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Abstract: A dependable long-term hydrologic prediction is essential to planning, designing and 12 
management activities of water resources. A three-stage indirect multi-step-ahead prediction model, 13 
which combines dynamic spline interpolation into multilayer adaptive time-delay neural network 14 
(ATNN), is proposed in this study for the long term hydrologic prediction. In the first two stages, a 15 
group of spline interpolation and dynamic extraction units are utilized to amplify the effect of 16 
observations in order to decrease the errors accumulation and propagation caused by the previous 17 
prediction. In the last step, variable time delays and weights are dynamically regulated by ATNN and 18 
the output of ATNN can be obtained as a multi-step-ahead prediction .We use two examples to 19 
illustrate the effectiveness of the proposed model. One example is the sunspots time series that is a 20 
well-known nonlinear and non-Gaussian benchmark time series and is often used to evaluate the 21 
effectiveness of nonlinear models. Another example is a case study of a long-term hydrologic 22 
prediction which uses the monthly discharges data from the Manwan Hydropower Plant in Yunnan 23 
Province of China. Application results show that the proposed method is feasible and effective. 24 

Keywords: time-delay neural network, adaptive time-delay neural network, indirect 25 
multi-step-ahead prediction, spline interpolation 26 

1. Introduction 27 

A dependable long-term hydrologic prediction is essential to planning, designing and 28 
management activities of water resources (Lin et al., 2006; Sivakumar et al., 2001; Mimikou 29 
and Rao, 1983 ). During the past few decades, a great deal of research has been devoted to 30 
the formulation and development of approaches and models to improve the quality of 31 
hydrological prediction, including mechanistic models and black-box models(Karunasinghe 32 
and Liong, 2006; Chau, 2006; Cheng et al., 2006; Lin et al., 2006; Wu and Chau, 2006; Chau 33 
et al., 2005; Liong et al., 2005; Cheng et al., 2004; Arora, 2002; Islam and Sivakumar, 34 
2002;Ismaiylov and Fedorov, 2001; Sivakumar et al., 2001; Irvine and Eberhart, 35 
1992).Hydrological processes vary both spatially and temporally with a high nonlinearity in 36 
spatial and temporal scales(Parasuraman and Elshorbagy, 2007). The mechanistic models 37 
used to model such processes would require a large amount of high-quality data associated 38 
with astronomical, meteorological, natural geographical characteristics as well as human 39 
activity (Arora, 2002; Maier and Dandy, 1999; Milly, 1994), while the burden of data 40 
constrains the application of mechanistic models. In the other hand, the black-box models, 41 
that at first were only designed to identify the connection between inputs and outputs, are 42 
widely applied to forecast the long-term streamflow because of their requirement of little 43 
data and their simple formulation. The earlier methods include time series techniques and 44 
multiple linear regression methods (Smith, 1991; Irvine and Eberhartdt, 1992). As an 45 
alternative to the aforementioned mathematical models, ANNs, which map the input to 46 
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output without the need to identify the physics a priori, have been widely applied to 47 
hydrology field (ASCE Task Committee, 2000; Luk et al., 2000; Maier and Dandy, 1999; 48 
Atiya et al., 1999). Some applications of ANNs in long-term hydrologic prediction can be 49 
found in the literature (Parasuraman and Elshorbagy, 2007; Karunasinghe and Liong, 2006; 50 
Kisi, 2004). 51 
 52 
For many engineering applications, a series of forecasts with a long ahead time are required. 53 
In recent decades, multi-step-ahead (MS) techniques (Williams and Zipser,1995), which can 54 
predict time series values of many time-steps into the future and are classical model 55 
predictive algorithms, have been developed to achieve this goal . MS prediction can be 56 
divided into direct and indirect categories which have their own advantages and 57 
disadvantages. Direct MS prediction models employ all the observations as inputs, while the 58 
indirect models use the recursive method of single-step (SS) predictor. Theoretically, the 59 
former models provide more precise results in comparison to the later models. However, the 60 
direct prediction demands the model hold more flexible ability for each step prediction. 61 
Furthermore, it is not easy to develop a direct prediction model.This is why we focus on 62 
developing a new indirect multi-step-ahead prediction model in this research.  63 
 64 
The difficulty of developing MS predictors is because of the lack of measurements in the 65 
prediction horizon that necessitates the recursive use of SS predictors for reaching the 66 
end-point in the horizon. Even small SS prediction errors at the beginning of the horizon 67 
accumulate and propagate, often resulting in poor prediction accuracy. The situation is even 68 
worse for complex systems which are characterized by poorly understandable, noisy, and 69 
often nonlinear dynamics (Parlos et al., 2000). Recently, the recurrent neural network was 70 
proven to be able to improve MS-based prediction and found to attain promising performance 71 
(Bone and Crucianu, 2002; Khotanzad et al., 1994). However, training of a recurrent neural 72 
network is usually very time consuming and a single recurrent neural network might lack in 73 
robustness (Ahmad and Zhang, 2002). Relatively, feedforward network is easy to implement 74 
with a low complexity regarding time and space. Time-delay neural network (TDNN) and 75 
adaptive time-delay neural network (ATNN) were proven to be able to improve the 76 
efficiency of the MS prediction. TDNN, introduced by Waibel (Waibel et al., 1989) who 77 
employed time delays on connections in feedforward networks, has been successfully applied 78 
in many areas (Haffner and Waibel, 1992; Luk et al., 2000; Ng and Cook, 1998; Shi et al., 79 
2003; Tan and Cauwenberghe, 1999; Yamashita, 1997). An adaptive version of TDNN, called 80 
ATNN, which was originally proposed by Day (Day and Davenport, 1999) adapts its 81 
time-delay values and its weights to better accommodate to changing temporal patterns, and 82 
also to provide more flexibility for optimization tasks. It has also been successfully utilized in 83 
nonlinear system identification(Lin et al., 1995; Yazdizadeh and Khorasani, 2002; 84 
Yazdizadeh et al., 2000). In the case of single stage MS prediction,  the main idea behind 85 
both TDNN and ATNN is time-delay technology which utilizes current and delayed (or past) 86 
observations of the measured system inputs and outputs as inputs to the network (Parlos et al., 87 
2000). As a result of time-delay technology, error iteration can deteriorate prediction 88 
accuracy very quickly with increased steps ahead. Naturally, to improve the MS prediction, it 89 
is required to reduce the use of iterative forecast values and add the observed values. Luckily, 90 
the interpolation for discrete sequences(Mery et al., 1998; Schafer and Rabiner, 1973; 91 
Tarczynski et al., 1994; Unser, 1999), which is usually employed in signal processing, can be 92 
used for this purpose. In our study, the spline interpolation is employed to expend the 93 
measurement data space of the model inputs and to increase the effect from observations. 94 
Moreover, ATNN can provide more flexibility for optimization tasks. 95 

 96 
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In this paper, a three-stage MS prediction model, which combines dynamic spline 97 
interpolation into multilayer ATNN (SATNN), is proposed. In the first stage, the discrete time 98 
series, which has a uniform interval considered as original sampling frequency, is enlarged 99 
into many derivative sequences with various sampling frequencies by spline interpolating 100 
approximation. In the next stage, the input data set of ATNN variables for each prediction 101 
step is dynamically constructed through the integration of the derivative sequences 102 
mentioned above. In the last stage, parameters of the two previous stages, variable time 103 
delays, and weights are dynamically regulated by ATNN and therefore the output of ATNN 104 
can be obtained as a multi-step-ahead prediction. Using interpolation algorithm, some 105 
dynamic virtual data are inserted into the original sequences at a point far from the current 106 
spot. Therefore, the impact of the insertion of the prediction errors of the previous steps into 107 
the next step will be decreased and the reliability of this indirect multi-step-ahead prediction 108 
model will be improved. To illustrate the advantages of the proposed model, two examples 109 
are used. One example is the sunspots time series that is a well-known benchmark nonlinear 110 
and non-Gaussian time series and is often used to evaluate the effectiveness of nonlinear 111 
models(Zhang, 2003). Another is a case study of a long-term hydrologic prediction which 112 
uses the monthly discharges data from the Manwan Hydropower Plant in Yunnan Province, 113 
China. 114 

2. Brief review on MS prediction, spline interpolation and ATNN  115 

2.1 MS prediction 116 

The recursive relation between inputs and outputs in MS prediction is defined as 117 

ˆ ˆ ˆ( , , ..., , ..., )1 2x F x x x xt p t p t p t t p s=+ + − + − + −                         (1) 118 

Where p is the MS prediction horizon, s is the input dimension, and x̂t p+  is an estimate of 119 

the output at time-step t+p. From equation (1), x̂t p+  not only depends on the observation 120 

values but also on the previous predictions. The prediction accuracy deteriorated very quickly 121 
with increased p. An approach to improve the prediction accuracy is to enlarge the 122 
observation sample.  123 

2.2  Cubic spline interpolation for discrete sequences(Kahaner et al., 1988)  124 

The problem for cubic spline interpolation is described as we know a table of points [xi， yi]  125 
for i=0,1,…,n. And the function y = f (x) estimates the value of a function for arbitrary x in a 126 
set of points a = x0 < x1 < x2 <…< xn = b. The function s(x) is called a cubic spline on [a, b] if  127 

   1) s (x) is defined on [a, b];  128 
   2) s(x) and its first and second derivative, i.e.,  s’ (x) and s″(x), are all continuous 129 

functions on [a, b]; 130 
   3) There are points (knots of the spline s (x)) such that a = x0 < x1 < x2 <…< xn = b and 131 

s(x) is a polynomial of degree <=3 on each subinterval [xi-1， xi]  132 
The fundamental idea behind cubic spline interpolation is used to draw smooth curves 133 

through a number of points. A third degree polynomial s i(x) is determined by  134 
3 3
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Where )( iii xSM ′′= , 1−−= iii xxh . Using the four conditions of cubic splines (Pollock, 1999), 136 
we can draw the following equation. 137 
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 These equations can be much simplified if divided by hi + hi+1. Let 1
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)1,,2,1(2 11 −==++ +− nidMMM iiiiii λµ                   (4) 141 

Note that this system has n-2 rows and n columns, and is therefore under-determined. In 142 
order to generate a unique cubic spline, two other conditions must be imposed upon the 143 
system. There are various methods of the stipulation to be imposed upon the system. Natural 144 
spline is one of methods. Let the second derivative be equal to zero at the endpoints, i.e., 145 

01M M n= = . This results in the spline extending as a line outside the endpoints. Other 146 

second derivatives are determined accordingly. Correspondingly, si(x) can be obtained. 147 
 148 

Using spline interpolation methods, we can increase sampling points between observations. 149 

Therefore, the estimated quality of x̂t p+  will be improved once these interpolated values are 150 

pushed into current and delayed (or past) observations of the measured system input and 151 
output in equation 1. 152 

2.3 Dynamic ATNN structure 153 

ATNN adapts its time-delay values as well as its weights during training to better 154 
accommodate to changing temporal patterns and to provide more flexibility for optimization 155 
tasks (Day and Davenport 1999; Lin, et al., 1995; Yazdizadeh, 2002). A dynamic neuron 156 
structure is proposed by Lin et. al. (1995) and shown in Figure 1.The input-output mapping is 157 
then governed by 158 

( )
1

( )
M

i i i
i

y t x tσ ω τ
=

 
= − 

 
∑                                (5) 159 

where iω ’s are the neuron weights, iτ ’s are the delays, and ( )σ ⋅ is a nonlinear activation 160 
function. It has been shown that, even by taking the above simplified assumption, the resulting 161 
input-output map is still capable of representing the nonlinear system (Waibel et al., 1989). 162 
For the continuous time series, the time point t is rational sampling point, while in our study it 163 
is observation time. It should be noted that the output of the neuron at time t, which depends 164 
on the previous values of the outputs, results in a dynamic behavior. This dynamics will be 165 
modified subsequently for representing the nonlinear system. 166 

INSERT Figure 1 NEAR HERE 167 

3.  SATNN model architecture and algorithm 168 

The basic idea behind the design of the model is to use higher temporal resolution (i.e., a higher 169 

sampling rate and higher frequencies) for the long-term history and to use lower temporal 170 
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resolution for the short-term history (human brain uses a similar approach when combining 171 

the “detailed” certain-memory with the “general” uncertain-memory to predict future events). 172 

By this means, we get more essential information on the “detailed” and “general” history of 173 

the time series while we use a relatively small number of inputs in the forecasting system. 174 

With interpolation algorithm, some dynamic virtual data which can be called the “detailed” 175 

are inserted into the original sequences at the point far from the current spot. So the impact of 176 

previous prediction errors that would be iterated into the model for the next step prediction is 177 

decreased. Therefore, the reliability of this indirect multi-step-ahead prediction model will be 178 

improved when we make multi-step ahead prediction.  179 

3.1 SATNN model architecture 180 

INSERT Figure 2 NEAR HERE 181 

SATNN adopts a three-stage architecture that its structure sketch is illustrated in Figure 2. In 182 

the first stage, Gs, as a generator, can produce several time series Xijl with proper sampling 183 

frequencies which are interpolated from the original series X. The spline interpolation is 184 

applied once over the whole data set and the sequences Xijl are obtained with different rates 185 

time-delay technology, in the other words, different interpolations are run each time to 186 

produce each Xijl. In the second stage, dynamic sequences X’ is obtained from the time series 187 

Xijl. And the procedure is governed by series 
1 2{ , , ..., }t t tqc c c  as a result of controller C. 188 

Here we can call the series 
1 2{ , , ..., }t t tqc c c  controlling signal, because each variable 189 

provides information about how to extract the proper parts from series Xijl . In the third stage, 190 

ATNN is used for prediction based on the newly obtained sequences. 191 

3.2 Algorithm 192 

In the first stage, given the time series{ }| , 1, 2,...,iX x i n= , the three-stage architecture is 193 

summarized in Figure2. In this stage, Gs is a spline interpolation generator with parameter q 194 
equal to time window of delayed input series of ATNN in the third stage, which is equivalent 195 
to the number of neural network input nodes. q is obtained by the method named Maximum 196 
Entropy Method 1 (MEM1)(Jaynes, 1957 ). MEM1, that is widely used to decompose period 197 
characteristic of representative hydrologic series(Letie, 1995; Singh, 1997; Wang and Zhu, 198 
2002), is employed to estimate period of nonlinear time series. Given this period the neural 199 
network input nodes can be determined.  200 

{ }1 2, ,..., qSI SI SI  is spline interpolation digital filter (Unser, 1999). Among them, 1S I  is 201 

a simple linear function generating the same data set as { }| , 1 , 2 , . . . ,
j

X x j n= that is noted 202 

as { | ; 1; 1, 2, ..., ; 1}X x x j n lijl ijl j= = = = . These interpolation units are employed to 203 

interpolate the original series into the smoothed series 204 

{ | 1, 2 , ..., ; 1, 2, ..., ; 1, 2, ..., ; }ijlX i q j n l q l i= = = ≤ with various sampling frequencies 205 

1 2{ , ,..., }qf f f  where 1f  is the sampling frequency of the original series. It is observed that 206 

these interpolation units play the roles that by inserting the smooth virtual data, the original 207 

series with frequency 1f  can change into various sequences ijlX with frequency 1i f× . 208 

Figure 3 describes the process of this stage. 209 
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INSERT Figure 3 NEAR HERE 210 

In this stage, given the input data sequence X, the spline function can be denoted by ( )S k  211 

where k is the time order of the sequence. The sequences from spline-interpolation units are 212 
obtained as follow as 213 
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


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        (6) 214 

In the second stage, for every current time point t, dynamic sequences X’ are obtained by 215 

series 1 2{ , , ..., }t t tqc c c  as a result of controller C. From the outputs of the interpolation 216 

units, { | 1, 2, ..., ; 1, 2, ..., ; 1, 2, ..., ; }ijlX i q j n l q l i= = = ≤ , a set of proportion data are 217 

extracted to form a new sequence { }| ; 0,1,..., 1t tiX x i J′ ′ = − . A glide record is utilized in the 218 

whole course. The rule of extraction is as follows: firstly, all the data are the content of 219 
extraction; secondly, the record backward glides along the time direction; lastly, the 220 

beginning point is a certain original data jx and the consequent data are those behind 1jx − . 221 

All the steps are illustrated in Figure 4. The new sequence is listed by Eq.7. 222 
INSERT Figure 4 NEAR HERE 223 

 224 

2 2

1 1

( 1)2 1

2

1

' 0
' , '1 2 , [ 1, ] ,

, , ' ( 1)

t

t

q qt

J

x t
x x xt t J t p n

x xt q t q q

x
x +

=

− +

 =−
= = − − ∈ +


 = − +



 

       (7) 225 

where t is the current time and J the length of the sequence. Considering of the training of the 226 
network in the next stage, the scale of t is defined as [ 1, ]t p n∈ + . When t differs, the X’ is a 227 
dynamic sequence. After the first two stages, the time order in the original series will never 228 
work. Instead, we will focus on the order in X’. Figure 5 describes the dynamic combination 229 
of sequences in this stage.  Then the indirect multi-step-ahead prediction based on the 230 
former two stages can be induced as follows: 231 

ˆ ˆ ˆ ˆ( , , , , , , ) , 0,1,... 11 2 1
ˆ ˆ ˆ ˆ( , , , ) , 0,1,... 11 2

x F x x x x x p Jt p t p t p t t t p
x F x x x p Jt p t p t p t p

τ ττ
τ ττ

 ′ ′ ′ ′ ′ ′= > = −+ + − + − + + −

′ ′ ′ ′= ≤ = −+ + − + − + −

 


          (8) 232 

where the variable with a cap “^” denotes the prediction value. 233 
INSERT Figure 5 NEAR HERE 234 

In the third stage, the network consists of L  layers with LN  neurons in the lth  layer. The 235 
bipolar sigmoid function is applied as the activation function. In order to compare our model 236 
with other models proposed in literature, we choose the same bipolar sigmoid activation 237 

function 1
1

2)( −
+

= −xe
xf . This bipolar sigmoid will generally yield an output that 238 

approaches 1 or –1. 239 
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By using the spline interpolation, the typical neuron governing equations are developed as 240 

follows: 241 

( ) ( )

1
1( ) ( )

{0,1,..., }, 11 max max

( )

lNl l l lnet t w o tj ji i ji l qi ji
l l lo t net tj j

τ
τ τ τ

σ

 −
 −= −∑

∈ = − =


=


             (9) 242 

The output of the j th neuron in the lth layer at time t is denoted by ( )lO tj . The first equation 243 

depicts the governing algorithm of original typical multilayer adaptive time-delay, in which 244 
the weight and associated delay connecting the jth neuron in the lth layer to the i th neuron 245 
in the (l-1)th layer are denoted by l

jiw  and l
jiτ , respectively. It should be noted that j varies 246 

from 1 to lN , i  varies from 1 to 1lN − , and l
jiτ  varies form 0 to maxτ , which is defined 247 

subsequently as the maximum delay used to represent the desired input-output map 248 
(Yazdizadeh, 2002 ). Moreover, most variables mentioned above, such as , , , , andi j l t qτ , are 249 
all integers. In our model, 1N =q is the number of spline interpolation units, and is equivalent 250 
to the number of derivative sequences. Clearly, the input and output that involved in the 251 
involved with above equation are depicted as  252 

( )
1

( ) , 0 ,1, ... , 1 .
M

i i i i
i

y t w x t Jσ τ τ
=

 
= − = − 

 
∑              (10) 253 

Moreover, in order to avoid the problem of overfitting, we use Leave-one-out 254 
cross-validation to obtain a minimum best support value. 255 

4. Case studies 256 

Two case studies are used to illustrate the effectiveness of SATNN’s perdition. The first one 257 
is the sunspots prediction which is a classical example of a combination of periodic and 258 
chaotic phenomena and has been served as a benchmark in the statistics literature of time 259 
series. This example is used to explore the SATNN model for general MS prediction problem. 260 
The second involves the long-term forecast of monthly discharge of a real hydropower plant. 261 
The goal is to explore the algorithm efficiency to long-term hydrologic prediction. 262 

4.1. Case study I: sunspots prediction 263 

Data series used in this study is from the literature (Boné and Crucianu, 2002). For 264 
convenient comparison with other methods (Boné and Crucianu, 2002), the same data sets 265 
are used for calibration and validation, i.e., the sunspots average of years 1700 through 1979 266 
is chosen to train and test model for multi-step-ahead forecasting. The training set and two 267 
testing sets are selected from this data. The training set is from years 1700 through 1920 and 268 
the test sets are from years 1921 through 1954 (Set1) and years 1955 through 1979(Set2) 269 
(shown in Figure6).  270 
INSERT Figure 6 NEAR HERE 271 

We must pay more attention in designing a proper structure for ATNN in our model. In 272 
most prediction applications, the goal is to train the network to achieve a balance between the 273 
ability of the network to respond correctly to prediction results, and its ability to spend 274 
reasonable time to get those results. Hence, a simplified network structure with three layers is 275 
employed into our model, which can effectively perform prediction. The performance that is 276 
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resulted from proper neural-network architecture is mainly based on two methodologies. The 277 
first methodology is the Maximum Entropy Method 1, and the second is Statistical 278 
Methodology. Firstly, With the MEM1, we get 10 as the number of input nodes for this three 279 
layers ANN. Secondly, if the conventional methods fail to calculate the system dimension, we 280 
can minimize output error of a neural network as a function of the number of hidden neurons 281 
(Gershenfeld and Weigend, 1993). This number can estimate the system dimension(Emad et 282 
al., 1998). Then a Statistical Methodology, which uses Normalized Mean Square Error 283 
(NMSE) to calculate prediction error, is implemented to determine the number of hidden 284 
neurons. The average relationship between the number of hidden units and NMSE is shown 285 
in Figure 7. It is clear that only at the point 13 on hidden units axis, both NMSE and mean of 286 
NMSE (tested for all steps ahead) have the least values. Therefore, the number of hidden 287 
units is 13. Then the structure of STANN is 10-13-1. 288 
INSERT Figure 7 NEAR HERE 289 

Three neural networks, TDNN, ATNN and our model SATNN are implemented over the 290 
sets mentioned earlier. Moreover, we also select three models from work of Boné (Boné and 291 
Crucianu, 2002). The first is a neural network based on the error back-propagation through 292 
time algorithm (RN_BPTT). This method makes use of measures computed during gradient 293 
descent and its order of complexity is the same as for BPTT. The second is recurrent neural 294 
network based on the constructive back propagation through time (RN_CBPTT), which is 295 
heuristic, a connection is considered useful if it can have an important contribution to the 296 
computation of the gradient of the error with respect to the weights. And the last is a recurrent 297 
neural network based on the exploratory back-propagation through time (RN_ECBPTT), 298 
which is also a heuristic, a sort of breadth-first search. It explores the alternatives for the 299 
location and the delay associated with a new connection by adding that connection and 300 
performing a few iterations of the underlying learning algorithm. According to the literature, 301 
these models have an input neuron, a linear output neuron, a bias unit, and a recurrent hidden 302 
layer composed of neurons with the symmetric sigmoid as activation function. We performed 303 
20 experiments for each architecture, by randomly initializing the weights in [-0.3, 0.3]. The 304 
results of the above parameters are mostly the same as those from the referenced literature. 305 

In order to compare to other models, we also employ the normalized mean squared error 306 
(NMSE) which is the ratio between the MSE and the variance of the time series. Comparison 307 
among six algorithms for Set 1 is listed in Table 1. SATNN holds the holds all best result in 308 
each steps ahead prediction. For example, NMSE1-step-ahead=0.0505, NMSE2-step-ahead=0.1283, 309 
NMSE3-step-ahead=0.1457, NMSE4-step-ahead=0.1457, NMSE5-step-ahead=0.1478, 310 
NMSE6-step-ahead=0.150. Furthermore, the mean of them is also the best NMSEmean1-6=0.1280. 311 
Figure 8 displays the comparison of 6-step-ahead forecasting between TDNN, ATNN and 312 
SATNN. It is observed that SATNN provides the best prediction value. The analysis of errors 313 
in 6-step-ahead prediction is illustrated can be drown in Figure 8, in which x represents 314 
observation value, y represents prediction value, R implies the correlation coefficient, and B 315 
implies the slop of the linear fit. From the figure we can observe RTDNN=0.85571，316 
RATNN=0.96294, RSATNN =0.97594, BTDNN =0.59544, BATNN =1.32698, and BSATNN =0.69952 . 317 
These results display the capacity of our model for multi-step-ahead prediction over other 318 
models. 319 
 320 
INSERT Table. 1 NEAR HERE 321 
 322 
INSERT Figure 8 NEAR HERE 323 

INSERT Figure 9 NEAR HERE 324 
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Predictions for Set 2 are displayed in Table 2 and Figure 10. In them, we observe that 325 
SATNN has a similar performance to RN_ECBPTT where the errors of RN_ECBPTT at the 326 
step 1 、 2 、 4 are as least as NMSE1-step-ahead=0.2507, NMSE2-step-ahead=0.8982 and 327 
NMSE4-step-ahead=1.2537, while  at step 3 、 5 、 6, SATNN are as least as 328 
NMSE3-step-ahead=1.1987, NMSE5-step-ahead=1.3536, NMSE6-step-ahead=1.3817, and NMSE 329 
mean1-6=1.0988. The above results show that SATNN provides more accurate prediction for 330 
single variable multi-step-ahead forecasting than other models. 331 
INSERT Figure 10 NEAR HERE 332 

INSERT Table. 2 NEAR HERE 333 
 334 

4.2. Case study II: long-term hydrologic prediction 335 

The long-term hydrologic prediction of the Manwan Hydropower plant is implemented in 336 
this case study. The Manwan Hydropower plant is located on the middle reaches of the 337 
Lancang river in Yunnan Province of China and is the first completed large hydropower plant 338 
in the cascading hydropower development of the Lancang river. The Lancang River is a large 339 
river in Asia, which originates from the Qinghai-Tibet Plateau, penetrates Yunnan from 340 
northwest to the south and passes through the Laos, Burma, Thailand, Cambodia and 341 
Vietnam, and finally ingresses into the South China Sea. The river is about 4,500 km long 342 
and has a drainage area of 744,000 km2. The Manwan Hydropower merges on the middle 343 
reaches of the Lancang River and at borders of Yunxian and Jingdong counties. The 344 
catchment area at the Manwan dam site is 114,500 km2, the length above Manwan is 1,579 345 
km, and the mean elevation is 4,000 km. The average yearly runoff is 1,230 cubic meters per 346 
second at the dam site. Rainfall provides most of the runoff and snow melt accounts for 10%. 347 
Nearly 70% of the annual rainfall occurs from June to September. 348 

The monthly discharge from 1953 to 2003 can be obtained wholly. Constrained by the 349 
change of hydrologic conditions because of dam projects, the monthly discharge series from 350 
January 1988 to December 2003 (Figure 11) are selected. The data set from January 1988 to 351 
December 2002 is used for training whilst that from January to December 2003 is used for 352 
validation. 353 
INSERT Figure 11 NEAR HERE 354 

Three neural networks, TDNN, ATNN and SATNN are implemented over the sets (Figure 355 
11). The 12-step-ahead forecasting is considered to satisfy the engineering. The NMSE are 356 
employed as the forecasting accuracy measures. Figure 12 gives comparison among them. 357 
Points of interval from Jan. to Jul. are similar, while the SATNN obtains more accurate 358 
values than other models in Aug., and also at point of September, and especially at the peak 359 
value of each year, and at end of multi-step-ahead.  360 
INSERT Figure 12 NEAR HERE 361 

Figure 13 illustrates the relationships between observations and predictions of three layers 362 
ANN model. SATNN predicts better than TDNN and ATNN with the correlation coefficient 363 
of 0.9395  and slope of the best fit lines of 1.0069. Whereas TDNN (the correlation 364 
coefficient and slope of the best fit lines are 0.9194 and 0.9168, respectively) and ATNN (the 365 
correlation coefficient and slope of the best fit lines are 0.9225 and 0.9432, respectively) 366 
predicted poorly. SATNN gives the best performance of NMSE for three test sets, which are 367 
MNSESet1=0.1357, MNSESet2=0.1285, and MNSESet3=0.1111. These results show that 368 
SATNN utilization of interpolation technology and ATNN helps it in effective tackling of the 369 
drawbacks of MS. Therefore, our model (SATNN) performs much better in prediction of 370 
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time series in comparison to the TDNN and ATNN models (Table 3). Even if we use it to 371 
solve the problem of hydrologic long-term prediction, SATNN can give the effective 372 
performance. 373 
INSERT Figure 13 NEAR HERE 374 

5. Conclusion 375 

Hydrological time series analysis and forecasting has been an active research area over the 376 
past few decades. So the need for a long ahead process in prediction is obvious. The objective 377 
of this study is to present a method for improving MS prediction model for hydrologic 378 
prediction with a single variable. A three-stage indirect multi-step-ahead prediction model, 379 
which combines dynamic spline interpolation into multilayer ATNN, is proposed for the long 380 
term hydrologic prediction. Using spline interpolation techniques and ATNN, observations 381 
samples are enlarged and simultaneously the errors accumulation and propagation caused by 382 
the previous prediction are decreased.  383 

The results of the case studies show that SATNN model produces the best results in most 384 
situations in comparison to other models. Considering the fact that sunspots prediction is a 385 
benchmark in the statistics literature of time series, the application results demonstrate that 386 
SATNN model can be widely applied in other fields. For the second case study, the monthly 387 
discharge prediction with the 12-step-ahead was analyzed. The SATNN also performed better 388 
than other models. The two case studies show that SATNN is capable of capturing potential 389 
information and relationship in the time series, and provide better predictions. The SATNN 390 
should become a potential method for long-term hydrologic prediction in the future.  391 
 392 
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 505 

Figure 1 Dynamic neuron in ATNN. q τ− , the shift operator. ( )σ ⋅ , activation function. 506 

 507 

 508 

 509 

Figure 2  The three-stage architecture of SATNN. 510 
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Figure 5  Dynamic sequences from the second stage 519 
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Figure 6 Training set and two test sets of yearly sunspots number 522 
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Figure 7  Relationship between the value of hidden units and NMSE. The least NMSE can be obtained when the number of 524 
hidden units is 13. 525 
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Figure 8  Best prediction results of Set1 for 6-step-ahead 528 
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Figure 9  Error analysis of prediction for Set1 531 

1 2 3 4 5 6
0.0

0.5

1.0

1.5

2.0

 

 

 RN_BPTT
 RN_CBPTT
 RN_EBPTT
 TDNN
ATNN
 SATNN

N
M

S
E

 o
f S

et
2

Steps ahead

 532 



 18

Figure 10  Prediction errors of all steps for Set2 533 
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Figure 11  The training and test sets for 12-step-ahead prediction which are selected from the monthly runoff observation. 536 

(b) is the enlarged chart of test sets in (a). 537 
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Figure 12  Prediction comparison among ATNN, TDNN and our model SATNN from January to December 2001~2003. 540 
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Figure 13  Prediction error analysis of three ANN models and two main parameters of evaluation (correlation coefficient 543 

and slope). 544 
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Table. 1  Comparison among six algorithms for Set1  556 

Steps RN_BPTT* RN_CBPTT* RN_EBPTT* TDNN ATNN SATNN 
1 0.0605  0.0524  0.0519  0.0554  0.0522  0.0505  
2 0.5015  0.4063  0.2677  0.4863  0.3063  0.1283  
3 0.5354  0.4668  0.3805  0.5166  0.4068  0.1457  
4 0.5273  0.5015  0.4322  0.5115  0.4315  0.1457  
5 0.5096  0.4926  0.4491  0.5126  0.4726  0.1478  
6 0.4757  0.4668  0.3628  0.5081  0.4608  0.1501  
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mean1-6 0.4350  0.3977  0.3240  0.4318  0.3550  0.1280  

Note:* (Boné and Crucianu, 2002) 557 

Table 2  The comparison among several predictions for Set2 with six algorithms  558 

Steps MNSE RN_BPTT MNSE RN_CBPTT MNSE RN_EBPTT MNSE TDNN MNSE ATNN MNSE SATNN 

1 0.3061  0.2507  0.2507  0.4396  0.3423  0.3061  

2 1.4720  1.1807  0.8982  1.6612  1.2445  1.0077  

3 2.0096  1.7087  1.3083  1.9799  1.5816  1.1987  

4 2.1917  2.0915  1.2537  2.2078  1.9372  1.3448  

5 1.6910  1.6814  1.4358  1.9799  1.7822  1.3536  

6 1.7456  1.7087  1.4631  1.9614  1.6273  1.3817  

mean1-6 1.5693  1.4369  1.1016  1.7049  1.4192  1.0988  

 559 

Table 3 The comparison of prediction error analysis among three algorithms for Set1, Set 2 and Set3 560 

 MNSESet1 MNSESet2 MNSESet3 
SATNN 0.1357 0.1285 0.1111 
TDNN 0.1567 0.1448 0.1534 
ATNN 0.1403 0.1484 0.1499 
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