction results based on these hybrid 
algorithms are compared with those of the linear regression (LR) model; and finally, 
conclusions are drawn. 

 
2. Genetic Algorithm-Based Artificial Neural Network (ANN-GA) 

An ANN is a form of artificial intelligence mimicking the functioning of the human brain 
and nervous system. It acquires knowledge through a learning process that involves finding an 
optimal set of weights for the connections and threshold values for the neurons. Its ability to 
“train” and “learn” the outputs from a given input renders it possible to simulate large-scale 
arbitrarily complex non-linear problems (Rumelhart et al. 1994). The most widely used ANN 
is the feed-forward network with a back-propagation algorithm, termed the back propagation 
network (BPN). In the forward pass, the output response at each neuron is computed from the 
weighed sum of its inputs and bias from neurons connected to it, using a predetermined 
activation function. A sigmoid type activation function is often used: 
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In the reverse pass, the weights in the network are modified by using the error value between 
the output of the network and the target outputs. The derivatives of the objective function with 
respect to the weights in the entire network are used to distribute the error to neurons in each 
layer. A gradient descent method is often used to move the weights in the direction in which 
the error declines most quickly. Training is stopped when the error is smaller that a preset 
value. Although an ANN is a flexible and powerful mapping tool, initialization of weights and 

 2



biases has a significant effect on network performance. Inappropriate assigned weights and 
biases can lead to local convergence. Moreover, the traditional BPN with gradient descent 
learning algorithm is characterized by a surprisingly slow convergence and a long 
computational time.  

On the other hand, a GA is an application of biological principles into computational 
algorithm and has been employed to attain the optimum solutions (Goldberg and Kuo 1987). 
A GA holds the ability of searching, yet may not necessarily lead to the best possible solution. 
A hybrid integration of these two algorithms may take advantages of the characteristics of 
both schemes. It can increase solution stability and improve performance of an ANN model, 
though at the expense of computational time. Hence, a genetic algorithm-based artificial 
neural network (ANN-GA) model is developed here. A GA is firstly employed to optimize 
initial parameters of ANN, prior to training by the conventional ANN.  

The objective function of the GA sub-model used for initializing weights and biases is 
denoted by: 

∑
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where W is the weight, θ  is the bias or threshold value, i is the data sequence, p is the total 
number of training data pairs,  is the ith input data, is the ith measured data, and iX iY

)( ,, θWXf i represents simulated output. The goal of the GA sub-model is to ascertain 
optimal parameters so that accumulative errors between the measured data and simulated data 
are minimal. The overall flow chart of the ANN-GA model is shown in Figure 1, in which  
is the crossover probability,  is the mutation probability,  is the maximum number of 
generation, and  is the population size.  

cp

mp maxG

maxN
 

3. Adaptive-Network-Based Fuzzy Inference System (ANFIS) 
Fuzzy logic and fuzzy set theory have been widely used to simulate the ambiguity and 

uncertainty in decision making. The key ideas for fuzzy logic are to allow for quantities to be 
partial truth rather than having to be either crisply “true” or “false” (Zadeh and Kacprzyk 
1992). The degree of “belongingness” to a set or category can be described numerically by a 
membership function, with range from 0 to 1. The function may be triangular-shaped, 
trapezoidal-shaped, bell-shaped, etc. In general, fuzzy logic programming can be used in two 
ways: to model the behavior of a human expert; and, to map a set of outputs to a set of inputs 
in a fuzzy inference method. In order to model the thinking of a human expert, input variables 
are specified by category, such as “low”, “high”; and fuzzy rules are developed on the basis of 
the expert’s knowledge and experience. In the present study, however no expertise is available 
and the number of membership functions assigned arbitrarily.  

In this sense, the fuzzy inference is similar to an ANN, both with the goals to identify the 
transformation of a set of inputs to the corresponding set of outputs through training. An ANN 
tends to operate more in a “black box” manner, whereas a fuzzy logic system is more 
transparent due to the incorporation of the expert’s knowledge and experience into the 
inference process. Jang (1993) classified the fuzzy inference systems into three types in 
accordance with the nature of fuzzy reasoning and fuzzy if-then rules. In the present study, 
Takagi and Sugeno’s fuzzy if-then rules are employed (Takagi and Sugeno 1985). The output 
of each rule is a linear combination of input variable plus a constant term whilst the final 
output is the weighted averaged of each rule’s output. Figure 2 shows a sample fuzzy 
reasoning with two input variables. 

The fuzzy rule base is set up by combining all categories of variables. The following 
illustrates a sample case comprising three input variables and a single output variable. Each 
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input variable ( x , , and y z ) is divided into three categories. For simplicity, equally spaced 
triangular membership functions are assigned. The categories are “low,” “medium,” and 
“high.” The number of rules in a fuzzy rule base is , where  is the number of categories 
per variable and  the number of variables. The optimal number of categories can be selected 
through performance comparison. The rule base takes the form of an output  for each 
combination of category i , of input variable 

nc c
n

kjio ,,

x , category j , of input , and category k , of 
input variable . In this case, there are 27 rules in total. Part of the rule sets are illustrated as 
follows: 

y
z

If x is low, y is low, and is low then the output z 11111,1,1 dzcybxao +++= ; 
If x is low, is low, and y z is medium then the output 22222,1,1 dzcybxao +++= ; 
If x is low, is low, and is high then the output z 33333,1,1 dzcybxao +++= ; 
L  
If x is high, y is high, and is high then the output z 272727273,3,3 dzcybxao +++= ; 

where and  are parameters of fuzzy output functions. In this study, these 
parameters are determined through training. 
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For each rule triggered, memberships of x , y , and are computed. The result of a 
specific T-norm operation will then provide the weight to be assigned to the 
corresponding output . Multiplication operation is used in this study. Finally, the outputs 
from all triggered rules are combined to give a single weighted average output 
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In order to develop a FIS model for forecasting, some parameters, including ,  and  
of each triangular membership function  and  ,  ,  and  of the consequence part of each 
rule, have to be determined by learning. An ANFIS is the system when ANN is employed to 
train these FIS parameters. A fuzzy system based on hybrid algorithms can improve the 
intelligence of systems working in uncertain, imprecise, and noisy environments and can 
achieve faster convergence. It possesses the features of both the neural networks (learning 
abilities, optimization abilities, and connectionist structures) and the fuzzy control systems 
(human like “if-then” rule thinking and ease of incorporating expert knowledge).  
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Figure 3 shows the ANFIS configuration employed in this study. The parameters defining 
the shape of the membership functions are identified by the back-propagation learning 
algorithm, whereas the consequent parameters for each rule are identified by the least-squares 
method. In Figure 3, and  are degrees of membership functions of 

and , respectively;  is the product by and , and subscripts i, j, 
and k of and  are integers in the range [1,3]; and, l  is from 1 to 27. 
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4. Analysis, Results and Discussions 
4.1 Study area 

The channel reach studied is in the middle stream of the Yangtze River, which is the 
largest river in China. It passes through Wuhan city, which is the capital of Hubei province 
(see Figure 4). The flow of the Yangtze River is quite unsteady, and exhibits a seasonal 
behavior. The flow is low during the winter months and the peak flow occurs during August 
and September. A hydrological year is often classified into a flooding period and a non-
flooding period, which are from June to October and from November to next May, 
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respectively. The water level at Luo-Shan station can be as low as 17.3m during the
flooding period and as high as 31.0m during the flooding period. The averages of water le
are 20.8m and 27.1m during the non-flooding and flooding periods, respectively. The purpose 
of this study is to predict water levels of the downstream station, Han-Kou, by known water 
levels of the upstream station, Luo-Shan. The lateral inflow is neglected since it is very small
in comparison with the discharge of the main stream. 
4.2 Data mining 

 non-
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e of flood between Luo-Shan and Han-Kou is determined to be about 24hrs 
usin

es of 

The travel tim
g Muskingum method. In other words, the flood at Han-Kou has a phase lag of 

approximately one day with that at Luo-Shan. A mapping of D  points in a time seri
spacing Δ apart, ))(),(,),)1(( tXtXDtX Δ−Δ−− L , can be ge rated to predict a future v

)( ptY + 1
ne alue 

. In the present study, it is initially set that =p  day and 1=Δ  day whilst the 
alue of D  is found on the basis of the corr n. An inte alue from 1 to 4

assigned to D  for testing. The data used for modeling are daily averages for water levels of 
Luo-Shan and Han-Kou stations. Analysis has been done on the appropriateness of working 
with average water level values with the possibility of averaging out the peaks and low levels
It is found from the data that the water levels do not vary so rapidly so that water levels at 
shorter intervals (at hourly or 3 hourly) are not required. 
4.3 Division of data 

optimal v elatio ger v  is 

. 

the training data too closely, it simulates the noise in addition to the 
und ta 

: 

 

 from 
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If the output fits 
erlying function. In such case, a problem occurs and the model overfits the training da

but does not fit well to new data. Smith (1993) proposed three methods to solve this problem
limit the number of hidden nodes; discourage the network from using large weights; and, limit 
the number of training epochs. Shahin et al. (2002) suggested dividing the data into three 
subsets. In this study, the data are randomly divided into three sets: training, testing, and 
validation. Whilst 75% of the data are used for training, 25% are used for validation. The
training data are further divided into 2/3 for the training set and 1/3 for the testing set.  

In the present study we extract 1456 input-output data pairs of the following format
data record: 

)]1()(),1(),2([ +−− tYtXtXtX ；  (4) 
which represents the relationship between water levels at Luo-
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Shan during the past three days 
and the water level at Han-Kou for the next day. It is ensured that data used for training, 
testing and validation represent the same population so that there is no need to extrapolate
beyond the range of their training data. Table 1 shows the statistical parameters, including t
mean, standard deviation, minimum, maximum, and range, for the training, testing, and 
validation sets, respectively.  

4.4 Evaluation criteria for mo
The performance of the predictions resul

luated by the following measures for goodness-of-fit: RMSE (root mean square error) and 
CC (coefficient of correlation): 
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where subscripts  and = the measured and simulated water levels, respectively; m s  p = total 
number of data pairs considered; mX  and sX  = 
data, respectively. RMSE furnishes a quantitative 
variable, with the characteristic that larger errors receive greater attention than smaller ones. 

n e

f time and the corresponding output 
ed as the benchmark for comparison in flood 

fore

mean value of the measured and simulated 
indication of the model error in units of the 

The qualitative evaluation of the model performance is made in terms of the coefficient of 
correlation betwee  the m asured and simulated data. 

4.5 Results of linear regression (LR) model 
Since the basic characteristics of the Yangtze River remain unaltered in years, there exists 

certain correlation between the upstream (Luo-Shan) and the downstream (Han-Kou) water 
levels. A LR model is the simplest and well-developed representation of a causal, time-
invariant, relationship between an input function o
function. Hence, a LR model is develop

casting. In order to avoid overfitting, four regression models are initially developed with 
D  value ranging from 1 to 4, with results as shown in Table 2. Table 3 shows the correlation 
amongst the input variables, which might result in multi-collinearity problem (i.e., imprecise 
regression parameter estimates due to highly correlated independent variables). The existence 
of surplus variables might lead to overfitting of the training set, but at the same time lowering 
the performance of the validation set. This is demonstrated for the case when D = 4 in Table 2. 

e adopted prediction model, based on the linear regression with D  = 3, is expressed as 
follows: 

073.5393.0823.0441.1 211

Th

−+−= −−+ tttt XXXX  (7) 
The option of D = 1 is equally good and which also support the principle of parsimony. 

In order to verify this, a comparison of the performance of the models was ade by taking 
D = 1. No significant lowering of performance has been observed. 

4.6 Results o

m

f ANN-GA model 
Under the sam  basis of com
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ls with different number of nodes ranging from 1 to 7 in the 
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125 (i.e. 53) rules, which are too much to allow patterns to be 
easi

e parison, three inputs and one o
GA model. The input and output data are normalized to a range from 0 to 1, corresponding to 
the minimum and the maximum water levels, respectively. In this study, a three-layer network 

used. In order to determine the optimal network geometry that ho

utput are applied to the ANN-

generalization, ANN-GA mode
en layer are trained based on a trial and error procedure. The performances for training 

set and testing set at different training epochs are recorded. Training is stopped when the error 
learning curve of the testing set starts to increase and that of the training set is still decreasing. 
The performances for the testing set against different number of hidden nodes are
Figure 5. The same analysis has been attempted by dividing the data set afresh again and 
analysis repeated. The reproducibility of the same result has been ensured by repeating it 5 to
6 times. The optimal ANN-GA architecture adopted is 3-3-1. Figure 6 shows the prediction 
results and absolute errors for the validation data set with the ANN-GA model. 

4.7 Results of ANFIS model 
An ANFIS model is adopted to forecast the downstream water levels, with the same

input-output data pairs as those of the LR and ANN-GA models. In general, more number 
categories will furnish higher accuracy, but with the disadvantage of larger rule bases as well 

 fuzzy categories for each of three variables, as more computation time. For example, with five
this would involve a set of 

ly discerned. The parameters from premises and consequences are increased significantly 
and the computational time is rather long whilst the performance might only be improved 
slightly. Similar to that as described in the ANN-GA model, a testing set is adopted in order 
to overcome overfitting. Experiments are undertaken in order to select the appropriate number 
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of variable categories, with results as shown in Table 4. The number of parameters increases 
remarkably by 495 from 2 to 5 categories whilst the training time increases significantly from 
2.2s to 1219s. Although more subspaces for the ANFIS model will generally result in better 
performance, cautious treatment should also be made to avoid overfitting. When both the 
computational time and RMSE_vali are considered, an optimal number of categories of 3 (i.e., 
low, medium, and high) is adopted, with their fuzzy membership functions shown in Figure 7. 

4.8 Discussions 
Figure 8 depicts a qualitative comparison of the performance of the LR, ANN-GA, and 

ANFIS models in forecasting 1-day lead time water levels at Han-Kou by the upstream water 
levels at Luo-Shan station during the past three days for the validation set using an absolute 
error indicator. It can be seen that, amongst them, the fluctuation of absolute error for the LR 
model is the largest. The fluctuation is smallest for the ANFIS model with more data 
conc

vali and 
n 

ng 
ent. 

 

flexi

 and 
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FIS 
he 

ANF

ut 

el requires more training time than the ANFIS model since GA is a time 
cons

lems, 
h 

 the Yangtze River. These “black-box” models 
avoid the complication of traditional physical model, in particular the necessity to glean site-

. Amongst them, the ANFIS model is the best in terms of the simulation 
perf

entrated near the zero axis. Since the comparison between ANN-GA or ANFIS (both 
with non-linear nature) and LR model is not fair, a non-linear statistical fitting (NLSF) in 
dependent variable is also added. Table 5 represents a quantitative comparison of their 
performance, using indicators including RMSE_tra RMSE_vali, training time, and number of 
parameters. Whilst the results from all models may be satisfactory in terms of RMSE_
RMSE_tra, the ANFIS model is better in accuracy comparatively. The performance betwee
LR and NLSF does not differ too much. Moreover, the ANFIS model consumes less traini
time than ANN-GA model and thus appears better suited to flood forecasting environm
Some possible explanations on the differences in their performances are suggested as follows. 

Whilst the LR model can only fit a linear function to input-output data pairs, the ANN-
GA model is capable of contorting itself into a complex form to accommodate the temporal 
changes of the input-output data pairs. The coupling of ANN and GA can improve the 
performance since it takes advantage of the local optimization of ANN and the global 
optimization of GA. It is reasonable that an ANN-GA model with 16 parameters is more 

ble than LR model with 4 parameters. This is analogous to an anticipated better 
performance of a power or polynomial function than that of a simple linear function. 

Similar to the ANN-GA model, the ANFIS model is also able to handle non-linear
complicated problems. In this ANFIS model, the mapping space of input variables to o
variable is classified into 27 subspaces, and each subspace is described by a linear model 
consequent part of a rule). It is natural that a phase-space linear function from the AN
model outperforms a LR model. Furthermore, a larger number of parameters used in t

IS model than its counterparts of LR is another factor contributing to the more rigorous 
performance. 

The exhibition of a better forecast for the ANFIS model than the ANN-GA model can be 
explained by their difference in nature. It is demonstrated that the local approximation 
approach of the ANFIS model is capable of better mapping the connectivity of input-outp
data pairs than the global approximation approach of the ANN-GA model. Moreover, the 
ANN-GA mod

uming searching tool. However, with the fast development of computer technology, the 
computational time will not be a constraint.  

 
5. Conclusions 

In the present study, when cautious treatment is addressed to avoid overfitting prob
both ANN-GA and ANFIS models produce accurate flood predictions of the channel reac
between Luo-Shan and Han-Kou stations in

specific parameters
ormance and appears better suited to flood forecasting environment. However, it requires 
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a larger amount of parameters in comparison with the benchmark LR model. The ANN-GA 
model adequately combines the advantage of ANN (i.e., fast convergence and local 
optimization) with the advantage of GA (i.e., global searching ability). However, it costs the 
longest computation time. Some additional parameters, such as crossover probability and 
mutation probability, are required for the GA component. The ANN-GA and ANFIS models 
could be considered as complement to conventional models and hence are worthy tools. 
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Table 1. Statistical parameters for training, testing, and validation sets 
 

 Statistical parameters  Model variables 
and data sets Mean Standard Deviation Min. Max. Range 
Xt-2(m)      

Training set 23.42 3.73 17.37 31.04 13.67 
Testing set 23.38 3.75 17.35 30.93 13.58 
Validation set 23.41 3.71 17.39 30.96 13.57 
      

Xt-1(m)      

Training set 23.40 3.74 17.35 30.96 13.61 
Testing set 23.43 3.73 17.37 31.04 13.67 
Validation set 23.41 3.68 17.37 30.80 13.43 
      

Xt(m)      

Training set 23.45 3.73 17.37 31.04 13.67 
Testing set 23.42 3.64 17.39 30.96 13.57 
Validation set 23.39 3.77 17.35 30.93 13.58 
      

Yt+1(m)      

Training set 18.61 3.73 12.21 25.69 13.48 
Testing set 18.59 3.76 12.20 25.71 13.51 
Validation set 18.62 3.75 12.26 25.70 13.44 

 
 
 

Table 2. Performance comparison for different values of  in LR model D
 

 Training set Validation set 

D  RMSE CC RMSE CC 

4 0.235 0.9880 0.238 0.9960 

3 0.238 0.9880 0.237 0.9960 

2 0.241 0.9880 0.243 0.9958 

1 0.242 0.9880 0.244 0.9958 
 
 

 
Table 3. Correlation amongst input variables 
 

CC Xt-3 Xt-2 Xt-1 Xt 

Xt-3 1.000 0.973 0.985 0.989 

Xt-2  1.000 0.977 0.965 

Xt-1   1.000 0.987 

Xt    1.000 
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Table 4 Performance comparison for different categories in ANFIS model 
 

Number of categories RMSE_tra(m) RMSE_vali(m) Training_time(s) Number of parameters* 
2 0.211 0.215 2.2 50 
3 0.204 0.214 49.4 135 
4 0.193 0.267 1074 292 
5 0.193 0.193 1219 545 

*including all , , and , , c ,  1t 2t 3t iia ib id

 

 

Table 5 Performance comparison for different models 
 

Model RMSE_tra(m) RMSE_vali(m) Training time(s) Number of parameters 
LR 0.238 0.237  4 
NLSF 0.241 0.236  4 
ANN-GA 0.213 0.226 135 16 
ANFIS 0.204 0.214 49 135 
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Figure Captions 

 

Figure 1. Flow chart for the ANN-GA model 

 

Figure 2. Fuzzy reasoning 

 

Figure 3. Configuration of the ANFIS model 

 

Figure 4. The study area 

 

Figure 5. Performance of ANN-GA models against different numbers of nodes in hidden layer 

 

Figure 6. Prediction results and absolute errors for validation data set with the ANN-GA 

model 

 

Figure 7. Optimized fuzzy membership functions 

 

Figure 8. Comparison of absolute errors with different models 
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Figure 2.  
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