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ABSTRACT 
With the development of computing technology, mechanistic models are often employed to 
simulate coastal processes in coastal environments. However, these predictive tools are 
inevitably highly specialized, involving certain assumptions and/or limitations, and can be 
manipulated only by experienced engineers who have a thorough understanding of the 
underlying theories. This results in significant constraints on their manipulation as well as 
large gaps in understanding and expectations between the developers and practitioners of a 
model. The recent advancements in artificial intelligence (AI) technologies are making it 
possible to integrate machine learning capabilities into numerical modeling systems in order 
to bridge the gaps and lessen the demands on human experts. The objective of this paper is to 
review the state-of-the-art in the integration of different AI technologies into coastal 
modeling. The algorithms and methods studied include knowledge-based systems, genetic 
algorithms, artificial neural networks, and fuzzy inference systems. More focus is given to 
knowledge-based systems, which has apparent advantages over the others in allowing more 
transparent transfers of knowledge in the use of models and in furnishing the intelligent 
manipulation of calibration parameters. Of course, the other AI methods also have their 
individual contributions towards accurate and reliable predictions of coastal processes. The 
resulting tool might be very powerful, since the advantages of each technique can be 
combined.  
 
INTRODUCTION 
 
In the analysis of the coastal water process, numerical models are frequently used to simulate 
the flow and water quality problems. The rapid development of computing technology has 
provided a large number of models to be used in engineering or environmental problems. To 
date, a variety of coastal models are available and the modeling techniques have become 
quite mature. The numerical technique can be based on the finite element method, finite 
difference method, boundary element method, and Eulerian-Lagrangian method. The time-
stepping algorithm can be implicit, explicit, or characteristic-based. The shape function can 
be of the first order, second order, or a higher order. The modeling can be simplified into 
different spatial dimensions, i.e., a one-dimensional model, two-dimensional depth-averaged 
model, two-dimensional layered model, three-dimensional model, and so forth [1-8]. An 
analysis of coastal hydraulics and water quality generally involves heuristics and empirical 
experience, and is effected through some simplifications and modeling techniques on the 
basis of the experience of specialists [9]. However, the accuracy of the prediction is to a great 
extent dependent on open boundary conditions, model parameters, and the numerical scheme 
[10].  
 
The selection of an appropriate numerical model for a practical coastal problem is a highly 
specialized task. Ragas et al. [11] compared eleven U.K. and U.S.A. water quality models 
used to determine the levels and kinds of discharge to be permitted and found that model 
selection is a complicated process of matching model features with the particular situation. 
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These predictive tools inevitably involve certain assumptions and/or limitations, and can be 
applied only by experienced engineers who have a thorough understanding of the underlying 
theories. This results in significant constraints on the use of models and large gaps in 
understanding and expectations between the developers and practitioners of a model.  
 
Over the past decade, there has been a widespread interest in the field of artificial intelligence 
(AI) [11-17]. The recent advancements in AI technologies are making it possible to integrate 
machine learning capabilities into numerical modeling systems in order to bridge the gaps 
between developers and practitioners of a model and lessen the demands on human experts. 
The development of these intelligent management systems is facilitated by employing some 
shells under the established development platforms such as MathLab, Visual Basic, C++, and 
so forth. Due to the complexity of the numerical simulation of flow and/or water quality, 
there is an increasing demand to integrate AI with these mathematical models in order to 
incorporate more and more features based on advanced computer technology.  
 
In this paper, the development and current progress of integration of different AI technologies 
into coastal modeling are reviewed and discussed. The algorithms and methods studied 
include knowledge-based systems (KBSs), genetic algorithms (GAs), artificial neural 
networks (ANNs), and fuzzy inference systems. More focus is given to KBSs, which have 
apparent advantages over the other systems in allowing more transparent transfers of 
knowledge in the use of models and in furnishing intelligent manipulation of calibration 
parameters. This paper may provide some useful advice to some inexperienced engineers on 
how to establish a numerical model, although an understanding of the underlying theories is 
still necessary. 
 
NUMERICAL MODELING 
 
Numerical modeling can be defined as a process that transforms knowledge on physical 
phenomena into digital formats, simulates for the actual behaviors, and translates the 
numerical results back to a comprehensible knowledge format [17]. In mechanistic models, 
the equation for the transport of pollutants can be expressed as: 
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where ),,( VU are mean fluid velocities in the ),,( yx direction; S is the density of the 
pollutant; HD  ,  is the elevation of the sea surface above the undisturbed level; H is 
the undisturbed mean depth of the water; and KH is the vertical turbulent flux coefficient, 
which can be derived from the second moment q2~ q2l turbulence energy model [18]. Ks is the 
decay rate of pollutant; Ss is the source of the pollutant; and As is the horizontal turbulent 
coefficient. Pollutant transport equations can then be written in discretized forms, depending 
on which algorithm is used. 
 
Model Manipulation 
 
Model manipulation is always required, particularly during the setting up of the model, since 
a slight change in the parameters may lead to quite different results. The procedure is a mixed 
one of feedback and modification. Knowledge of model manipulation includes real physical 
observations, mathematical descriptions of water movement or water quality, the 
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discretization of governing equations for physical and chemical processes, schemes to solve 
the discretized equations effectively and accurately, and an analysis of output. Experienced 
modelers can determine the failure of a model based on a comparison of the simulated results 
with real data as well as a heuristic judgment of key environmental behavior. The knowledge 
mentioned above may be used unconsciously. However, many model users do not possess the 
requisite knowledge to glean their input data, build algorithmic models, and evaluate their 
results. The result may be inferior designs, leading to the under-utilization, or even the total 
failure, of these models. 
 
The ultimate goal of model manipulation in coastal engineering is to acquire satisfactory 
simulation. Hence, a balance should be struck between modeling accuracy and speed. It is 
noticeable that modelers usually keep certain fundamental parameters unchanged during the 
manipulation process. For instance, when researchers were used to two-dimensional coastal 
modeling, they varied only the bottom friction coefficient [19]. In water quality modeling, 
Baird and Whitelaw [20] reported that the algal behavior was related intimately not only to its 
respiration rate but also the water temperature. Model users will consider variations in the 
intensity of sunlight within the water column when simulating the phenomenon of 
eutrophication [21]. These examples reflect that human intelligence uses existing knowledge 
to reduce the number of choices in order to raise the effectiveness of model manipulation. 
Each time, they tend to alter merely one or two parameters. This is because if they modify 
many parameters at the same time, they may easily become lost as to the direction of the 
manipulation. To this end, AI techniques are capable of mimicking this behaviour as well as 
of complementing the deficiency.  
 
Generations of modeling 
 
The notion of “generations” of modeling to describe the trend of development was introduced 
by Abbott [17] and Cunge [22]. The so-called third generation modeling, being a system to 
solve specific domain problems, can only be apprehended by the modeler and special users 
well trained over a long period. It has incorporated very few features to facilitate other users 
and to handle other problems. Typical examples are some sophisticated convection-
dispersion models of the Eulerian-Lagrangian type [2], two-dimensional or three-dimensional 
finite difference numerical models on tidal flow [4,5] and on a specific water quality 
phenomenon such as eutrophication [21], finite-element modeling of floodplain flow [6], the 
depth-averaged turbulence k-e model [9], and so on. 
 
Previous efforts have been devoted to accommodating a much wider range of end-users. The 
fourth generation of modeling has become much more useful to a much wider range of end-
users. It provides a menu of parameter specifications, automatic grid formation, pre-
processing and post-processing features, and features for the management of real collected 
data for modeling, etc. These tools act as intelligent front-ends to support the handling of the 
simulation models for specific hydraulic [23] or water quality [24] problems. Yet they do not 
address the core problem of the elicitation and transfer of knowledge. In the modern era, 
characterized by a boom in knowledge, the fourth generation of modeling starts the 
technological research to transform the knowledge of hydrodynamic and water quality 
computation into the products.  
 
INCORPORATION OF AI INTO MODELING 
 
During the past decade, the general availability of sophisticated personal computers with 
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ever-expanding capabilities has given rise to increasing complexity in terms of computational 
ability in the storage, retrieval, and manipulation of information flows. With the recent 
advancements in AI technology, there has been an increasing demand for a more integrated 
approach in addition to the need for better models. Justification for this claim comes from the 
relatively low utilization of models in the industry when compared to the number of reported 
and improved models. It is expected that this enhanced capability will both increase the value 
of the decision-making tool to users and expedite the water resources planning and control 
process.  
 
Knowledge-based systems (KBSs) 
 
Conventionally, in solving coastal problems, the emphasis has been on algorithmic 
procedures. These mechanistic models, being insufficiently user-friendly, lack knowledge 
transfers in model interpretation. It is a difficult task for novice application users to select an 
appropriate numerical model due to varying factors, such as the water depth, water velocity, 
grid spacing, etc. For non-expert users in particular, it is usual for the length of the 
procedures for model manipulation to depend largely on their experience. As a result, it is 
highly desirable to establish a bridge between model developers and application users. 
Therefore as a design aid or training tool for engineers or students, it is necessary to include 
some features to provide help in selecting models. In this regard, KBSs can address the 
problem by incorporating a repository of heuristic knowledge provided by human experts. 
 
It can be seen that more and more software systems are being accompanied by a “usage 
wizard” to provide guidance for the use of such systems. The “wizard” integration in the 
system is usually related to AI technology. After comparing a number of U.K. and U.S.A. 
models, Ragas et al. [11] suggested, although they did not actually implement, the 
development of a KBS for model selection in order to deal with uncertainty in model 
predictions. The fifth generation of modeling system [17,25,26] is acknowledged to have the 
features to allow AI technology and computational hydrodynamics to be integrated into a 
single system to furnish assistance for non-experienced users.  
 
KBSs are interactive computer programs that mimic and automate the decision-making and 
reasoning processes of human experts. The schematic view of a typical KBS is shown in 
Figure 1. The knowledge base is a collection of general facts, rules of thumb, and causal 
models of the behavior specific to the problem domain. The inference mechanism guides the 
decision-making process by using the knowledge base to manipulate the context. The context 
contains facts that reflect the current state of the problem, constructed dynamically by the 
inference mechanism from the information provided by the user and the knowledge base. The 
knowledge acquisition module serves as an interface between the experts and the KBS and 
provides a means for entering domain-specific knowledge into the knowledge base. The user 
interface is responsible for translating the interactive input as specified by the user to the 
form used by the KBS. The explanation module provides explanations of the inferences used 
by the KBS, namely, why a certain fact is requested and how a conclusion was reached. 
KBSs are considered suitable for solving problems that demand considerable expertise, 
judgment, or rules of thumb. KBSs have widespread applications in different fields and are 
able to accomplish a level of performance comparable to that of a human expert [27-31]. 
 
The feasibility of integrating KBS with numerical modeling has recently been studied [29-30]. 
Chau and Yang [31] implemented an integrated expert system for fluvial hydrodynamics. 
Jamieson and Fedra [32] developed a decision-support system for efficient river basin 
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planning and management. Bobba et al. [33] applied environmental models through an 
intelligent system to different hydrological systems. Most of this fifth generation of 
numerical coastal models only refer to a one-dimensional system for river network or river 
planning due to the simplicity of the knowledge and selection procedures. Their knowledge 
bases include heuristic rules for model selection but not for model manipulation. However, 
even for that simplest case, the symbolic programming for the knowledge representation and 
selection procedure required enormous effort. For two or three-dimensional modeling, the 
integration of a KBS and problem solutions in a single system will become much more 
complex. The basic requirement is that the system should be able to provide expert advice on 
the selection of the most appropriate model as well as the relevant model parameters under 
that particular scenario. Since numerical modeling programs have often been developed in 
some traditional programming languages such as Fortran, Pascal, C, etc., it is considered not 
cost-effective to re-write and replace these well-proven and validated programs whose 
development involved long hours of concerted effort. 
 
To introduce KBS technology into the modeling system requires a method to make the 
system capable of providing advice on the selection of parameters or models, and to make the 
system have the intelligent features of a “usage wizard” if the program is written in some 
embedded forms of code. The architecture of a prototype integrated system [34] is shown in 
Figure 2. The expert system shell, Visual Rule Studio [35], which runs as an ActiveX 
Designer under the windows-based programming language environment Microsoft Visual 
Basic 6.0, was employed. The Visual Rule Studio is a hybrid expert system shell that couples 
the advantage of both production rules and object-oriented programming paradigm. All the 
usual objects of control of the common interface under a Windows environment such as a 
command button, picture box, and so forth, are furnished. 
 
As an example, the KBS is employed to select and manipulate numerical models on 
addressing the problem of eutrophication for Tolo Harbour in Hong Kong [36]. Figure 3 
shows an example of the inference direction from the user’s specifications through the 
inference engine. Figure 4 displays a sample interactive screen of model selection for the 
application example. After the inputted data have been entered, a summary of the input 
requirements is shown in the left frame of the questionnaires as shown in Figure 4. When the 
command button INFER is clicked, the process of model selection can be automatically 
attained on the basis of the rule sets in the knowledge base. The right frame shows the 
inference results on the features of the suggested model for this example, which are verified 
with the decision made by the expert modeler.  
 
The principal advantage of integrating KBS into the numerical coastal modeling is that it is 
capable of producing a more intelligent, interactive, and user-friendly system to furnish 
assistance on selecting a model and its pertinent parameters. Explanations of the reasoning 
process, options, procedures, various specific provisions, and expert comments regarding 
coastal modeling are effected via the explanation module. This can significantly narrow the 
gap between the numerical modelers and the users of the application. Moreover, the rule sets 
and the knowledge bases are tailored to be transparent to facilitate updating with new 
knowledge when available. 
 
One disadvantage of a KBS is the difficulty of gleaning the experiences of various expert 
modelers in the world, who may have different treatments for the same problem. Hence, it is 
imperative to incorporate more heuristic experiences of numerical modeling experts. A KBS 
should be further developed and updated constantly through frequent usage and feedback 
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from the users as well as through the validation of personal conclusions and experiences from 
previous studies on numerical modeling for coastal water processes. In this regard, hybrid 
integration with other AI technologies, taking advantage of the characteristics of each, may 
supplement the current deficiencies of a KBS. 
 
Genetic algorithms (GAs) 
 
GAs, being search techniques based on the mechanism of natural genetics and biologically-
inspired operations, can be employed as an optimization method to minimize or maximize an 
objective function [37]. They apply the concept of the artificial survival of the fittest coupled 
with a structured exchange of information using randomized genetic operators taken from 
nature to compose an efficient search mechanism. This form of search evolves throughout 
iterative generations by improving the features of potential solutions and mimicking the 
natural population of biological creatures. Through a variety of operations to generate an 
enhanced population of strings from an old population, GAs exploit useful information 
subsumed in a population of solutions. Various genetic operators that have been identified 
and used in GAs include crossover, deletion, dominance, intra-chromosomal duplication, 
inversion, migration, mutation, selection, segregation, sharing, and translocation. Figure 5 
shows a typical flow chart delineating the steps by which GAs generate their solutions.  
 
A variety of applications has been presented since the early studies on the subject, and GAs 
have clearly demonstrated their capability to yield good solutions even in cases of highly 
complex, multiple-parameter problems [38-39]. GAs can help in determining the patterns, 
regularities and relationships that exist and drive a certain phenomenon, such as algal 
abundance. Mulligan and Brown [40] used genetic algorithms to calibrate water quality 
models. Bobbin and Recknagel [41] used GA to build inducing explanatory rules for the 
prediction of algal blooms. Ng and Perera [42] calibrated a river water quality model by GAs. 
Cho et al. [43] utilized GAs to undertake the optimization of regional wastewater treatment in 
a river water quality management model. 
 
As an example of its implementation on coastal modeling, a GA is employed to determine an 
appropriate combination of parameter values [44]. The inappropriate use of any model 
parameters, which cannot be directly acquired from measurements, may introduce large 
errors or result in numerical instability. The percentage errors of peak value, peak time, and 
total volume of coastal constituents are important performance measures for model 
predictions. The calibration of parameters is based on field data on tidal as well as water 
quality constituents collected over a five-year span from 1991 to 1995 in the Pearl River. 
Another two-year record from 1996 to 1997 is utilized to verify these parameters. A 
sensitivity analysis on crossover probability, mutation probability, population size, and 
maximum number of generations is also performed to determine the most fitting algorithm 
parameters. The results demonstrate that the application of GA can mimic the key features of 
the coastal process and that the calibration of models is efficient and robust. More details can 
be found in [44]. 
 
A major advantage of GA is its capability to locate global optimizations. However, GA is an 
algorithmic process and cannot help much with user-friendly interactions with the system. 
Many GA parameters, such as crossover probability, mutation probability, population size, 
and maximum number of generations, have a significant impact on the accuracy of a 
prediction. It is necessary to carefully choose these parameters in order to attain a reliable 
prediction. Moreover, a GA cannot extrapolate beyond the range of the training data. 
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Nevertheless, a comprehensive investigation on the application of GAs to coastal modeling 
has yet to be conducted, but the early indications of the use of GA in this way are promising. 
 
Artificial neural networks (ANNs) 
 
A definition of an ANN is “a computational mechanism able to acquire, represent, and 
compute a mapping from one multivariate space of information to another, given a set of data 
representing that mapping” [16]. Maier and Dandy [45] gave an excellent review on the use 
of neural network models for the prediction and forecasting of water resources variables. 
ANNs are based on our present understanding of the brain and its associated nervous systems. 
They use processing elements connected by links of variable weights to form black box 
representations of systems. A typical ANN is comprised of several layers of interconnected 
neurons, each of which is connected to other neurons in the ensuing layer. Data are presented 
to the neural network via an input layer, while an output layer holds the response of the 
network to the input. One or more hidden layers may exist between the input layer and the 
output layer. All hidden and output neurons process their inputs by multiplying each input by 
its weight, summing the product, and then processing the sum using a nonlinear transfer 
function to generate a result. Among others, the S-shaped sigmoid curve is a commonly used 
transfer function [46]. The data-driven models have the ability to learn complex model 
functions from examples.  
 
The greatest advantage of ANNs over other modeling techniques is their capability to model 
complex, non-linear processes without having to assume the form of the relationship between 
input and output variables. Learning in ANNs involves adjusting the weights of 
interconnections. Areas addressed by ANN techniques include pattern matching, 
combinatorial optimization, data compression, and function optimization. As a developing 
and promising technology, ANNs have become extremely popular for prediction and 
forecasting. The capability of an ANN to cope with uncertainty in complex situations has 
been seized upon for wide-ranging applications in recent years [47-48].  
 
ANNs have found applications in the forecasting of water quality variables such as 
phosphorus [49], algal concentrations [50], cyanobacterial concentrations [51], salinity levels 
[52], ecological modeling [53], and so forth. Kralisch et al. [54] employed an ANN approach 
for the optimization of watershed management to maintain a reasonable balance between 
water quality demands and the consequent restrictions for the farming industry. Maier et al. 
[55] used ANNs to predict optimal alum doses and treated water quality parameters. However, 
most of the studies were undertaken for limnological systems [56-58] or riverine systems [59-
60], while reports on ANN modeling of coastal systems have been very scarce [61]. 
Moreover, in most of the studies, the effectiveness of ANN as a predictive tool has not been 
fully addressed. For example, the water quality dynamics at the current time were often 
linked via the model with other environmental variables at the same time, which rendered 
them useless for real predictions. Most studies employed almost all possible environmental 
parameters as input variables without considering the optimal choice among them. As an 
illustrative example, a three-layer feedforward back-propagation ANN was used to simulate 
the relationship between the parameters and the steady-state response of a mechanistic total 
phosphorus model for a period of 1,095 days spanning from 1993 to 1995 [49]. Figure 6 
shows the architecture of this ANN, in which the input layer contains three nodes: settling 
velocity, recycling velocity, and burial velocity. The hidden layer consists of six hidden 
nodes while the only node in the output layer is the concentration of phosphorus. It is 
demonstrated, in the case of the total phosphorus model of the Triadelphia Reservoir, that the 
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ANN technique is capable of accurately approximating the input-output response of a water 
quality model and that the ANN-predicted concentrations of phosphorus match the 
concentrations predicted by the mechanistic model well for both the training and testing sets. 
 
In the process of building an ANN model, many options are available [45]: the choice of 
performance criteria, the division and pre-processing of the available data, the determination 
of appropriate model inputs and network architecture, the optimization of the connection 
weights, and the validation of the model. All of these parameters have a significant impact on 
the accuracy of a prediction. Moreover, ANNs cannot extrapolate beyond the range of the 
training data and, thus, they may not be able to account for trends and heteroscedasticity in 
the data. Thus, careful choices of various parameters in different steps as well as a thorough 
understanding of the boundaries of applicability are entailed if ANNs are to play a 
meaningful role in coastal modeling. Another weakness is that the most popular gradient-
based back propagation algorithms of ANNs are vulnerable to getting stuck in a local 
minimum. Moreover, insufficient attention has been given to extracting some knowledge 
from the learning process. More efforts can be given to the application of this technique to 
coastal modeling. 
 
Fuzzy inference systems 
 
Fuzzy logic is very useful in modeling complex and imprecise systems [62]. Under the fuzzy 
set theory, elements of a fuzzy set are mapped to a universe of membership values using a 
function-theoretic form belonging to the close interval from 0 to 1. An important step in 
applying fuzzy methods is the assessment of the membership function of a variable, which 
parallels the estimation of probability in stochastic models. Membership functions in fuzzy 
set theory, which are appropriate for modeling the preferences of the decision maker, can be 
obtained on the basis of actual statistical surveys. Modeling based on fuzzy logic is a simple 
approach, which operates on an “if-then” principle, where “if” is a vector of fuzzy 
explanatory variables or premises in the form of fuzzy sets with membership functions and 
“then” is a consequence also in the form of a fuzzy set.  
 
If the objective or the constraints of an optimization problem are vague, then the problem can 
be referred to as a fuzzy optimization problem. Fuzzy logic has been used in a number of 
applications, but generally as a refinement to conventional optimization techniques in which 
the usual crisp objective and some or all of the constraints are replaced by fuzzy constraints 
[38,63]. Fuzzy set theory concepts can be useful in ecological impact classifications [64], as 
they can provide an alternative approach to dealing with those problems in which the 
objectives and constraints are not well defined or the information about them is not precise. 
Chang et al. [65] used the fuzzy synthetic evaluation approach to identify the quality of river 
water. Chen and Mynett [66] employed data mining techniques and heuristic knowledge in 
modeling the fuzzy logic of eutrophication in Taihu Lake. Liou et al. [67] applied a two-stage 
fuzzy set theory to evaluate river quality in Taiwan. Marsili-Libelli [68] described the design 
of a bloom predictor based on the daily fluctuations of simple parameters for water quality 
such as dissolved oxygen, oxidation–reduction potential, pH, and temperature.  
 
An example of the application of fuzzy logic is a comparison between the simulated results 
and the real observation of flow or water quality. Improvements in estimating the results of 
modeling depend on the technology of pattern recognition. The normalized root-mean-square 
error (NRMSE) between key field data and the results of the model is computed to evaluate 
the performance of the model and its associated model parameters. The NRMSE covers cases 
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with a time series of data at a single point within the model domain, or instantaneous 
measurements at many locations, or a combination of both. Let N be the number of data 
locations for comparison, n be the number of time intervals in a time series of data for 
comparison, Ti,t, Oi,t be the target values and the computed value of the ith data location and tth 
time step respectively, and T  be the average target value. Then, the definition of the above-
mentioned statistical quantity is as follows: 
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Figure 7 shows the membership functions for NRMSE, which represent the fuzzy logic of 
literal classification into very small, small, large, and very large. Another application of fuzzy 
inference is in the representation of rule sets within the knowledge base of a KBS by using a 
more human-like fuzzy format, instead of a crisp threshold format. 
 
In water quality problems, many indicators may conflict with each other, significant 
observations may be lacking, and potentially valuable information may be non-quantitative in 
nature. An advantage of fuzzy inference methods is their capability to represent real-life 
water quality problems, which are sometimes difficult to address by standard mathematical 
and statistical approaches. However, fuzzy logic by itself cannot help much with user-
friendly interactions with the system. Many parameters, such as the number of categories, 
shape of the membership function, and method of combining partial memberships, have a 
significant impact on the results. The proper choice of these parameters and rigorous 
validation are necessary for accurate representations.  
 
It is observed that most of the above studies have been undertaken for fresh water riverine 
systems and applications to coastal systems have been very scarce. More works can be 
undertaken to find applications of AI in this area to a fuller extent. 
 
FUTURE DIRECTIONS 
 
To date, individual applications of these innovative AI techniques have been recorded in the 
literature, yet they have often adopted for specific situations in an isolated manner. Since the 
application of different AI technologies is not mutually exclusive, one of the promising 
directions is the hybrid combination of two or more of the methods discussed above to 
produce an even more versatile coastal modeling system. For example, the use of a hybrid 
algorithm integrating KBS and ANN is feasible for establishing rules in the KBS on the basis 
of implicit relationships derived from the ANN. In fact, there is a great deal of potential in 
extracting the knowledge that is contained in the connection weights of trained ANN models, 
as well as in the highly transparent knowledge representation paradigm of KBS. Similarly, it 
is also feasible to use GA to locate the global optimization in ANNs as well as the fuzzy 
representation of rule sets in KBSs. It is believed that the integration of AI modules will 
enhance the applicability of modelling systems in real practice. 
 
CONCLUSIONS 
 
Existing coastal models are inevitably highly specialized, involve certain assumptions and/or 
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limitations, and are usable only by experienced engineers who have a thorough understanding 
of the underlying theories. The recent advancements in AI technologies have made it possible 
to integrate machine learning capabilities into numerical modeling systems in order to bridge 
the gaps in understanding and expectations and lessen the demands on human experts. This 
study has reviewed the state-of-the-art and progress in the integration of AI into coastal 
modeling. Attempts to integrate various AI technologies, including KBSs, GAs, ANNs, and 
fuzzy inference systems, into numerical modeling systems have been discussed. More focus 
has been given to KBS, which has apparent advantages over the others in allowing more 
transparent transfers of knowledge in the use of models and in furnishing the intelligent 
manipulation of calibration parameters. KBS may provide some useful advice to some 
inexperienced engineers how to establish a numerical model, although they still need to have 
an understanding of the underlying theories. Of course, the other AI methods also have their 
individual contributions towards accurate and reliable coastal predictions. It is believed, as AI 
technologies grow in capability, that the resulting tool might be very powerful, since 
advantages of each technique can be combined. 
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Figure 1. Schematic view of a typical KBS 
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Figure 2 Architecture of a prototype KBS on the manipulation of a numerical coastal model 
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Figure 3. An example of the inference direction from the user’s specifications through the 
inference engine 
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Figure 4. Sample screen of model selection for the application example 
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Figure 5. Flow chart of GA 
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Figure 6. Architecture of a three-layer feedforward back-propagation ANN in modeling the 

total concentration of phosphorus 
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Figure 7. Membership functions for the normalized root-mean-square error (NRMSE), representing 

the fuzzy logic of the literal classifications of very small, small, large, and very large 
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