
Bagging Evolutionary Feature Extraction Algorithm for Classification∗

Tianwen Zhao
Department of Computer Science

Shanghai Jiao Tong University
Shanghai, 200030, China
ztw505xyz@sjtu.edu.cn

Qijun Zhao
Biometrics Research Center
Department of Computing

The Hong Kong Polytechnic University
Hung Hom, Kowloon, Hong Kong

csqjzhao@comp.polyu.edu.hk

Hongtao Lu
Department of Computer Science

Shanghai Jiao Tong University
Shanghai, 200030, China

lu-ht@cs.sjtu.edu.cn

David Zhang
Biometrics Research Center
Department of Computing

The Hong Kong Polytechnic University
Kowloon, Hong Kong

csdzhang@comp.polyu.edu.hk

Abstract

Feature extraction is significant for pattern analysis
and classification. Those based on genetic algorithms
are promising owing to their potential parallelizability and
possible applications in large scale and high dimensional
data classification. Most recently, Zhao et al. presented
a direct evolutionary feature extraction algorithm(DEFE)
which can reduce the space complexity and improve the ef-
ficiency, thus overcoming the limitations of many genetic
algorithm based feature extraction algorithms(EFE). How-
ever, DEFE does not consider the outlier problem which
could deteriorate the classification performance, especially
when the training sample set is small. Moreover, when
there are many classes, the null space of within-class scat-
ter matrix(Sw) becomes small, resulting in poor discrimina-
tion performance in that space. In this paper, we propose a
bagging evolutionary feature extraction algorithm(BEFE)
incorporating bagging into a revised DEFE algorithm to
improve the DEFE’s performance in cases of small training
sets and large number of classes. The proposed algorithm
has been applied to face recognition and testified using the
Yale and ORL face databases.

1. Introduction

Feature extraction, as a significant step of pattern classi-
fication, acquires a new smaller feature subset to represent

∗This work is supported by NSFC under project No.60573033.

the data via transforming the original features. According
to whether the transformation can be expressed in matrix
form, feature extraction methods can be categorized into
linear and nonlinear ones. Compared with nonlinear fea-
ture extraction, linear feature extraction, which is the main
concern of this paper, is simple to use and also very efficient
for many cases.

Feature extraction is essentially a kind of optimization
problems. As for linear feature extraction, its task is to seek
for m projection basis vectors w1, w2, · · · , wm ∈ Rn, i.e.
the column vectors in the transform matrix W, such that
the resulting transformed samples are most distinguishable.
Therefore, feature extraction can acquire its solutions via
such optimization techniques as Genetic Algorithms (GA)
[2]. These GA based algorithms are called evolutionary fea-
ture extraction algorithms (EFE). Compared with other fea-
ture extraction algorithms, EFE algorithms have the advan-
tage of potential parallelizability and are thus expected to be
more applicable for large-scale and high-dimensional data.

Many researchers [4][6][5][3][9][11][8] have already ex-
plored GAs for feature extraction and proposed many GA
based feature extraction algorithms, but these algorithms
still have some limitations. For example, the space com-
plexity is high, making them unsuitable for high dimen-
sional and large scale data; the search is not well guided
or constrained, making them have low search efficiency.
Recently, Zhao et al. [10] proposed a direct EFE algo-
rithm(DEFE) which has lower space complexity and higher
search efficiency than their counterparts of GA based fea-
ture extraction algorithms. Another side product of this al-

Third International Conference on Natural Computation (ICNC 2007)
0-7695-2875-9/07 $25.00 © 2007

Authorized licensed use limited to: Hong Kong Polytechnic University. Downloaded on March 30, 2009 at 00:09 from IEEE Xplore. Restrictions apply.

gorithm is that it provides a simple but effective way to in-
vestigate the discriminability of different subspaces of the
original data space. However, in their experiments, they
used the leave-one-image-out evaluation strategy, in which
case the training set has relatively large size. When the
training set is small, the DEFE algorithm, as a subspace
idea based method, could suffer severely from the outlier
problem. Besides, in their paper, they searched for the op-
timal projection basis in the null space of Sw. When there
are many classes, this space becomes very small and thus
deteriorates the final classification performance.

In this paper, to overcome the limitations of the DEFE al-
gorithm mentioned above, we first revise the current DEFE
algorithm using Whitened Principal Component Analysis
(WPCA) and weighted fitness; and then we incorporate the
bagging method into the revised DEFE, presenting a novel
bagging evolutionary feature extraction (BEFE) algorithm.
The rest of this paper is organized as follows. In section 2,
we describe the revised DEFE algorithm. In section 3, we
present our proposed BEFE algorithm in detail. We then
show our face recognition experiments in section 4 and con-
clude this paper in the last section.

2 The Revised Direct Evolutionary Feature
Extraction Algorithm

In this section, we will present the revised direct evo-
lutionary feature extraction algorithm in detail. In this re-
vised version, data are first preprocessed using WPCA and
a weight is introduced into the fitness function. For the sim-
plicity sake, however, we will still use DEFE to denote the
revised direct evolutionary feature extraction algorithm.

2.1 Preprocessing Data: Centering and
Whitening

All the data are first preprocessed by centering, i.e. the
total mean is subtracted from them:

x̄i = xi − M, (1)

for all i ∈ 1, 2, · · · , N (N is the number of samples).
DEFE further whitens the centered data to normalize

their variance to unity. The whitening transformation ma-
trix is

WWPCA = [
α1√
λ1

α2√
λ2

· · · αN−1√
λN−1

]. (2)

Here, {λi} and {αi}, for all i ∈ 1, 2, · · · , N − 1, are the
eigenvalues of the covariance matrix and the corresponding
eigenvectors respectively.
Let X̄ and X̃ be the centered and whitened data, then

X̃ = WT
WPCAX̄. (3)

2.2 Calculating the Constrained Search
Space

According to the Fisher criterion, the most discrimina-
tive directions are most probably to lie in the subspaces gen-
erated from Sw and Sb.

DEFE calculates the eigenvectors of Sw with positive
eigenvalues via an N × N matrix S

′
w . Let

Hw = [x1x2 · · ·xN] ∈ Rn×N , (4)

then

Sw =
1
N

HwHT
w . (5)

S
′
w =

1
N

HT
wHw, (6)

and assume (λ, α
′
i) are an eigenvalue and the corresponding

eigenvector of S
′
w, i.e. We can prove that (λ,Hwα

′
i) are

eigenvalue and eigenvector of Sw. A basis of range(Sw) is
then given by (L:the number of classes)

Brange(Sw) = {αi = Hwα
′
i|i = 1, 2, · · · , N − L}. (7)

The basis of range(Sb) can be calculated in a similar way.
And based on the basis of range(Sw), it is easy to get the
basis of null(Sw) through calculating the orthogonal com-
plement space of range(Sw).

2.3 Searching: An Evolutionary Ap-
proach

2.3.1 Encoding Individuals

First, DEFE generates one vector via linearly combining the
basis of the search space. Suppose the search space is Rn

and let {ei ∈ Rn|i = 1, 2, · · · , n} be a basis of it, {ai ∈
R|i = 1, 2, · · · , n} be the linear combination coefficients.
Then

v =
n∑

i=1

aiei. (8)

Second, DEFE calculates a basis of the orthogonal com-
plement space of V=span{v}, the space expanded by v, in
Rn. Let {ui ∈ Rn|i = 1, 2, · · · , n − 1} be the basis, and
U = span{u1, u2, · · · , un−1}, then

Rn = V
⊕

U, (9)

where ′ ⊕′ represents the direct sum of vector spaces, and

U = V ⊥, (10)

where ′⊥′ denotes the orthogonal complement space. Fi-
nally, we randomly choose part of this basis as the projec-
tion basis vectors.

Third International Conference on Natural Computation (ICNC 2007)
0-7695-2875-9/07 $25.00 © 2007

Authorized licensed use limited to: Hong Kong Polytechnic University. Downloaded on March 30, 2009 at 00:09 from IEEE Xplore. Restrictions apply.

According to the above method of generating projection
basis vectors, the information encoded in an individual in-
cludes the n combination coefficients and (n-1) selection
bits. Each coefficient is represented by 11 bits with the
leftmost bit denoting its sign (’0’ means negative and ’1’
positive) and the remaining 10 bits giving its value as a bi-
nary decimal. Figure. 1 shows such individual, in which
the selection bits b1, b2, · · · , bn−1, taking the value of ’0’ or
’1’ indicate whether the corresponding basis vector is cho-
sen as a projection basis vector. The individual under such
definition has (12n-1) bits.

Figure 1. The individual defined in the evolu-
tionary feature extraction. Each coefficient is
represented with 11 bits.

2.3.2 Evaluating Individuals

From the perspective of pattern recognition, almost all ex-
isting GA based feature extraction algorithms evaluate in-
dividuals using the classification accuracy in the obtained
feature space on the training samples or a subset of them.
However, after being preprocessed using WPCA, the clas-
sification accuracy on the training samples is always almost
100%. In [11], Zheng et al. also find this when they use
PCA to process the training data, and they then just ig-
nore its role in evaluating individuals. Different from their
method, we keep this classification accuracy term in the fit-
ness function, but based on a validation set, instead of the
training set (the current DEFE algorithm uses a subset of
training set, called the boundary set). Specifically, we ran-
domly choose from each cluster Nva samples to create a
validation set Ωva and the remaining Ntr=(N − L × Nva)
samples are used as the training set Ωtr. Assume N c

va(D)
samples in the validation set are correctly classified in the
feature space learned from Ωtr by an individual D, the clas-
sification accuracy term for this individual is then defined
as

ζa(D) = N c
va(D)/Nva. (11)

From the machine learning perspective, the generaliza-
tion ability is an important index of machine learning sys-
tems. In previous methods, the between-class scatter is
widely used in fitness functions. However, according to
the Fisher criterion, it is better to simultaneously minimize
the within-class scatter while maximizing the between-
class scatter. Thus, we use the following between-class
and within-class scatter distances of samples in the feature

space,

db(D) =
1
N

L∑

j=1

Nj(Mj − M)T (Mj − M) (12)

and

dw(D) =
1
L

L∑

j=1

1
Nj

∑

i∈Ij

(yi − Mj)T (yi − Mj), (13)

to measure the generalization ability as

ζg(D) = db(D) − dw(D). (14)

Here, the means, M and Mj , j = 1, 2, · · · , L, are calculated
based on {yi|i = 1, 2, · · · , N} in the feature space.

Summarizing, we define the fitness function as the
weighted summation of the above two terms as follows

ζ(D) = πaζa(D) + (1 − πa)ζg(D), (15)

where πa ∈ [0, 1] is the weight. The accuracy term ζa in
this fitness function lies in the interval [0, 1]. Thus, it is
reasonable to make the value of the second generalization
term ζg to be of a similar order. This demonstrates the es-
sential of preprocessing data by centering and whitening as
discussed in the beginning of this section.

2.3.3 Generating New Individuals

DEFE uses three genetic operators: selection, crossover,
and mutation. The selection is based on the relative fit-
ness of individuals. Specifically, the proportion of the fit-
ness of an individual to the total fitness of the population
determines how many times the individual will be selected
as parent individuals. After evaluating all individuals in the
current population, DEFE selects (S-1) pairs of parent indi-
viduals from them, where S is the size of the GA population.
(S-1) new individuals generated from these parent individ-
uals together with the individual with the highest fitness in
current generation form the population of the next genera-
tion.

The crossover operator is conducted under a given prob-
ability. If two parent individuals are not subjected to
crossover, the one having higher fitness will be chosen into
the next generation. Otherwise, two crossover points are
randomly chosen, one of which is within the coefficient bits
and the other is within the selection bits. These two points
divide both parent individuals into three parts, and the sec-
ond part is then exchanged between them to form two new
individuals, one of which is randomly chosen as an individ-
ual in the next generation.

At last, each bit in the (S-1) new individuals is subjected
to mutation from ’0’ to ’1’ or reversely under a specific
probability. After applying all the three genetic operators,
we have a new population for the next GA iteration.

Third International Conference on Natural Computation (ICNC 2007)
0-7695-2875-9/07 $25.00 © 2007

Authorized licensed use limited to: Hong Kong Polytechnic University. Downloaded on March 30, 2009 at 00:09 from IEEE Xplore. Restrictions apply.

2.3.4 Imposing Constraints on Searching

DEFE is to construct vectors by linearly combining the ba-
sis of the constrained search space, instead of the original
space. Take null(Sw), the null space of Sw, as an example.
Suppose we want to constrain the GA to search in null(Sw).
Let {αi ∈ Rn|i = 1, 2, · · · ,m} be the eigenvectors of
Sw associated with zero eigenvalues. They form a basis
of null(Sw). After obtaining a vector v via linearly com-
bining the above basis, we have to calculate the basis of the
orthogonal complement space of V = span{v} in the con-
strained search space null(Sw), but not the original space
Rn. For this purpose, DEFE first calculates the isomorphic
space of V in Rm, denoted by V̂ = span{PT v}, where
P = [α1α2 · · ·αm] is an isomorphic mapping. Then cal-
culate a basis of the orthogonal complement space of V̂ in
Rm. Let {β̂i ∈ Rm|i = 1, 2, · · · ,m − 1} be the obtained
basis. Finally, map this basis back into null(Sw) through
{βi = P β̂i ∈ Rn|i = 1, 2, · · · ,m − 1}.

3 Bagging Evolutionary Feature Extraction

As we said before, the above DEFE algorithm could suf-
fer from the outlier problem especially when the training
set is small. Moreover, when there are many classes, the
null{Sw} space becomes small, resulting in poor discrim-
ination performance in that space. Wang and Tang studied
this in [7] and proposed to address the problem using two
random sampling techniques, random subspace and bag-
ging. To improve the performance of the evolutionary fea-
ture extraction framework on large-scale data sets, we also
use the bagging method and incorporate it with the evolu-
tionary feature extraction. In this section, we will introduce
the bagging evolutionary feature extraction in detail.

Bagging (acronym for Bootstrap Aggregating), proposed
by Breiman [1], uses re-sampling to generate several ran-
dom subsets (called random bootstrap replicates) from the
whole training set. From each replicate, one classifier is
constructed. The results from these classifiers are integrated
using some fusion scheme to give the final result. Since
these classifiers are trained from relatively small bootstrap
replicates, the over-fitting problem for them can be some-
what alleviated. Besides, the stability of the overall classi-
fier system can be also improved by integration of several
(weak) classifiers.

Like Wang and Tangs method, we randomly choose
some classes from all the classes in the training set. The
training samples belonging to these classes compose a boot-
strap replicate. Usually, the unchosen samples become use-
less in the learning process. Instead, we do not overlook
these data, but rather use them for validation and calculate
the classification accuracy term of the fitness function based
on them. Below are the primary steps of our proposed bag-

ging evolutionary feature extraction:

(1) Preprocess the data using centering and whitening.

(2) Randomly choose some classes, say L̂ classes, from all
the L classes in the training set. The samples belong-
ing to the L̂ classes compose a bootstrap replicate used
for training, and those belonging to the other (L − L̂)
classes are used for validation. Totally, K replicates
are created (different replicates could have different
classes).

(3) Run the DEFE on each replicate to learn a feature
space. In all, K feature spaces are obtained.

(4) Classify a new sample using a classifier in the K fea-
ture spaces respectively. The resulting K results are
combined by a fusion scheme, giving the final result.

There are two basic problems with the bagging evolu-
tionary feature extraction: how to do validation and classifi-
cation, and how to fuse the results from different replicates?
Before closing this section, we will present our solutions to
them.

3.1 Validation and Classification

As shown above, a training replicate is created from the
chosen L̂ classes. Based on this training replicate, an in-
dividual in the DEFE population generates a candidate pro-
jection basis of feature space. All the samples in the training
replicate are projected into this feature space along the pro-
jection basis. The generalization term in the fitness function
is then calculated from these projections. To get the value of
the classification accuracy term, we again randomly choose
some samples from all the samples of each class in the
(L − L̂) validation classes to form the validation set. We
then project the remaining samples in these classes to the
feature space, and calculate the mean as the prototype for
each validation class according to the projections. Finally,
the chosen samples are classified based on these prototypes
using a classifier. The obtained classification rate is used as
the value of the classification accuracy term in the fitness
function.

After the DEFE runs on all the replicates, we get K fea-
ture spaces as well as one projection basis for each of them.
For each feature space, all the training samples (including
the samples in training replicates and validation classes) are
projected into the feature space and the means of all classes
are calculated as the prototypes of them. To classify a new
sample, we first classify it in each of the K feature space
respectively based on the class prototypes in that space and
then combine the K results to give the final decision using a
fusion scheme, which will be introduced in the next part.

Third International Conference on Natural Computation (ICNC 2007)
0-7695-2875-9/07 $25.00 © 2007

Authorized licensed use limited to: Hong Kong Polytechnic University. Downloaded on March 30, 2009 at 00:09 from IEEE Xplore. Restrictions apply.

3.2 Fusion Schemes

A number of fusion schemes have been proposed in the
literature of multiple classifiers and information fusion. In
the present paper, we only focus on Majority Voting (MV)
for its intuitiveness and simplicity.

Let {Mk
j ∈ Rlk |j = 1, 2, · · · , L; k = 1, 2, · · · ,K} be

the prototype of class j in the kth feature space, whose di-
mension is lk. Denote the preprocessed sample as xt. It
is then projected into each of the K feature spaces, giving
yk

t in the kth feature space, and classified in these feature
spaces respectively. After that, the following fusion scheme
is employed to combine the results obtained in the K feature
spaces.

The majority voting (MV) is one of the simplest and
most popular classifier fusion schemes. Take the Nearest
Mean Classifier (NMC) and the kth feature space as an ex-
ample. The NMC assigns xt to the class ck ∈ 1, 2, · · · , L
such that

‖yk
t − Mk

ck‖ = min
j∈{1,2,···,L}

‖yk
t − Mk

j ‖. (16)

In other words, it votes for the class whose prototype is clos-
est to yk

t . After classifying xt in all the K feature spaces,
we get K results {ck|k = 1, 2, · · · ,K}. Let Votes(i) be the
number of votes obtained by the class i, i.e.

V otes(i) = #{ck = i|k = 1, 2, · · · ,K}, (17)

where ’#’ denotes the cardinality of a set. The final class
label of xt is then determined to be c if

V otes(c) = max
i∈{1,2,···,L}

V otes(i). (18)

4 Face Recognition Experiments

The proposed algorithms have been assessed using face
recognition experiments. In this section, we will present our
comprehensive experiments.

4.1 The Face Databases

Two popular face databases, the Yale database and the
ORL database, were used. The images in Yale database
were cropped to retain only the face area and calibrated ac-
cording to the eye centers and the average face shape, while
those in ORL database were used directly. See the second
to fourth column of Figure 21 for details.

4.2 Parameter Settings

Several parameters are involved. As for these related to
the genetic algorithm, we set the probability of crossover to

0.8, the probability of mutation to 0.01, the size of popu-
lation to 100, and the number of generations to 200, based
on a series of experiments. The weight of the classifica-
tion accuracy term in the fitness function and the number
of bagging replicates are evaluated for various choices. The
results will be presented in the next sub-section.

All the sample images in each database were first ran-
domly divided into two parts: the training set and the test
set. In the experiments with EP (Evolutionary Pursuit)[3],
6 and 5 images were chosen from each subject for train-
ing on Yale and ORL databases respectively and the re-
maining ones were used for test. In the experiments with
DEFE, another validation set is further divided from the
whole training set. For all databases, we randomly chose
one sample out from the training samples of each subject to
create the validation set. The case was a little bit different
for the experiments with BEFE, where the division of train-
ing samples is on the class level (each subject is a class).
Specifically, a subset of classes were randomly chosen. The
samples belonging to these classes were used for training
whereas those belonging to the other classes composed the
validation set. From each class in the validation set, some
samples were randomly chosen to calculate the prototype
of that class and the remaining ones were used for evalua-
tion. The last three columns in Figure 21 summarize these
settings.

Figure 2. General Information Of The
Databases Used.

Totally, we created 5 pairs of training and test sets, ran
algorithms over them respectively, and calculated the recog-
nition rate for each algorithm.

4.3 Results

Then, we evaluate the classification performance of our
BEFE and compare it with the result of DEFE, EP.

We first evaluate the algorithms on the Yale database.
In the experiments, we use WPCA to reduce the data into
an (N-1), where N is the number of training samples, di-
mensional space before applying the EP. As for DEFE, we
test its performance using 0.0, 0.1, 0.2, · · · , 0.9, 1.0 as the
weight of fitness function respectively and take the best re-
sult among them. And in BEFE, the number of bagging

1From the first column to the last column: the name of the database,
the number of subjects, the size of images, the number of images per sub-
ject, the number of training samples per subject, the number of validation
samples per subject, and the number of test samples per subject.

Third International Conference on Natural Computation (ICNC 2007)
0-7695-2875-9/07 $25.00 © 2007

Authorized licensed use limited to: Hong Kong Polytechnic University. Downloaded on March 30, 2009 at 00:09 from IEEE Xplore. Restrictions apply.

(a) (b)

Figure 3. Recognition Rates on the (a)Yale
and (b)ORL Databases

replicates is set to 3, 5, 7 and 9 respectively, also taking the
optimal result. One thing should be mentioned that we con-
duct the tests on three spaces: null space of Sw, range space
of Sw, and range space of Sb. Figure 3(a) and Figure 4(a)
2 show the resulting recognition rates of the algorithms on
the Yale database. The results illustrate that in Experiment
1, the recognition rates of the BEFE(rSw), BEFE(rSb)
are a little lower than those of DEFE(rSw),DEFE(rSb),
but as for the other recognition rates, BEFE is better than
DEFE. Especially in the null space of Sw, all the recogni-
tion rates of BEFE(nSw) are much higher than those of its
competitive counterparts, including EP, some even achiev-
ing the best recognition rate of 100%.

We then compare the algorithms on the ORL database,
a database having more classes. The parameter settings are
the same as Yale database. Figure 3(b) and Figure 4(b)2 dis-
play the results. Just like the Yale database, in most cases,
BEFE overwhelms DEFE and EP. Here, one thing should be
pointed out that ORL database has 40 classes, much more
than the Yale database, thus resulting in the lower classi-
fication rates in DEFE(nSw) of the ORL database than
that of the Yale database as we mentioned in Section 2.
Thanks to BEFE, the performance of BEFE(nSw) in the
two databases are approximate.

According to above results, it is obvious that previ-
ous DEFE algorithm works poorer with small training
set. In most situations, the proposed BEFE(rSw) and
BEFE(rSb) perform better than those of DEFE. More-
over, the BEFE(nSw) obtains the best recognition rates
in almost all the tests and obviously it’s a stable method.
All these results testify the feasibility and advantages of the
BEFE algorithm proposed in this paper.

5 Conclusions

In this paper, we propose a new evolutionary approach
of feature extraction for classification, namely bagging evo-
lutionary feature extraction (BEFE). The previous DEFE
method provides an effective alternative way for classical
feature extraction methods like PCA and LDA widely used

2For each experiment of the two databases, from the first column to
the last column: BEFE(nSw), DEFE(nSw), BEFE(rSw), DEFE(rSw) ,
BEFE(rSb), DEFE(rSb) and EP.

0.6

0.65

0.7

0.75

0.8

0.85

0.9

0.95

1

1 2 3 4 5
Experiment

C
la

ss
ifi

ca
tio

n
R

at
e

BEFE(nSw) DEFE(nSw) BEFE(rSw) DEFE(rSw)
BEFE(rSb) DEFE(rSb) EP

(a)

0.6

0.65

0.7

0.75

0.8

0.85

0.9

0.95

1

1 2 3 4 5
Experiment

C
la

ss
ifi

ca
tio

n
R

at
e

BEFE(nSw) DEFE(nSw) BEFE(rSw) DEFE(rSw)
BEFE(rSb) DEFE(rSb) EP

(b)

Figure 4. 2Results on the (a)Yale and (b)ORL
Databases

in such real-world applications as face recognition and is
more applicable for high-dimensional data because of its
low space complexity. But when the training set is small
and there are many classes, it could suffer from the outlier
problem and will result in poor discrimination performance.
Our method can improve the performance of DEFE algo-
rithm. This has been well demonstrated by our extensive
face recognition experiments.

References

[1] L. Breiman. Bagging predictors. Machine Learning,
24(2):123–140, 1996.

[2] D. Goldberg. Genetic Algorithm in Search, Optimization,
and Machine Learning. Adison-Wesley, 1989.

[3] C. Liu and H. Wechsler. Evolutionary pursuit and its ap-
plication to face recognition. IEEE Transaction on Pattern
Analysis and Machine Intelligence, 22(6):570–582, 2000.

[4] M. Pei et al. Genetic algorithms for classification and feature
extraction. Presented at the Annual Meeting of the Classifi-
cation Society of North America, 1995.

[5] M. Raymer et al. Dimensionality reduction using genetic al-
gorithms. IEEE Transaction on Evolutionary Computation,
4(2):164–171, 2000.

[6] H. Vafaie and K. De Jong. Feature space transformation us-
ing genetic algorithms. IEEE Intelligent Systems and Their
Applications, 13(2):57–65, 1998.

[7] X. Wang and X. Tang. Random sampling for subspace
face recognition. International Journal of Computer Vision,
70(1):91–104, 2006.

[8] Q. Zhao et al. A fast evolutionary pursuit algorithm based
on linearly combining vectors. Pattern Recognition, 39:310–
312, 2006.

[9] Q. Zhao and H. Lu. GA-driven LDA in KPCA space for
facial expression recognition. In Lecture Notes on Computer
Science 3611, pages 28–36, 2005.

[10] Q. Zhao, D. Zhang, and H. Lu. A direct evolutionary feature
extraction algorithm for classifying high dimensional data.
Proceedings, Twenty-first National Conference on Artificial
Intelligence (AAAI), pages 561–566, 2006.

[11] W. Zheng et al. GA-Fisher: A new LDA-based face recogni-
tion algorithm with selection of principal components. IEEE
Transaction on Systems, Man, and Cybernetics - Part B: Cy-
bernetics, 35(5):1065–1078, 2005.

Third International Conference on Natural Computation (ICNC 2007)
0-7695-2875-9/07 $25.00 © 2007

Authorized licensed use limited to: Hong Kong Polytechnic University. Downloaded on March 30, 2009 at 00:09 from IEEE Xplore. Restrictions apply.

