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Abstract:  8 

An accurate and timely prediction of river flow flooding can provide time for the 9 
authorities to take pertinent flood-protection measures such as evacuation. Various data-10 
derived models including LR (linear regression), NNM (the nearest-neighbor method) ANN 11 
(artificial neural network) and SVR (support vector regression), have been successfully 12 
applied to water level prediction. Of them, SVR is particularly highly valued, because it has 13 
the advantage over many data-derived models in overcoming overfitting of training data. 14 
However, SVR is computationally time-consuming when used to solve large-size problems. 15 
In the context of river flow prediction, equipped with LR model as a benchmark and genetic 16 
algorithm-based ANN (ANN-GA) and NNM as counterparts, a novel distributed SVR (D-17 
SVR) model is proposed in the present study. It implements a local approximation to training 18 
data because partitioned original training data is independently fitted by each local SVR 19 
model.  ANN-GA and LR models are also used to help determine input variables. A two-step 20 
GA algorithm is employed to find the optimal triplets ( , ,C ε σ ) for D-SVR model. The 21 
validation results reveal that the proposed D-SVR model can carry out the river flow 22 
prediction better in comparison with others, and dramatically reduce the training time 23 
compared with the conventional SVR model. The pivotal factor contributing to the 24 
performance of D-SVR may be that it implements a local approximation method and the 25 
principle of structural risk minimization.  26 
 27 
Keywords: Water level prediction; D-SVR; Input selection; Parameter optimization 28 

Introduction 29 
 As one of a number of nonstructural flood protection measures, an accurate and 30 
timely prediction of water levels in the station of interest is of great importance in helping the 31 
authorities determine whether to take measures and if do which measures would best mitigate 32 
potential flood damage. In the last two decades, with the development of software technology, 33 
many approaches affiliated to ‘black box’ techniques including NNM (nearest neighbor 34 
method), ANN (artificial neural network), and SVR (support vector regression) have been 35 
widely applied to flood prediction.  36 
 NNM has been reported in the literature to analyze rainfall-runoff and 37 
runoff/discharge processes and has been compared with ARX (autoregressive model with 38 
exogenous inputs), or ARMAX (autoregressive moving average model with exogenous 39 
inputs). NNM yielded satisfactory results (Yakowitz, 1987; Karlsson and Yakowitz, 1987; 40 
Galeati, 1990). The technique was extended to NNLPW (nearest neighbor linear perturbation 41 
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model) for rainfall-runoff prediction (Shamseldin and O'Connor, 1996). Feature selection is 42 
one of the most important aspects of pattern recognition, as used in the nearest neighbor 43 
method. In the context of univariate time series such as discharge, the feature vector can 44 
consist of several previous values (Karlsson and Yakowitz, 1987; Galeati, 1990). 45 
 Since the renaissance of ANNs in the late of 1980s, they have become the preferred 46 
prediction approach for many researchers and have been applied to a variety of issues. While 47 
some researchers in the literature employed ANNs alone for river flow forecasts (Prochazka, 48 
1997; Thirumalaiah and Deo, 1998; Sheta and El-Sherif, 1999; Liong et al.,2000; Salas et 49 
al., 2000; Qin et al., 2002; Cannon and Whitfield, 2002; Li and Gu, 2003; Huang et al., 2004; 50 
Cheng et al., 2005; García-Pedrajas et al., 2006), many other researchers compared ANNs 51 
with traditional statistical techniques for river flow flood predictions. Comparisons between 52 
ANNs and AR (autoregressive) approaches appeared in the work of Raman and Sunilkumar 53 
(1995), Elshorbagy and Simonovic (2000), Thirumalaiah and Deo (2000) and Kişi (2003). 54 
Likewise, some studies were focused on comparisons between ANNs and ARMA (Jain et al., 55 
1999; Abrahart and See, 2000; Castellano-Me´ndeza et al., 2004). The majority of studies 56 
have proven that ANNs are able to outperform traditional statistical techniques. Further, the 57 
superiority of ANNs over nonlinear regression in predicting river flows has been attributed to 58 
the possible existence of nonlinear dynamics, which are not well captured by the regression 59 
technique. A hybrid ANN model developed by Wang et al. (2006) was used to predict daily 60 
stream flow. 61 

SVR, with highly similar structures to ANN, can learn from experimental data.  SVR 62 
performs structural risk minimization (SRM) that aims at minimizing a bound on the 63 
generalization error (Kecman, 2001). In this way, it creates a model with a minimized VC- 64 
dimension (named after the authors, Vapnik and Chervonenkis), which means good 65 
generalization. Since SVR generalization performance does not depend on the dimensionality 66 
of input space, it can be used with small data sets. However, ANN is data intensive, and has 67 
to cover as many patterns as possible in order to perform well, and the generality of ANN is 68 
difficult to control as a result of implementing the empirical risk minimization (ERM) 69 
principle. Recently, some applications of SVR have been seen in the prediction of rainfall-70 
runoff process, rainfall, and river flow. For example, Sivapragasam et al. (2001) performed 71 
one-lead-day rainfall forecasting and runoff forecasting using SVR, in which the input data 72 
are pre-processed by singular spectrum analysis, resulting in a high-dimensional input space. 73 
Yu et al. (2004) proposed a scheme that combined chaos theory and SVM to forecast daily 74 
runoff. Bray and Han (2004) applied SVM to forecast runoff, focusing on the identification 75 
of an appropriate model structure and relevant parameters. Sivapragasam and Liong (2004) 76 
used the sequential elimination approach to identify the optimal training data set and then 77 
performed SVR to forecast the water level. Sivapragasam and Liong (2005) divided the flow 78 
range into three regions, and employed different SVR models to predict daily flows in high, 79 
medium and low regions. Lin et al. (2006) presented a SVR model to predict long-term 80 
monthly flow discharge series, and a comparison with results of appropriate ARMA and 81 
ANN models demonstrated the better performance of SVR. Yu et al. (2006) carried out a 82 
real-time flood stage forecasting based on SVR in which a hydrological concept of the time 83 
of response was employed to identify lags of inputs and a two-step grid search method was 84 
used for finding optimal parameters.  85 

However, a major drawback of SVR is that training time tends to increase 86 
exponentially with the number of training samples. For example, according to the algorithm 87 
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presented in this paper below, the time required is about two days for a magnitude of 1000 88 
training data whereas it is only 40 minutes for a magnitude of 100 training data. Moreover, 89 
using a single model to learn large-size data may well lead to mismatch as there are different 90 
noise levels in different input regions (Cheng et al., 2006b), which is a normal scenario for 91 
those rivers characterized by seasonal flooding. 92 

This paper mainly aims at developing a distributed SVR (D-SVR) model with a two-93 
step GA parameter optimization method to carry out a prediction of river flow. In order to 94 
evaluate the performance of D-SVR, prediction is also arrived at via linear regression (LR), 95 
NNM, and ANN-GA (genetic algorithm-based ANN). As an extension of the previous study 96 
(Chau et al., 2005), some of the background on LR and ANN-GA will be set aside in the 97 
present paper. Thus, the paper is constructed as follows: firstly, the principle of SVR and D-98 
SVR is introduced and following this NNM is briefly described. Secondly, in the section on 99 
construction of models, an emphasis is placed to input selection, and parameter k in NNM 100 
and parameters ( , ,C ε σ ) in D-SVR are optimized. In the results and discussion section, 101 
results reveal that D-SVR model outperforms the other three models, but with a larger 102 
training time except for the conventional SVR. In the conclusion, it is suggested that 103 
nonlinear models may achieve more notable advantages over LR in the case of rainfall-runoff 104 
mapping. 105 

SVR and Distributed SVR 106 
Unlike classical adaptation algorithms that work in an 1L or 2L norm and minimize the 107 

absolute value of an error or of an error square with ERM, SVR performs SRM (Kecman, 108 
2001).  In this way, it creates a model with good generalization. The SRM induction principle 109 
and the methodology of SVR are briefly described below (Gunn, 1998; Dibike et al., 2001; 110 
Kecman, 2001; Sivapragasam et al., 2001, Liong and Sivapragasam, 2002; Cherkassky and 111 
Ma, 2004; Yu et al., 2006). 112 
Statistical learning theory   113 
 We consider here standard regression formulation in general settings for predictive 114 
learning. The goal is to estimate an unknown real-valued function in the relationship: 115 
     δ+= )(Xry                          (1) 116 
whereδ  is independent and identically distributed (i.i.d) zero mean random error (noise), X  117 
is a multivariate input and y  is a scalar output. The estimation is made based on a finite 118 
number of samples (training data): ( ii yX , ), ( 1, ,i N=  ).  The training data are i.i.d. samples 119 
generated according to some (unknown) joint probability density function  120 

)()(),( XypXpyXp =            (2) 121 
The unknown function in (1) is the mean of the output conditional probability (aka regression 122 
function)  123 

dyXypyXr )()( ∫=                   (3) 124 

A class of functions ),( ωXf can be formulated to approximate the relationship between input 125 
vector and the output variable, where ω is the parameter vector of the function. The problem 126 
of learning is to select the best function ),( 0ωXf  (learning machine) from ),( ωXf  that can 127 
predict the output y as accurately as possible. Generally, the quality of an approximation is 128 
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measured by the loss or discrepancy measure ( )),(, ωXfyL . Therefore, the best approximation 129 
function is that for which the following expected risk function ( )ωR  is as small as possible: 130 
          ( ) ( )( ) ( )yXdpXfyLR ,,,∫= ωω                        (4) 131 

It is known that the regression function (3) is the one minimizing prediction risk (4) with the 132 
familiar squared loss function loss: 133 
         ( ) 2)),((),(, ωω XfyXfyL −=                                         (5) 134 
Note that the set of functions ),( ωXf , Λ∈ω supported by a learning method may or may not 135 
contain the regression function (3). Thus, the problem of regression estimation is the problem 136 
of finding the best approximation function that minimizes the prediction risk function 137 

          ( ) ( )( ) ( )yXdpXfyR ,,
2

∫ −= ωω                                        (6) 138 

using only the training data. This risk function measures the accuracy of the learning 139 
method’s predictions of unknown target function )(Xr . 140 
 A difficulty arises in the process of calculating (6) because the probability distribution 141 

),( yXp is unknown. Therefore, it is necessary an induction principle for risk minimization. 142 
One such principle is the ERM inductive principle. A straightforward method is to replace 143 
the expected risk )(ωR by the empirical risk )(ωempR  144 

( ) ( )( )2

1

1 ,
N

emp i i
i

R y f X
N

ω ω
=

= −∑                                       (7) 145 

 However, the ERM principle does not guarantee that the function ),( ωXfemp that 146 
minimizes the empirical risk )(ωempR converges to the true (or best) function ),( 0ωXf that 147 
minimizes the expected risk )(ωR  when the number of training data is limited, such that the 148 
sample is small. In other words, a smaller error on the training set does not necessarily imply 149 
higher generalization ability (i.e., a smaller error on an independent test set). To make the 150 
most out of a limited amount of data, a novel statistical technique called SRM has been 151 
developed (Vapnik 1995, 1998). The theory of uniform convergence in probability provides 152 
bounds on the deviation of the empirical risk from the expected risk. This theory shows that 153 
it is crucial to restrict the class of functions that the learning machine can implement to one 154 
with a capacity that is suitable for the amount of available training data.  155 
 The SRM principle theoretically minimizes the expected risk based on the 156 
simultaneous minimization of both the empirical risk and the confidence interval Ω . 157 
Therefore, SRM can maintain a trade off between the accuracy of the training data and the 158 
capacity of the learning machine so as to improve generalization of the model.   159 
 For Λ∈ω  and N h> , a typical uniform VC bound on the expected risk (also called 160 
generalization bound R ), which holds with probability η−1 , has the following form (Vapnik, 161 
1995, 1998):  162 

( ) ( ) ( , , )empR R N hω ω η≤ +Ω                                (8) 163 

2log 1 log
4( , , )

Nh
hN h

N

η

η

   + −   
   Ω =                        (9) 164 

The parameter h is called the VC-dimension, and it describes the capacity of a set of 165 
functions to represent the data set.  The VC dimension is a measure of the model complexity 166 
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and is often proportional to the number of free parameters in the function ),( ωXf . 167 
Particularly when /N h is small, a small empirical risk does not guarantee a small value of the 168 
actual risk. In this case, in order to minimize the actual risk )(ωR , one has to minimize the 169 
right-hand side of the inequality in (8) simultaneously over both terms. In order to do this, 170 
one has to make the VC dimension a controlling parameter. Therefore, the SRM inductive 171 
principle is intended to minimize the risk functional with respect to both terms: the empirical 172 
risk )(ωempR and the confidence intervalΩ . The VC confidence term in (8) depends on the 173 
chosen class of functions, whereas the empirical risk depends on the one particular function 174 
chosen by the training procedure. The objective here is to find that subset of the chosen set of 175 
functions, such that the risk bound for that subset is minimized. This is done by introducing a 176 
“structure” by dividing the entire class of functions into nested subsets (Fig. 1). SRM then 177 
consists of finding that subset of functions which minimizes the bound on the actual risk. 178 
This is done by simply training a series of machines, one for each subset, where for a given 179 
subset the goal of training is simply to minimize the empirical risk. One then takes that 180 
trained machine in the series whose sum of empirical risk and VC confidence is minimal 181 
(Burges, 1998). 182 

     Fig. 1 should be put here 183 
Nonlinear support vector regression  184 

In the real hydrological world, most issues of interest tend to be nonlinear. A linear 185 
SVR is extremely limited. In order to deal with the nonlinearity, the input data, X , in input 186 
space is mapped to a high dimensional feature space via a nonlinear mapping function, )(Xφ . 187 
Hence, the underlying function becomes 188 

bXXf +⋅= )(),( φωω                                                   (10) 189 
Therefore, the objective of the SVR is to find optimalω  , b  and some parameters in kernel 190 
function ( )Xφ  so as to construct an approximation function of the underlying function.  191 
 When introducing Vapnik’s ε -insensitivity error or loss function (see Fig. 2), the loss 192 
function ( , ( , ))L y f Xε ω  on the underlying function can be defined as 193 

( )
0

( , ( , )) ( , )
( )

L y f X y f X
y X bε ε

ω ω
ω φ ε

= − =  − ⋅ + −
 ( )( )if y X b

otherwise

ω φ ε− ⋅ + ≤   (11) 194 

where y represents observed value. Fig. 2 presents the concept of nonlinear SVR, 195 
corresponding to Eq. (11). Similar to linear SVR (Kecman, 2001; Yu et al., 2006), the 196 
nonlinear SVR problem can be expressed as the following optimization problem: 197 

*

2 *
, ,

1

*

*

1 ( )
2
( ( ), )

( ( ), )

, 0

i i

N

i iW
i

i i i

i i i

i i

minimize R C

y f X b
subject to f X b y

ξ ξ
ω ξ ξ

φ ω ε ξ

φ ω ε ξ

ξ ξ

=

= + +

− − ≤ +


+ − ≤ +
 ≥

∑
                                          (12) 198 

where, the term of 21
2
ω  reflects generalization, and the term of *

1

( )
l

i i
i

C ξ ξ
=

+∑  stands for 199 

empirical risk. The objective in Eq. (12) is to minimize them simultaneously, which 200 
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implements SRM to avoid underfitting and overfitting the training data. iξ and *
iξ are slack 201 

variables, shown in Fig. 2 for measurements “above” and “below” an ε  tube. Both slack 202 
variables are positive values. C is a positive constant that determines the degree of penalized 203 
loss when a training error occurs.  204 

By introducing a dual set of Lagrange Multipliers, iα and *
iα , the minimization 205 

problem can be solved in a dual space. The objective function in dual form can be 206 
represented as (Gunn, 1998): 207 

( ) ( ) ( ) ( )* * * * *

1 1 , 1

*
1

*

1, ( )( ) ( ) ( )
2

( ) 0

0 , 1, ,

0 , 1, ,

N N N

d i i i i i i i j j i j
i i i j

N
i ii

i

i

maximize L y X X

subject to C i N

C i N

α α ε α α α α α α α α φ φ

α α

α

α

= = =

=

= − + + − − − − ⋅

 − =

 ≤ ≤ =

 ≤ ≤ =


∑ ∑ ∑

∑




 (13) 208 

There is no fixed guideline how to select an appropriate nonlinear function )( iXφ . 209 
Furthermore, the computation of ( ))()( ji XX φφ ⋅  in the feature space may be too complex to 210 
perform. An advantage of SVR is that the nonlinear function ( )Xφ need not be used. The 211 
computation in input space can be performed using a ‘‘kernel’’ function 212 

( ))()(),( jiji XXXXK φφ ⋅=  to yield inner products in feature space, avoiding having to 213 
perform a mapping ( )Xφ . In utilizing kernel functions, the key issue is to select admissible 214 
kernel functions. The admissible kernel function should be any symmetric function in input 215 
space which can represent a scalar product in feature space. The Mercer kernel functions 216 
belonging to a set of reproducing kernels (Vapnik, 1999; Kecman, 2001) can be proven 217 
admissible. Therefore, any functions that satisfy Mercer’s theorem can be used as a kernel. A 218 
couple of commonly used kernels in SVR include: (1) linear jiji XXXXK ⋅=),( ; (2) 219 

polynomial with degree d ( , ) ( ) 1
d

i j i jK X X X X = ⋅ +  ;(3) multilayer perceptron 220 

( , ) tanh[( ) ]i j i jK X X X X b= ⋅ + ;(4) Gaussian RBF 
2

2( , ) exp( )
2

i j
i j

X X
K X X

σ

−
= − . After 221 

obtaining parameters iα , *
iα , and 0b , the final approximation function of the underlying 222 

function is  223 
*

0
1

( ) ( ) ( )
N

i k k k i
i

f X K X X bα α
=

= − ⋅ +∑ , nk ,,1 =                                  (14) 224 

where kX  stands for the support vector, kα  and *
kα  are parameters associated with support 225 

vector kX , N  and n  represent the number of training samples and support vectors, 226 
respectively.  227 

 228 

     Fig. 2 should be put here 229 
SVR expressed in matrix notation 230 
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The standard quadratic optimization problem for an ε -insensitive function can be 231 
expressed in matrix notation as (Gunn, 1998; Kecman, 2001) 232 

1( )
2

T T
dminimize L x x Hx C x= +                    (15) 233 

where, H  is Hessian matrix, x  stands for Lagrangian Multipliers. They are expressed as 234 

















−

−
=

GG

GG
H , 








+
−

=
Y
Y

C
ε
ε , and 








=

*α
α

x  235 

with constraints 236 
0)1,,1,1,,1( =−−⋅ x , 237 

, 0, 1, , .i i i lα α ∗ ≥ =   238 
G  is an ),( ll matrix with entries ][ j

T
iij XXG = for a linear regression, and ],,[ 1 la αα = , 239 

*],*,[* 1 la αα = , ],,[ 1 lyyY −−=− εεε  , ],,[ 1 lyyY ++=+ εεε  . (Note that ijG , as given 240 

above, is a badly conditioned matrix and we rather use ]1[ += j
T
iij XXG instead). 241 

In the case of the nonlinear regression, the learning problem is again formulated as the 242 
maximization of a dual Lagrangian (15). A similar matrix notation as Eq. (15) is expressed. 243 
However, H  here is with the changed Grammian matrix G  that is now given as 244 























=

lll

ii

l

GG

G

GG

G







1

111

 245 

where the entries ( ) ( ) ( )( ), , 1, , .T
ij i j i jG X X K X X i j lφ φ= = =   Based on the above matrix 246 

form, a SVR programming is easy to make.  247 
D-SVR Configuration  248 

     Fig. 3 should be put here 249 
A primitive idea of D-SVR is to partition the original training set into a couple of 250 

subsets and then generate a local SVR for each subset independently. Further, an appropriate 251 
data fusion approach (sometimes called aggregation) is employed to combine local 252 
predictions into a hybrid output. Fig. 3 displays the configuration of D-SVR. First of all, 253 
fuzzy c-means clustering algorithm is employed to split the original training set into L  254 
training subsets. In the present study, water level variables are characterized by clear 255 
seasonal variability, and so the raw training set is clustered into eight sub regions. Thus, each 256 
subset further serves for training L  SVRs. For a new input X , L outputs ( iY ,i=1, ,L ) will 257 
be generated by the D-SVR model and are associated with L  degrees of membership 258 
( i ,i=1, ,Lµ  ). Degree of membership can be determined via the inverse of Square Euclidean 259 
Distance between the new input X  and iC which is the center of i -th subset. Calculation is 260 
formulated as follows: 261 
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i

L
i i=1

i i

=1 0, 1, ,

=
d d

iif d i L

otherwise

µ

µ

= =


   
   
   

∑



１ １ (16) 262 

where, 2
i id = X-C  and L

i ii=1
=1, [0,1]µ µ ∈∑ . 263 

 After L  outputs ( iY ,i=1, ,L ) and their degrees of membership ( i ,i=1, ,Lµ  ) are 264 
achieved, the combined output Y  is  265 

L
i ii=1

Y= Yµ∑                             (17) 266 
 However, we found experimentally that there are some drawbacks in this D-SVR: 267 
when training data is partitioned into several independent subsets without any overlapping, a 268 
large prediction error occurs. Generally, the error is larger than that obtained by using a SVR 269 
model alone. Analysis also found that the SVR is weak at extrapolation. When an input is far 270 
from its clustering center, the SVR will generate a weird prediction, usually quite large 271 
although associated with a small degree of membership. In view of this, we attempted to 272 
make the following improvement. We set the nearest neighboring two training subsets to 273 
overlap one input region by one in the entire input space,  thus the number of training data in 274 
all sub models will be twice that of the original training data. Furthermore, only two 275 
maximum degrees of membership are activated to contribute to the combined output Y . 276 
Therefore, the third box in Fig. 3 addresses this task, where jµ ( 1, 2j = ) is the first two 277 
maximum degree of membership in iµ ( 1, ,i n=  ), and jY ( 1, 2j = ) are corresponding 278 
outputs as listed in the fourth box of Fig. 3. Finally, a combined output for D-SVR model is 279 

        2 2
j j jj=1 1

Y= ( )Y
j

µ µ
=∑ ∑     (18) 280 

Nearest-Neighbor Method (NNM) 281 
The following is a brief review of the NN method (Galeati, 1990; Shamseldin and 282 

O'Connor, 1996). Let { }X( ), 1,i i N= be a set of rainfall measurements or parameters related 283 
to the forecasting process being studied (e.g., temperature, soil saturation, etc.) expressed as 284 

1 2 1X( ) ( , , , , )T
i i i i mi P P P P− − − +=   where P stands for feature information (various hydro- 285 

meteorological factors affecting runoff prediction (Galeati, 1990; Yakowitz, 1987), m is the 286 
number of feature information contributing to feature vector or the vector dimension and 287 
{ }( ), 1,Q i i N=  a set of discharges. Here, X and Q may be single or multiple variables. For 288 
each feature vector X( )i , there is an associated discharge )(iQ  observed at the same time 289 
instant. Thus, the available historical data may be summarized into a set of pairs of feature 290 
vectors X( )i  and scalar discharges )(iQ , as{ }X( ), ( ) : 1,i Q i i N= , where n is the total number 291 
of the data in the whole historical record. Thus, the NN prediction of ( 1)Q N + is obtained as:  292 

  
S(X,N)

1ˆ ( 1) ( 1)
i

Q N Q i
k ∈

+ = +∑                    (19) 293 

whereS(X,N) denotes the indices of k , the nearest neighbors to the feature vector X(N) . The 294 
meaning of “nearest neighbors” has to be interpreted according to the Euclidean distance: if 295 



 9

)(nd represents a vector of coordinates 1d , 2d ,…, md , the differences between the current 296 
feature vector and past data, the Euclidean distant is defined as:  297 

          
2/1

1
2 




= ∑ =

m

i idd                                         (20) 298 

Therefore, if i is in S and j is not in S , then X( ) - X( ) X( ) - X( )N i N j≤ . Intuitively 299 

speaking, the forecast ˆ ( 1)Q N +  by the k nearest neighbor method is the sample average of 300 
succeeding runoff of the k nearest neighbors in the database.  301 
 As an example from the work of Karlsson and Yakowitz (1987) displayed in Fig.4, 302 
for simplicity, it is supposed that the feature vector depends only on three values of past 303 
discharges ( 3=m ) i.e. [ ]X(N) ( ), ( 1), ( 2)Q N Q N Q N= − − , and it is assumed that 4=k . The 304 
NN algorithm searches through all the consecutive triplets of the historical record for the four 305 
triplets closest (in a Euclidean sense) to the present feature vector. The predicted discharge is 306 
the mean of successive outflows (shown in Fig.4 as circles) from the four closest historical 307 
events.  308 
 Standardization of X and Q is usually necessary because it eliminates the units from 309 
components or elements and reduces any differences in the range of values amongst 310 
components such as rainfall and discharge with their different units and scales. In order to 311 
reflect the relative importance because the more recent measurements in the feature vector 312 
generally have a greater weight towards predicted values, the Euclidean distance can be 313 

computed as a weighted Euclidean norm, i.e., 
2/1

2
1






 ⋅= ∑ = i

m

i iw dwd  where 314 

),,,( 21 mwwww = is a fixed sequence of positive numbers (weights). In the present study, an 315 
equivalent weight is assigned to each dimension in the feature vector because all variables 316 
are water levels.    317 

 Thus, the prediction model is  
S(X,N)

1ˆ ( 1) ( 1)
i

Q N Q i
k ∈

+ = +∑  . In order to reflect the 318 

relative contribution to prediction value, each of all k  neighbors is set to a weight factor iω  319 
which is based on the Euclidean distance. The prediction model becomes 320 

S(X,N)

1ˆ ( 1) ( 1) ii
Q N Q i

k
ω

∈
+ = + ⋅∑                          (21) 321 

where, 2 2

1

k

i i i
i

d dω − −

=

= ∑ . Then, an optimal k has to be determined by calibration. 322 

Generally, the data set is divided into two parts: one is used to construct the NN-predictors 323 
(constructing patterns); the other is used to calibrate parameters. Objective function 324 
optimizing k  is set up as 2ˆ( ) ( ( 1) ( 1)) , 1,J k Q i Q i i N= + − + =∑  , where )1( +iQ is observed 325 
value.  326 

     Fig. 4 should be put here 327 

Construction of Models 328 
Study Area 329 
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The channel reach studied is in the middle stream of the Yangtze River, which is the 330 
largest river in China. It passes through Wuhan City, which is the capital of the Hubei 331 
Province (see Fig. 5). The flow of the Yangtze River is quite unsteady and exhibits a seasonal 332 
behavior. The flow is low during the winter months, and peak flow occurs during August and 333 
September. A hydrological year is often classified into a flooding period and a nonflooding 334 
period, which are from June to October and from November to May, respectively. The water 335 
level at the Luo-Shan station can be as low as 17.35 m during the nonflooding period and as 336 
high as 31.04 m during the flooding period. The average water levels are 20.8 and 27.1 m 337 
during the nonflooding and flooding periods, respectively. The purpose of this study is to 338 
predict water levels of the downstream station, Han-Kou, by known water levels of the 339 
upstream station, Luo-Shan. The lateral inflow is neglected, because it is very small in 340 
comparison with the discharge of the main stream. 341 

     Fig. 5 should be put here 342 
Data Preparation 343 

A remarkable property of ANNs or SVRs is their ability to handle nonlinear, noise, 344 
and non-stationary data. However, with suitable data preparation beforehand, it is possible to 345 
improve the performance further (Maier and Dandy, 2000; Bray and Han, 2004). Data 346 
preparation involves a number of processes such as data collection, data division and data-347 
preprocessing.  Here, data division and data standardization belonging to data preprocessing 348 
will be covered.  349 

Many research papers have discussed data division in the process of application of 350 
ANN (ASCE, 2000; Chau et al., 2005). Typically, ANNs are unable to extrapolate beyond 351 
the range of the data used for training. Consequently, poor forecasts/predictions can be 352 
expected when the validation data contains values outside of the range of those used for 353 
training. It is also imperative that the training and validation sets are representative of the 354 
same population. Often statistical properties (mean, variance, range) from them are compared 355 
in order to measure the representatives. The similar data handling can be applied to SVR in 356 
order to obtain the same baseline of comparison. Taking the same data splitting way as that 357 
in Chau et al. (2005), the data are randomly divided into three sets: training, testing, and 358 
validation. While 75% of the data are used for training, 25% are used for validation. The 359 
training data are further divided into 2/3 for the training set and 1/3 for the testing set.  360 

In the present study we extract 1,448 input-output data pairs of the following format 361 
from the data record: 362 

[X(t-4),X(t-2),X(t),Y(t+1)]       363 
which shows that the water level of Y at Han-Kou for the next day can be mapped by water 364 
levels of X at Luo-Shan at the present day, two-day ahead and four-day ahead. A detailed 365 
description for the mapping format can be found in the section on inputs selection. It was 366 
ensured that the data used for training, testing, and validation represents the same population 367 
so there is no need to extrapolate beyond the range of their training data. Table 1 shows the 368 
statistical parameters, including the mean, standard deviation, minimum, maximum, and 369 
range, for the training, testing, and validation sets. 370 

Table 1 should be put here 371 
Generally, original data for different variables span different ranges. In order to 372 

ensure that all variables receive equal attention during the training process, they should be 373 
normalized. In this regard, it is not true for this case as shown in Table 1. However, due to 374 
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restricted domain of independent variables of transfer functions in ANN and kernel functions 375 
in SVR, the raw data normalization is required. Additionally, normalization will improve the 376 
condition number of the Hessian in the optimization problem (Gunn, 1998). All data are 377 
scaled to the interval 0.1–0.9. The advantage of using [0.1, 0.9] rather than [0, 1] is that 378 
extreme (high and low) water levels, occurring outside the range of the calibration data, may 379 
be accommodated (Hsu et al., 1995). The scaling and reserve scaling processes are 380 
formulated below: 381 

i min

max min

X -XX 0.1 0.8
X -Xnorm

 
= + × 

 
                    (22) 382 

i min

max min

Y -YY 0.1 0.8
Y -Ynorm

 
= + × 

 
                       (23) 383 

i min i,norm max min
1.0ˆ ˆY =Y (Y -0.1) (Y -Y )
0.8

 + × × 
 

                   (24) 384 

where Xnorm and Ynorm denote scaled appearance of the raw data iX and iY , i,normŶ stands for 385 

the scaled prediction corresponding to iY , and iŶ is the prediction of iY in original scale.  386 
Inputs Selection 387 

In model development the selection of appropriate input variables is important since it 388 
provides the basic information about the system being modeled. However, determining 389 
appropriate inputs is not an easy task. Generally, input determination can be divided into two 390 
broad stages (Bowden et al., 2005). In the first stage, the objective is to reduce the 391 
dimensionality of the original set of inputs, resulting in a set of independent inputs, which are 392 
not necessarily related to the model output. As a matter of fact, the addition of unnecessary 393 
variables would create a more complex model than is required. Moreover, the complex 394 
model is susceptible to overfitting of training data. Therefore, it is imperative that variables 395 
are independent of each other as system inputs. This subset of inputs can then be used in the 396 
second stage to determine which of these inputs are related in some way to the output.   397 

Bowden et al. (2005) presented a comprehensive review of approaches on input 398 
determination in the water resources and those approaches are broadly classified into five 399 
groups. In the present paper, a mixed approach is employed to find optimal inputs.   400 

Usually, the number of input variables is not known a priori. A firm understanding of 401 
the hydrologic system under consideration plays an important role in the successful 402 
implementation of the model. For the present case, the travel time of flood between Luo-403 
Shan and Han-Kou is determined to be about 24 hrs using the Muskingum method. In other 404 
words, the flood at Han-Kou has a phase lag of approximately one day with that at Luo-Shan. 405 
So X(t) as an input is reasonable. In order to reduce the dimensionality of inputs, an 406 
autocorrelation analysis on water levels on Luo-Shan was performed and is shown in Fig. 6.  407 
An extreme good autocorrelation exists in water level series and any one input at least in the 408 
first ten lags cannot be deleted according to this chart. A linear relation on water levels exists 409 
between Luo-Shan and Han-Kou. A stepwise linear model analysis on inputs (Luo-Shan 410 
water levels) and output (Han-Kou water level) can help determine optimal inputs from a 411 
viewpoint of the linear relationship. Fig. 7 is the result of a stepwise linear model. The 412 
optimal linear mapping format between two hydrology stations is with three inputs X10, X8, 413 
and X6(corresponding to X (t), X (t-2), and X (t-4)) and one output Y (t+1).   414 
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Obviously, autocorrelation analysis and stepwise linear regression analysis cannot 415 
capture any nonlinearity among inputs and between inputs and output. Further, sensitivity 416 
analyses (computing the contribution to variance) (Nord and Jacobsson, 1998) and weights 417 
analyses (Muttil and Chau, 2006) on inputs based on ANN are carried out to extract 418 
nonlinear information.  Notably, as Nord and Jacobsson (1998) reported in the conclusion of 419 
their paper, due to the random starting conditions, important inputs remain changeable. In 420 
addition, according to their evaluation criteria, results from both methods on the ranking of 421 
inputs are not always consistent during training. An improvement is to employ the ANN-GA 422 
model, which is with the architecture 3-3-1 described in the section of results, to obtain the 423 
relative optimal initial weights and biases for an ANN model.  424 
 When ANN is initialized by weights and biases from GA optimization, a more stable 425 
ANN model can be achieved and has a good generalization. Due to the fixed initial weights 426 
and biases, evaluation results on input importance are steady, but results from two 427 
approaches are still inconsistent. Based on the approach of Nord and Jacobsson (1998), X9, 428 
X10, X8, X3, and X6 are ranked in the top five important inputs. When adding X3, X9 429 
respectively to initial linear model based on X6, X8, and X10, several models are generated. 430 
The performances of these models are listed in Table 2. From the perspective of AIC and 431 
RMSE from LR and ANN-GA, choosing X6, X8, and X10, i.e. X (t), X (t-2), and X (t-4), as 432 
the optimal inputs is tenable. Finally, the optimal linear regression (LR) model is 433 

Y(t+1) 1.18X(t) 0.398X(t 2) 0.229X(t 4) 5.08= − − + − −                (25) 434 

Fig. 6 should be put here 435 

Fig. 7 should be put here 436 

Table 2 should be put here 437 
Parameters Tuning Strategy of D-SVM  438 
 Obtaining optimal iα  and *

iα  in Eq. (13) depends heavily on these parameters that 439 
dominate the nonlinear SVR including the cost constant C , the radius of the insensitive 440 
tubeε , and the kernel parameters. In the present study, the Gaussian RBF is employed as 441 
kernel function. So these parameters consist of a triplet ( , ,C ε σ ), whose components are 442 
mutually dependent, and so changing the value of one parameter changes other parameters. 443 
Therefore, a simultaneous or global optimization scheme such as GA can be helpful (Cheng 444 
et al., 2006a). Due to lack of any a priori knowledge for their bounds, a two-step GA search 445 
algorithm is recommended here, which is inspired by a two-step grid search method (Hsu et 446 
al., 2003). First, a coarse range search was used to achieve the best region of these three-447 
dimensional grids. In the present study, coarse range partitions for C  are [10-2 100], [100 102], 448 
[102 5.0×102], and [5.0×102 103]. Coarse range partitions for ε are [10-4 10-3], [10-3 10-2], [10-449 
2 10-1], and [10-1 100], and coarse range partitions for σ are [10-3 10-2], [10-2 10-1], [10-1 100], 450 
and [100 102]. There are 43 grids, and one of them is selected as intervals of parameters for 451 
the next step. Then, in the second step a further GA search for the triplets ( , ,C ε σ ) will be 452 
carried out in the selected intervals.  453 
 In order to avoid overfitting of training data, testing data and training data were 454 
evaluated at the same time according to GA’s fitting degree function (i.e., RMSE), and 455 
weighted average of their fitting degrees was used as the fitting degree of each population in 456 
the process of GA operation.  457 



 13

Evaluation of Performance  458 
Many measures for model evaluation have been documented in the literature of 459 

hydrology application (Legates and McCabe, 1999; Elshorbagy and Simonovic, 2000; 460 
Luchetta and Manetti, 2003; Goswami et al., 2005). Several conventional measures such as 461 
correlation coefficient ( r or 2R ), efficiency coefficient ( E ), index of agreement ( d ), RMSE, 462 
and so on, were critically reviewed by Legates and McCabe (1999), and the review suggested 463 
that correlation coefficient is inappropriate for model evaluation. Legates and McCabe (1999) 464 
suggested a complete assessment of model performance should include at least one 465 
‘goodness-of-fit’ or relative error measure (e.g., E or d ) and at least one absolute error 466 
measure (e.g., RMSE or MAE) with additional supporting information. Herein, two 467 
conventional evaluation criteria in hydrology, RMSE (root mean square error) and E  468 
(efficiency coefficient), are used to measure performances of models based on training data, 469 
testing data and validation data.  470 
(1) RMSE 471 

2
1

1 ˆ( )N
i ii

RMSE Y Y
N =

= −∑                       (26) 472 

(2) E  473 
 Nash and Stucliffe (1970) defined the model coefficient of efficiency which ranges 474 
from minus infinity to 1.0, with higher values indicating better agreement, as: 475 
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 477 
where îY =forecast water level, iY =observed water level, Y =average observed flow, and 478 
N =number of observations. RMSE provides a quantitative indication of the model absolute 479 
error in terms of the units of the variable, with the characteristic that larger errors receive 480 
greater attention than smaller ones. This characteristic can help eliminate approaches with 481 
significant errors. However, some studies (Kachroo and Natale, 1992; Legates and McCabe, 482 
1999) have reported that the index E is a rather crude index, being overly sensitive to 483 
extreme values, because of the square differences in the definition, while being insensitive to 484 
additive and proportional differences between model predictions and observations. This 485 
feature will lead to the increasing influence of large floods on the calibrated parameter values 486 
and thereby enhance the forecast accuracy of the larger floods. In the present study, however, 487 
parameter calibration is not based on E , but rather on RMSE.  488 

Results and Discussion 489 
Results from NNM 490 
 The nearest-neighbor method belongs to typical pattern prediction. A good prediction 491 
can be achieved when testing or validation patterns are as similar as possible to those of the 492 
training data. In other words, a salient limitation of the NNM is that in no case can a value 493 
higher than the historical discharges be predicted. This is a deficiency which would severely 494 
limit the generality or even the plausibility of the NNM when used in real time forecasting 495 
(Karlsson and Yakowitz, 1987). However, for daily management purpose in which the 496 
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interest is not centered on extreme values, it is viable. Therefore, it is viable for daily water 497 
level prediction in the present study. 498 
 According to the principle of NNM, a key step is to find the optimal k  (the number 499 
of the nearest neighbors) based on the training data. An optimization process on k is graphed 500 
in Fig. 8. The optimal k is 7 with RMSE_tst of 0.234m and RMSE_vali of 0.242m. 501 

Fig. 8 should be put here 502 

Fig. 9 should be put here 503 
 The upper pane in Fig. 8 displays 362 validation samples and comparison of absolute 504 
errors between LR and NNW prediction models is exhibited in the lower pane of Fig. 9.  As a 505 
whole, error curves from LR and NNW show the same trend. However, compared with LR, 506 
the NNM exhibits larger error amplification at some particular points where local extremum 507 
appear on the water level curve. Obviously, the performance of NNM is slightly poorer than 508 
that of LR, which seems to be discrepant with the recognized fact that NNM can be superior 509 
to some linear models. Two potential aspects can contribute to the present phenomenon: first, 510 
the prediction series are highly linear; second, training data is not enough for NNM which 511 
make it not be able to efficiently capture these patterns reflecting local extremum points.   512 
Results from ANN-GA 513 
 In the present study, the ANN-GA model played dual roles both as a counterpart 514 
model and as helping determine inputs for all models. Table 3 shows the process determining 515 
optimal architecture of ANN based on a three-layer network assumption. So the main task of 516 
this experiment was to find the optimal number of hidden nodes and number of training 517 
epochs. Here, a testing set was employed to avoid overfitting of the training set based on the 518 
early stop method. These values highlighted by bold and italic typeface in ‘Test’ column 519 
exhibit optimal training epochs for different hidden nodes. Configuration of ANN 520 
corresponding to the minimum of them may be relatively optimal. Obviously, the minimum 521 
is 0.2285 corresponding to M =3 and epoch=7000.  Further, based on the selected 522 
parameters M and epoch, inputs analysis can be performed as shown in the previous section 523 
of input selection. Finally, the determined architecture of ANN for the present case is 3-3-1 524 
with optimal training epoch of 7000. Corresponding RMSE for training, testing and 525 
validation set are 0.213m, 0.223m, and 0.237m as shown in Table 6.        526 

Table 3 should be put here 527 

Fig. 10 should be put here 528 
 Similar to Fig. 9, Fig. 10 describes prediction error processes from LR and ANN-GA. 529 
While ANN-GA does not exhibit a good capturing capacity for local extremum points on the 530 
curve of validation samples, it seems to exhibit a better capacity for capturing other points 531 
than the LR model. Other than the small size of training samples, an unsteady prediction 532 
result can contribute to the poor performance due to the unstable parameter optimization 533 
method inherent in ANN although GA can lead to a relatively stable initial weights and 534 
biases. In other words, the present ANN may still not an optimal ANN for this case.    535 
Results from D-SVR and Conventional SVR  536 
 According to previous partition of original data set, samples in training, testing and 537 
validation sets are, respectively, 724, 362, and 362. Experiment showed that computation 538 
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time may vary from about a couple of seconds to nearly half an hour when the number of 539 
samples ranges from 50 up to about 300. The optimization process for , ,C ε σ  based on GA 540 
will have to run hundreds of times, which is extremely time-consuming for large-size training 541 
samples.  Therefore, the present training data was partitioned into eight subsets with an 542 
average size of 181 (724/4=181) samples due to the overlapping between two nearest subsets. 543 
When adding testing data to the training set, the sample number employed in using GA to 544 
optimize parameters ( , ,C ε σ ) for D-SVRs is 2172 in all, i.e., two times as the number of 545 
training and testing samples (2172=2×(724+362)). On the other hand, for conventional SVR 546 
model, GA is also employed to find optimal triplets ( , ,C ε σ ) for training set with the help of 547 
testing set to control overfitting. Table 4 displays clustering centers and the size of training 548 
and testing data associated with each subset for D-SVR model.  549 

Table 4 should be put here 550 
 Based on the two-step GA search approach, the optimal values of triplet parameter 551 
( , ,C ε σ ) for each subset are obtained as shown in Table 5. The composite training error 552 
(RMSE) is 0.21m with a training time of about 2hrs, and support vectors are 68.5%. Further, 553 
the testing error and validation error are 0.209m and 0.211m, as shown in Table 6. As a 554 
comparison, the training, testing and validation errors from conventional SVR are 555 
respectively 0.213m, 0.216m, and 0.236m, which are larger than those from D-SVR, in 556 
particular for the validation error. Meanwhile, the training time in conventional SVR is far 557 
larger than that in D-SVR, which is unaccepted for the current one-day-ahead prediction.  558 

In addition, Fig. 11 displays the comparison of absolute errors between LR and D-559 
SVR models. Their error curves exhibit similar trend, but D-SVR shows evident better 560 
prediction capacity than LR in terms of absolute errors although predictions on local 561 
extremum points are still not very good, which may be due to the property of the local 562 
approximation performed by D-SVR model.   563 

Table 5 should be put here 564 

Fig. 11 should be put here 565 
Comparison among Models and Discussion 566 
 Table 6 summarizes performance of different models from RMSE, E  of validation 567 
data, and training time. In view of its unacceptable training time, conventional SVR model 568 
will be put aside in the discussion. Three nonlinear models, NNM, ANN-GA, and D-SVM, 569 
show a better performance than that of LR in terms of RMSE of training and testing. 570 
However, only D-SVR exhibits a better generalization than LR in terms of RMSE of 571 
validation data. The value of E  also proves that D-SVR’s efficiency is the best. A drawback 572 
of D-SVR is computationally time-consuming due to hundreds of times parameters 573 
optimization via GA.          574 

In order to display the performance from nonlinear models, absolute error curves of 575 
them were graphed in Fig. 12. Errors from these curves are with a very similar trend that 576 
predictions are underestimated at some points whereas predictions are overestimated at other 577 
points such as from 230 to 290 at the X-axis.   578 

Although NNM, ANN-GA, and D-SVM are all nonlinear models, they are different 579 
in essence. NNM and ANN are generally called nonlinear and non-parameter models unlike 580 
LR with its fixed formula form. Therefore, their performance is related to many aspects 581 
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including raw data quality, suitable data preprocessing, and even the ability of modelers, in 582 
particular for ANN. However, different from NNM and ANN-GA, D-SVR does not depend 583 
on pattern identification to carry out prediction.  To certain extent, it may be called a 584 
parameter model or semi-parameter model which can be uniquely achieved under the SRM 585 
principle when the triplet parameters are selected. On the other hand, a fixed prediction result 586 
is never expected for ANN model due to the random starting conditions. Moreover, the 587 
principle of ERM tends to make ANN and NNM be weak in the aspect of generalization.    588 
 The D-SVR model performed a nonlinear approximation for each subset. Obviously, 589 
a local nonlinear fitting from D-SVR should be better than an empirically global fitting from 590 
LR. Therefore, if over-fitting is carefully avoided, it is inevitable that the D-SVR achieves a 591 
better prediction in comparison with LR.    592 

Table 6 should be put here 593 

Fig. 12 should be put here 594 

 595 

Conclusions and Recommendations  596 
As one of nonstructural flood protection measures, the future water level at a 597 

downstream station was predicted by the water level series at an upstream station. Equipped 598 
with LR model as a benchmark and ANN-GA and NNM as counterparts, a novel D-SVR 599 
model was established to carry out the forecast using data collected from water level series at 600 
the upstream Luo-Shan station and downstream Han-Kou station. ANN-GA and LR models 601 
were also used to help determine input variables. A two-step GA algorithm was employed to 602 
optimize the triplet parameters ( , ,C ε σ ) for D-SVR model. The validation results revealed 603 
that proposed D-SVR model can predict the water level better in comparison with the other 604 
models, which may be because it implements a local approximation method and the principle 605 
of SRM. However, compared with LR model, NNM and ANN-GA did not exhibit a powerful 606 
mapping ability in the present case.   607 

Certainly, the conclusion should not be hastily drawn that NNM and ANN are worse. 608 
As a matter of fact, studies in the literature have reported that NNM and ANN are very 609 
powerful in terms of nonlinear mapping. Associated with small-size training data, the present 610 
case is characterized by a highly linear mapping relation, which restricts the power of NNM 611 
and ANN. A complicated mapping between rainfall and runoff may be expected to really 612 
expose their capabilities, which will be presented in a future study.    613 
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 742 
Table 1. Statistical Parameters for Training, Testing, and Validation Sets 743 

Model variables 
and data sets 

Statistical parameters 

Mean Standard 
 deviation Minimum Maximum Range 

Xt−4 (m)      
Training set 23.46 3.71 17.37 30.96 13.59 
Testing set 23.46 3.71 17.35 30.93 13.58 

Validation set 23.46 3.71 17.37 31.04 13.67 
Xt−2 (m)      

Training set 23.46 3.71 17.35 31.04 13.69 
Testing set 23.46 3.71 17.39 30.96 13.57 

Validation set 23.47 3.71 17.37 30.80 13.43 
Xt (m)      

Training set 23.47 3.71 17.37 30.96 13.59 
Testing set 23.46 3.71 17.35 30.93 13.58 

Validation set 23.46 3.71 17.37 31.04 13.67 
Yt+1 (m)      

Training set 18.64 3.75 12.20 25.71 13.51 
Testing set 18.64 3.75 12.26 25.70 13.44 

Validation set 18.64 3.75 12.21 25.69 13.48 
 744 

Table 2 Akaike's Information Criterion (AIC) for Models 745 
Model RMSE_trn 

(m) 
RMSE_tst 

 (m) 
RMSE_vali 

 (m) AIC 
LR(X6,X8,X10) 0.2396 0.240 0.237 1.630 

LR(X6,X8,X10,X9) 0.2395 0.242 0.238 1.632 
LR(X6,X8,X10,X3) 0.2394 0.240 0.237 1.634 

ANN-GA(X6,X8,X10) 0.213* 0.223* 0.237* 1.601* 
ANN-GA (X6,X8,X10,X9) 0.210* 0.229* 0.245* 1.778* 
ANN-GA (X6,X8,X10,X3) 0.210* 0.229* 0.242* 1.778* 

*Average over ten time tests 746 
747 
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 748 
Table 3 RMSE of Train and Test Set with Changing Hidden Nodes ( M ) and Epochs 749 

M  2 3 4 5 6 7 
Epoch Train Test Train Test Train Test Train Test Train Test Train Test 
1000 0.2075 0.2326 0.2035 0.2399 0.1992 0.2775 0.1958 0.2364 0.1952 0.2788 0.4705 0.4533 
3000 0.2075 0.2325 0.2080 0.9157 0.1980 0.2545 0.1937 0.7127 0.1857 0.3041 0.1855 0.3210 
5000 0.6113 0.5673 0.2035 0.2399 0.1991 0.2573 0.1936 0.2873 0.1891 0.4448 0.1866 0.3679 
7000 0.2148 0.2362 0.2032 0.2285 0.2008 0.2554 0.1869 0.2598 0.1905 0.4036 0.1902 0.4881 
9000 0.2075 0.2325 0.2033 0.3080 0.1991 0.2769 0.1964 0.3792 0.1913 0.3381 0.1861 0.3975 
11000 0.2075 0.2325 0.2021 0.2387 0.2002 0.3402 0.1942 0.5286 0.1869 0.2877 0.1831 0.3218 

M  8 9 10 11 12 13 
1000 0.1871 0.3467 0.1760 1.4003 0.1746 0.4095 0.1711 0.4803 0.1664 0.6671 0.1644 0.4986 
3000 0.1783 0.3004 0.1701 0.3191 0.1682 0.6884 0.1666 0.6667 0.1574 0.3723 0.1564 0.5020 
5000 0.1877 2.5142 0.1795 0.4923 0.1761 0.9704 0.1728 0.3499 0.1576 1.1967 1.0416 0.9948 
7000 0.1823 1.0629 0.1769 0.5054 0.1776 0.3178 0.8488 0.8334 0.1596 0.3657 0.1540 0.5319 
9000 0.1797 0.4496 0.1806 0.5123 0.1702 0.8181 0.1662 0.4935 0.1676 2.2748 0.1579 0.3514 
11000 0.4303 0.4220 0.1785 0.6683 0.1695 0.5109 0.1688 0.7671 0.1649 0.5135 0.1577 0.3803 

M  14 15 16 17 18 19 
1000 0.1571 0.4847 1.5085 1.4068 0.1520 0.7772 0.1465 0.8242 0.1477 0.8621 0.1411 1.0257 
3000 0.1505 0.7819 0.1486 0.5772 0.1544 0.9932 0.1508 0.5340 0.1324 0.7250 0.1327 0.7653 
5000 0.1587 0.9445 0.1519 0.3877 0.1464 1.2091 0.1413 0.5150 0.1403 0.5975 0.1340 0.6271 
7000 0.1600 0.4541 0.1459 0.6086 0.1461 0.7584 1.0348 0.9819 0.1316 0.5012 0.1387 0.7769 
9000 0.1580 0.6617 0.1486 0.6439 0.1436 1.0023 0.1400 1.7086 0.1332 1.0227 0.1417 0.9096 
11000 0.1552 0.5632 0.1465 1.2319 0.1467 0.7592 0.4745 0.4632 0.1362 0.8169 0.1341 2.5940 

Note: values in Train and Test columns correspond to their RMSE  750 
 751 

Table 4 Characteristics of Subsets Partitioned by FCM 752 
Subset 

n 
Clustering center Training & testing 

data number X(t-4) X(t-2) X(t) Y(t+1) 
1 27.9 27.9 27.9 23.1 304 
2 24.9 24.9 24.9 20.1 258 
3 26.7 26.6 26.6 21.8 252 
4 23.4 23.4 23.4 18.7 307 
5 18.5 18.5 18.5 13.5 284 
6 21.7 21.6 21.6 16.9 240 
7 29.5 29.5 29.5 24.5 143 
8 19.8 19.8 19.8 14.9 384 

Sum     2172 
 753 

754 
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 755 
Table 5 Calibration Results of Triplet Parameters ( , ,C ε σ ) in D-SVR 756 

Model 
 

Triplet Parameters RMSE_trn Percentage of SVs 
C  ε  σ  (m) (%) 

D-SVR 

Submodel1 242.83 0.0004 0.689 

 
0.210 

 

 
68.5 

 

Submodel2 144.03 0.0065 0.422 
Submodel3 80.53 0.0031 3.297 
Submodel4 724.31 0.0033 0.477 
Submodel5 239.29 0.0062 0.066 
Submodel6 873.04 0.0231 0.527 
Submodel7 894.02 0.0006 0.596 
Submodel8 137.51 0.0035 0.922 

Conventional SVR 649.36 0.0049 0.515 0.213 68.6 
 757 
 758 
 759 

Table 6 Performances for Different Models 760 

Model RMSE_trn 
(m) 

RMSE_tst 
(m) 

RMSE_vali 
(m) 

E_vali 
 

Training time 
(s) 

LR 0.234 0.240 0.237 0.9960 - 
NNM - 0.234 0.242 0.9961 10 

ANN-GA 0.213 0.223 0.237 0.9960 53 
Conventional SVR 0.213 0.216 0.236 0.9960 153532 

D-SVR 0.210 0.209 0.211 0.9968 7110 

      761 
762 
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 779 
Fig. 5 Study Area 780 
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Fig. 6 Auto-correlation of Water Levels at Lou-Shan Station 783 
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Fig. 7 Stepwise Linear Model Process  787 
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Fig. 8 Determining Optimal k for NNM  789 
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Fig. 9 Comparison of absolute errors between LR and NNM 793 
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Fig. 10 Comparison of absolute errors between LR and ANN-GA 795 
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Fig. 11 Comparison of absolute errors between LR and D-SVR 799 
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Fig. 12 Comparison of absolute errors among NNM, ANN-GA, and D-SVR 801 
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