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Abstract—This paper develops a log-likelihood-ratio-based
decoder for a generalized joint channel-coding-and-physical-
network coding used in a two-way relay system. Assuming that
the same low-density parity-check codes are used at the source
nodes, the proposed decoder shows identical error performance
as the probability-domain-based decoder but with a much lower
computational complexity.

Index Terms—Complexity, joint channel-coding-and-physical-
network coding, log-likelihood ratio, two-way relay

I. INTRODUCTION

Physical network coding (PNC) has been recently proposed
as an effective capacity-boosting approach for two-way relay
systems [1], in which two source nodes A and B wish to
exchange information with each other via a relay R. First, both
sources transmit their information to the relay simultaneously.
Based on the superpositioned signal received, the relay esti-
mates the XOR value between the information from A and that
from B. Then, the relay broadcasts the result to the sources.

In the presence of channel coding, several joint channel-
and-physical-network-coding (JCNC) schemes have been de-
veloped for such systems [2], [3]. We assume that the same
linear channel coding scheme is employed at the two sources.
The XOR value of the codewords from the two sources
is still a valid codeword. Consequently, the XOR-codeword
can be directly decoded from the received signal using the
same decoding algorithm. For example, a generalized JCNC
(GJCNC) scheme has been proposed to decode such code-
words at the relay [4], [5], [6]. In addition, the performance
of the GJCNC scheme using quadrature-phase-shift-keying
(QPSK) modulation has been investigated [7]. When the sum-
product algorithm (SPA) [8] in the probability domain (PD)
is used in the decoding process, superior bit-error-rate (BER)
performance of the GJCNC scheme has been demonstrated.
However, to the best of our knowledge, all the previous
GJCNC schemes are based on SPA in the PD, which is known
to involve lots of complex multiplications.

In this paper, we apply the SPA in the log-likelihood-
ratio (LLR) domain to the decoding of the GJCNC scheme.
We consider both the additive-white-Gaussian-noise (AWGN)
channel and the Rayleigh fading channel. We show that the
BER performance of the GJCNC scheme remains the same
whether decoding is performed in the PD (GJCNC-PD) or
in the LLR domain (GJCNC-LLR). We further compare the
decoding complexity of the GJCNC scheme in the two dif-
ferent domains under the aforementioned channel conditions.
We conclude that the GJCNC scheme has a considerably lower
decoder complexity in the LLR domain compared with the PD,
especially under the Rayleigh channels. We expect that when

higher-order modulation is used [7], the decoder complexity
in the LLR domain will be significantly lower than that in the
PD.

II. TWO-WAY RELAY SYSTEM

We consider a two-way relay system with two sources (A
and B) and one relay (R). Both sources are to obtain infor-
mation from each other with the assistance of the relay. Let
bA and bB, each of length M , denote the binary information
vectors of A and B, respectively. Assume that bA and bB
are encoded by the same linear channel code to form the
codewords cA and cB, each of length N , i.e., cA, cB ∈ {0, 1}N .
Hence the code rate equals Rc = M/N . Afterward, the
codewords are binary-phase-shift-keying (BPSK) modulated,
i.e., 0 → 1, 1 → −1, into xA and xB, which are transmitted to
the relay simultaneously over AWGN channels or Rayleigh
channels. In the following section, we briefly review the
GJCNC-PD scheme over AWGN channels.

A. System Model of PNC

The received signal yR at the relay is the linear superposi-
tion of the two transmitted signals plus noise and is thus given
by

yR = xA + xB + η (1)

where η denotes the noise vector whose elements are inde-
pendent and identically distributed (i.i.d.) zero-mean Gaussian
random variables with variance σ2

η. Based on yR, the relay
estimates ĉA⊕B = cA ⊕ cB, i.e., the XOR output of the two
source codewords cA and cB. Since the same linear encoding
scheme is used at the two sources, ĉA⊕B is a valid codeword
and can be decoded with the same algorithm used for decoding
cA and cB. Subsequently, ĉA⊕B is BPSK-modulated, which
is broadcasted to the sources in the broadcast stage. The
decoding performance at the relay is critical to the error
performance of the two-way transmission mechanism [4].

B. GJCNC-PD Decoding over AWGN Channels

Recall that cA, cB ∈ {0, 1}N and ĉA⊕B = cA ⊕ cB. We
further define c = cA + cB where + represents the mathe-
matical addition operator. We also use n = 1, 2, . . . , N as the
index of an element in a vector. Consequently, c(n) = 0 or 2
implies ĉA⊕B(n) = 0 while c(n) = 1 implies ĉA⊕B(n) = 1.
As explained in [4], the a-priori probabilities of c(n) = 0, 1
and 2 are 1/4, 1/2 and 1/4, respectively. For conciseness, we
denote gi as the probability that a certain c(n) equals 0, 1
and 2. Further, we define g = [g0, g1, g2]. Assuming that the
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same low-density parity-check (LDPC) code is used at the two
sources, g will be passed between the variable nodes (VNs)
and the check nodes (CNs) during the decoding process at the
relay [4], [5], [6]. In the PD, the decoding process is proceeded
as follows.

1) Initialization: For the received signal yR(n), the channel
messages for the n-th VN are computed by [4]

gi =


1

4
√
2πβ

exp
(
− [yR(n)+2(i−1)]2

2σ2
η

)
for i = 0, 2

1
2
√
2πβ

exp
(
− [yR(n)]

2

2σ2
η

)
for i = 1

(2)

where β is a normalization factor that ensures
∑2

i=0 gi = 1.
Note that for a punctured VN, the channel-message vector
is set to g = [0.25, 0.5, 0.25]. The message vectors are then
passed to the connected CNs. We denote the updating rules at
the CNs and at the VNs by CHK and VAR, respectively.

2) Message out of check nodes: Suppose a CN is connected
to three VNs. Denote the incoming messages from two VNs
by p = [p0, p1, p2] and q = [q0, q1, q2]. Then the outgoing
message to the third VN, denoted by u = [u0, u1, u2], is given
by [4, Eq.(21)]

u= CHK(p,q)

= [p0q0 + p2q2 +
1

2
p1q1, p1q2 + p2q1 + p1q0 + p0q1,

p0q2 + p2q0 +
1

2
p1q1] (3)

The outgoing messages for the other VNs can be computed in
a similar way.

Suppose the CN has a degree of dc > 3. Denoting the first
dc−1 incoming messages by p,q, r, . . ., the outgoing message
to the dc-th connected VN can then be computed recursively
using

u = CHK(p,q, r, . . .) = CHK(p,CHK(q,CHK(r, . . .))).
(4)

3) Message out of variable nodes: Assume that the n-th VN
is connected to two CNs. Denote the channel message by g and
the incoming message from the first CN by p. The outgoing
message to the second CN, denoted by v = [v0, v1, v2], is
given by [4, Eq.(17)]

v = VAR(g,p) = γ[4g0p0, 2g1p1, 4g2p2] (5)

where γ is a normalization factor that ensures
∑2

i=0 vi = 1.
Suppose the VN has a degree of dv > 2. Denoting the first

dv − 1 incoming messages by p,q, . . ., the outgoing message
to the dv-th connected CN can then be computed recursively
using

v = VAR(g,p,q, . . .) = VAR(g,VAR(p,VAR(q, . . .))).
(6)

4) PNC mapping: After a fixed number of iterations, the
elements in ĉA⊕B are determined to be 0 or 1. For the n-th VN,
the a-posteriori probability vector, denoted by Ξ = [ξ0, ξ1, ξ2],
is evaluated by taking all incoming messages from the CNs as
well as the channel message into consideration and substituting
them into (6). Then the PNC mapping is performed using the

following rule.

ĉA⊕B(n) =

{
1 if ξ1 > (ξ0 + ξ2)

0 otherwise
(7)

III. GJCNC-LLR DECODING OVER AWGN CHANNELS

In the GJCNC-PD scheme, many multiplication operations
are involved in the decoding process and hence the decoding
speed is limited. In this section, we describe a GJCNC-LLR
decoding scheme that is mathematically equivalent to the
GJCNC-PD scheme.

For a given probability vector g = [g0, g1, g2], we define a
corresponding LLR vector

g′ = [g′0, g
′
2] =

[
ln

(
g0
g1

)
, ln

(
g2
g1

)]
. (8)

Then the proposed GJCNC-LLR decoding scheme can be
proceeded as follows.

1) Initialization: Based on (2) and (8), it can be readily
shown that the channel LLR messages for the n-th VN can
be obtained using

g′i =
−2− 2(i− 1)yR(n)

σ2
η

, i = 0, 2. (9)

Moreover, for a punctured VN, the channel LLR message
vector is set to g′ = [g′0, g

′
2] = [ln(0.5), ln(0.5)]. We denote

the updating rules at the VNs and at the CNs by VAR′ and
CHK′, respectively.

2) LLR message out of CNs: We consider a CN of degree
3. We denote the input LLR messages from two VNs by
p′ = [p′0, p

′
2] =

[
ln
(

p0

p1

)
, ln

(
p2

p1

)]
and q′ = [q′0, q

′
2] =[

ln
(

q0
q1

)
, ln

(
q2
q1

)]
. Using (3) and (8), the output LLR mes-

sage u′ from this CN to the third VN can be calculated using

u′ = CHK′(p′,q′) = [u′
0, u

′
2] (10)

where

u′
0 = ln

(
p0q0 + p2q2 + 0.5p1q1

p1q2 + p2q1 + p1q0 + p0q1

)
= ln(ep

′
0+q′0 + ep

′
2+q′2 + 0.5)− ln(Ω) (11)

u′
2 = ln

(
p0q2 + p2q0 + 0.5p1q1

p1q2 + p2q1 + p1q0 + p0q1

)
= ln(ep

′
2+q′0 + ep

′
0+q′2 + 0.5)− ln(Ω) (12)

ln(Ω) = ln(ep
′
0 + ep

′
2 + eq

′
0 + eq

′
2). (13)

The outgoing messages for the other VNs can be computed
in a similar way. Furthermore, for CNs with degree larger
than 3, the outgoing messages can be evaluated by using (10)
recursively (see (4)).

We can see that the operation at the CNs is an extension
of the box-plus operator introduced for channel decoding in
GF(2) [10]. In addition, (11), (12) and (13) can be computed
by using the Jacobi logarithm [11], i.e.,

ln(ex1 + ex2) =max ∗(x1, x2)

=max(x1, x2) + ln(1 + e−|x1−x2|) (14)
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TABLE I
LOOK-UP TABLE FOR ln(1 + e−|x|)

|x| ln(1 + e−|x|) |x| ln(1 + e−|x|)
[0, 0.196) 0.65 [1.05, 1.508) 0.25

[0.196, 0.433) 0.55 [1.508, 2.252) 0.15
[0.433, 0.71) 0.45 [2.252, 4.5) 0.05
[0.71, 1.05) 0.35 [4.5, +∞) 0.0

and by applying

max ∗(x1, x2, x3) = max ∗(max ∗(x1, x2), x3). (15)

Note that the max ∗ operation includes a max term adding to
a logarithm correction term. In some of our simulation results,
we further reduce the computation complexity by realizing the
ln(1 + •) term with a small look-up table (LUT) having an
input of |x1 − x2| [11], as shown in Table I. In such a case,
the max ∗ operation is implemented using one comparison (for
the max term), one table look-up (for the ln(1+ •) term) and
one addition.

In such a case, the max ∗ operation is implemented using
one comparison (for the max term), one table look-up (for the
ln(1 + •) term) and one addition.

3) LLR message out of VNs: Suppose the n-th VN is
connected to two CNs. Denote the channel message by g′

and the incoming message from the first CN by p′. Using (5)
and (8), the outgoing LLR message to the second CN is given
by

v′ = VAR′(g′,p′)
= [v′0, v

′
2]

= [ln(2) + g′0 + p′0, ln(2) + g′2 + p′2]. (16)

For VNs with degree larger than 2, the outgoing LLR message
to each CN can be found by using (16) recursively (see (6)).

4) PNC mapping: For the n-th VN, we define the a-
posteriori LLR vector as Ξ′ = [ξ′0, ξ

′
2] =

[
ln
(

ξ0
ξ1

)
, ln

(
ξ2
ξ1

)]
.

Similar to Ξ in Sect. II-B-4), Ξ′ is evaluated by taking all
incoming LLR messages from the CNs as well as the channel
LLR message into consideration and by using (16) recursively.
Furthermore, we apply ln(eξ

′
0 + eξ

′
2) = max(ξ′0, ξ

′
2) + ln(1 +

e−|ξ′0−ξ′2|) (see (14)) and we assume that e−|ξ′0−ξ′2| ≈ 0 at
the end of the iterative process. Thus, combining the above
equations with (7), the PNC mapping based on the LLR
messages is given by

ĉA⊕B(n) =

{
1 if 0 > max(ξ′0, ξ

′
2)

0 otherwise
(17)

IV. GJCNC-LLR DECODING ALGORITHM OVER
RAYLEIGH CHANNELS

In this section, we describe the GJCNC-LLR decoding
algorithm for the PNC systems over Rayleigh fading channels.
We denote the fading coefficient between Source A and Relay
R as hA and that between Source B and R as hB . In a
noiseless environment, four possible signals, i.e., S(0) = hA+
hB ,S(1) = −hA + hB ,S(2) = hA − hB ,S(3) = −hA − hB ,
can be received at the relay. As explained in [5], the a-
priori probabilities of S(i) are the same, i.e., S(i) = 1/4 for

i = 0, 1, 2, 3. When noise η with zero mean and variance σ2
η

is added, the received signal ȳR(n) is given by

ȳR = hAxA + hBxB + η. (18)

Given that ȳR(n) is received, we denote gi as the probability
that the received signal should be S(i) (i = 0, 1, 2, 3) in the
absence of noise. Based on the PD decoding algorithm for
Rayleigh channels [5], we derive the GJCNC-LLR decoding
algorithm as follows.

1) Message Initialization: Denoting the initial LLR chan-
nel message of the n-th VN by ḡ = [ḡ0, ḡ2, ḡ3] =
[ln( g0g1 ), ln(

g2
g1
), ln( g3g1 )], we have

ḡi =
2(S(i)− S(1))ȳR(n) + S2(1)− S2(i)

2σ2
η

, i = 0, 2, 3.

(19)
Note that for punctured VNs, the initial LLR message is given
by ḡ = [0, 0, 0].

2) LLR message out of CNs: We consider a degree-
3 CN with the first two input LLR messages denoted by
p̄ = [p̄0, p̄2, p̄3] and q̄ = [q̄0, q̄2, q̄3]. Based on the updating
rule in the PD [5, eq.(17)], the outgoing LLR message from
the CN to the third VN, denoted by ū = [ū0, ū2, ū3], equals

ū0 = ln(ep̄0+q̄0 + ep̄2+q̄2 + ep̄3+q̄3 + 1)− ln(Λ) (20)
ū2 = ln(ep̄2+q̄0 + ep̄3 + ep̄0+q̄2 + eq̄3)− ln(Λ) (21)
ū3 = ln(ep̄3+q̄0 + ep̄2 + ep̄0+q̄3 + eq̄2)− ln(Λ) (22)

where Λ = ep̄0 + eq̄0 + eq̄2+p̄3 + eq̄3+p̄2 . The outgoing LLR
messages to the other two VNs can be calculated in a similar
manner. Moreover, for CNs with degree larger than 3, we can
apply the above calculations recursively. Note that (20) to (22)
can also be implemented by the Jacobi logarithm.

3) LLR message out of VNs: Suppose a VN has a degree
of 2. If the initial channel LLR message is denoted by ḡ =
[ḡ0, ḡ2, ḡ3] and the incoming LLR message from the first CN
is denoted by p̄ = [p̄0, p̄2, p̄3], the outgoing LLR message to
the second CN, denoted by v̄ = [v̄0, v̄2, v̄3], is given by

v̄i = ḡi + p̄i, i = 0, 2, 3. (23)

The outgoing LLR message to the other CN can be calculated
in a similar manner. Moreover, for VNs with degree larger
than 2, we can apply the above calculations recursively.

4) PNC mapping: Let Ξ̄ = [ξ̄0, ξ̄2, ξ̄3] denote the a-posteriori
LLR message for the n-th VN. Similar to Ξ in Sect. II-B-4),
Ξ̄ is evaluated by taking all incoming LLR messages from the
CNs as well as the channel LLR message into consideration
and by using (23) recursively. Finally, ĉA⊕B(n) is determined
using the following rule.

ĉA⊕B(n) =

{
1 if max(0, ξ̄2) > max(ξ̄0, ξ̄3)

0 otherwise
(24)

V. COMPUTATION COMPLEXITY AND ERROR
PERFORMANCE

Based on the algorithms described in Sect. II-B to Sect. IV,
we evaluate the number of operations required in each de-
coding iteration in the PD and in the LLR domain under
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TABLE II
NUMBER OF OPERATIONS REQUIRED PER ITERATION IN THE DECODING OF THE GJCNC SCHEME. PD: PROBABILITY DOMAIN; LLR:

LOG-LIKELIHOOD DOMAIN; VNU: VARIABLE-NODE UPDATING; CNU: CHECK-NODE UPDATING.

Operation Addition(+) Multiplication(∗) max∗

AWGN Channels

PD/VNU 0 3N(d̄v − 2) 0
PD/CNU 7M(d̄c − 2) 10M(d̄c − 2) 0

LLR/VNU 2N(d̄v − 2) 0 0
LLR/CNU 6M(d̄c − 2) 0 7M(d̄c − 2)

Rayleigh Channels

PD/VNU 0 4N(d̄v − 2) 0
PD/CNU 12M(d̄c − 2) 16M(d̄c − 2) 0

LLR/VNU 3N(d̄v − 2) 0 0
LLR/CNU 10M(d̄c − 2) 0 12M(d̄c − 2)

AWGN channels as well as Rayleigh channels. The results
are shown in Table II, where d̄v and d̄c denote the average
degrees of the VNs and the CNs, respectively. We can observe
that the GJCNC-PD decoder involves additions and multipli-
cations whereas the GJCNC-LLR decoder involves additions
and max∗ operations. In practice, the max∗ operation can
be implemented by a comparator (for the max operation),
a small LUT (for the ln(1 + •) function) and an addition.
Thus, the computation complexity of the GJCNC-LLR decoder
is dominated by the O(Md̄c) additions. On the other hand,
the computation complexity of the GJCNC-PD decoder is
determined by O(Md̄c) multiplications. Thus we conclude
that our proposed GJCNC-LLR decoder has a much lower
implementation complexity than the GJCNC-PD decoder in a
fixed point architecture. Note also that the LLR-based decoders
are less sensitive to the quantization effect compared to the
PD-based decoders [9].

In Fig. 1, we present the simulated BER performance of
the GJCNC-PD decoder, GJCNC-LLR decoder and GJCNC-
LLR(LUT) decoder. The codes used in our simulations are
the accumulate-repeat-by-3-accumulate (AR3A) protograph
LDPC codes with punctured VNs [12]. Moreover, the pa-
rameters used are [M,N ] = [512, 1024] and [1024, 2048].
Figure 1 shows that the proposed GJCNC-LLR decoder per-
forms the same as the GJCNC-PD decoder in terms of BER
under AWGN channels or Rayleigh channels. In addition, the
GJCNC-LLR decoder with a LUT performs equally well as
the other decoders under both types of channels.

VI. CONCLUSION

In this paper, a LLR-based decoding algorithm for the
GJCNC scheme over two-way relay networks has been devel-
oped. The proposed LLR-based decoder can be easily imple-
mented by using hardware to realize the addition operations,
max operations and simple table look-up operations. The error
performance of the proposed decoder has been considered and
simulated over AWGN channels and Rayleigh channels.
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