The Eventual Leadership in Dynamic Mobile Networking Environments

Jiannong Cao1, Michel Raynal2, Corentin Travers2, Weigang Wu1
1Department of Computing, The Hong Kong Polytechnic University
\{cjcao, cswgwu\} @comp.polyu.edu.hk
2IRISA, Campus de Beaulieu, 35042 Rennes Cedex, France
\{raynal, ctravers\}@irisa.fr

Abstract

Eventual leadership has been identified as a basic building block to solve synchronization or coordination problems in distributed computing systems. However, it is a challenging task to implement the eventual leadership facility, especially in dynamic distributed systems, where the global system structure is unknown to the processes and can vary over time. This paper studies the implementation of a leadership facility in infrastructured mobile networks, where an unbounded set of mobile hosts arbitrarily move in the area covered by fixed mobile support stations. Mobile hosts can crash and suffer from disconnections. We develop an eventual leadership protocol based on a time-free approach. The mobile support stations exchange queries and responses on behalf of mobile hosts. With assumptions on the message exchange flow, a correct mobile host is eventually elected as the unique leader. Since no time property is assumed on the communication channels, the proposed protocol is especially effective and efficient in mobile environments, where time-based properties are difficult to satisfy due to the dynamics of the network.

1. Introduction

In asynchronous distributed systems, there is no bound on the time for a process to execute a computation step, or for a message to be delivered. Due to such timing uncertainty, solving coordination problems, e.g. consensus and mutual exclusion [10], is a difficult and complex task. For example, the consensus problem [10] has been proved to be impossible to solve in an asynchronous system with even one crash failure [17].

To overcome the difficulty introduced by timing uncertainty and process crashes, the concept of unreliable failure detector has been introduced [9]. A failure detector can be viewed as an oracle [32] made up of a set of modules, each associated with a process. The failure detector attached to a process provides hints on the status (alive or crashed) of other processes. A failure detector is defined by abstract properties and does not depend on any particular assumption on the behavior of the underlying network. Among different failure detectors defined in [9], the eventual leader, denoted by \(\Omega\), is one of the most important classes. An \(\Omega\) leader provides the processes with a leader primitive that outputs a process \textit{id} each time it is invoked and satisfies the following eventual leadership property:

\textit{Eventual leadership:} eventually, all invocations return the same \textit{id}, and that \textit{id} is the identity of a correct process (i.e. a process that does not crash during the execution of the protocol).

\(\Omega\) is not very powerful in terms of the capability of detecting failures, since a correct leader is eventually elected but there is no knowledge on when this occurs. However, it has been shown that \(\Omega\) is the weakest class of failure detectors that allows solving the consensus problem (provided that a majority of correct processes) [10]. Based on \(\Omega\), many consensus protocols [10, 21, 29] have been proposed. \(\Omega\) is also at the heart of the well-known Paxos algorithm [23] and its improvements [14, 20, 22] to cope with dynamic systems.

A large number of researches [3, 4, 9, 12, 24, 26] have been conducted to implement the oracle \(\Omega\) in a classical asynchronous distributed computing model, which is characterized by the following attributes. The system is made up of \(n\) processes and \(n\) is fixed and known by each process; each process has a unique identity and knows the identities of other processes; there is no bound on the time it takes for a process to execute a step or for a message to travel from its sender to its destination.

In recent years, a major advance in distributed computing is the development of dynamic systems [2, 27, 18, 31], e.g. mobile computing systems and peer-to-peer systems, where processes can join or leave the
system at any time and the number of participating processes can change arbitrarily as time passes. The inherent dynamic nature of processes introduces a new kind of uncertainty, namely structure uncertainty: the global structure of the network is unknown to the processes. This additional difficulty makes the design of coordination protocols even more challenging than in classical distributed systems.

This paper investigates the implementation of Ω in dynamic mobile networking environments with mobile hosts\(^1\) (MHs for short) and mobile support stations (MSSs for short). MHs, which are usually small devices with low computation power and stand alone energy sources, are connected to MSSs using wireless communications [7, 8]. Due to mobility, an MH can change its location arbitrarily and enter or leave the area covered by the MSSs. Moreover, to save energy, an MH may voluntarily disconnect from the network. This means that at any time, the mobile processes that form the system are unknown to MHs and MSSs.

To implement Ω in a dynamic mobile network, we adopt a time-free approach [28, 30] proposed for traditional fixed networks and extend it to the context of mobile networking environments. We let MSSs act as servers that provide an eventual leadership service to the MHs. More precisely, MSSs conduct the exchange of queries and responses using the query-response mechanism in [28, 30], in order to elect an eventual unique leader MH (it is important to notice that an MH rather than an MSS can be elected as the leader, because the leadership is for upper layer applications at MHs. MSSs are usually owned by network operators and cannot participate in the execution of end user applications). Such a treatment can reduce the workload of MHs and consumption of various resources, e.g. battery power and bandwidth.

However, with such a design, the query-response mechanism in [28, 30] cannot be directly used. First, the eventual leader is an MH but it is elected by MSSs, so the MSSs must be provided a view of MHs. To do so, we assume that each MSS is equipped with a device/module that provides it with partial information about the MHs that are present in the system. More precisely, each MSS \(b_i\) is provided with a set \(\text{local}_i\) of mobile process identities that represents \(b_i\)'s current view of the MHs that are currently present in the system.

Another problem is that the assumption in [28, 30] becomes unreasonable in the mobile system. MHs may move from one cell to another, so it is impossible that, after some finite time, an MH is always accessible by some specific set of MSS. Therefore, the assumption of the host \(p\) and set \(Q\) does not make sense any more.

To address these problems, we develop a two-phase query-response mechanism. With some additional assumption on the local trust, we implement Ω in a dynamic mobile system. Since no assumption is related to the time property of the message passing channel, the proposed protocol is time-free, so it is especially suitable for mobile networks, where time properties are difficult to satisfy.

The rest of the paper is organized as follows. Section 2 reviews existing work on the implementation of the eventual leader facility Ω. Section 3 presents the system model, i.e. the dynamic mobile networking environment. In Section 4, we describe the formal definition of the eventual leadership with respect to the system model, and the additional assumption \(\text{MP}_\text{on}\). Our proposed eventual leadership protocol and the proof of its correctness are presented in Section 5. Finally, Section 6 concludes the paper.

2. Related work

The implementation of the oracle Ω in static/classical asynchronous systems has motivated a large body of researches [3, 4, 9, 12, 24, 26]. The first approach investigated in [9, 12, 24] considers that all the links connecting the processes are eventually timely. This means that after some time \(\tau\), each message reaches its destination in at most \(\delta\) units of time. Both \(\tau\) and \(\delta\) are unknown to the processes [13]. This approach has been refined to obtain weaker constraints. It has been shown in [3, 4] that Ω can be implemented in a system where at least one correct process has at least \(s\) eventually timely outgoing links (this is defined as \(s\)-source).

Interestingly, a step ahead has been taken in [26], where the notion of eventual \(s\)-accessibility is introduced. Informally, a process \(p\) is \(s\)-accessible at some time if messages sent by \(p\) at that time are received within \(\delta\) units of time by a set \(Q\) of at least \(s\) processes. The interest of this notion lies in the fact that the set \(Q\) of processes that “witness” \(p\) can be different at different time.

A time-free approach [28, 30] implements the eventual leadership using a query-response based mechanism. There are totally \(n\) processes in the system and at most \(t\) of them can fail (by crashing only). The solutions in [28, 30] rely on an assumption on the behavior of the flow of message exchange. More precisely, processes broadcast queries and then wait for responses from other processes. The first \(n-t\) responses received are winning responses (the other responses, if any, are called losing responses; they can be slow or

\(^1\) In this paper, we use the terms “process” and “host” interchangeably.
never sent due to the crash of the sender). It is shown in [30] that \(\Omega \) can be built if the following behavioral property is satisfied: “there is a correct process \(p \) and a set \(Q \) of \(t + 1 \) processes such that eventually each response of \(p \) to each query issued by any \(q \in Q \) is always a winning response”. Intuitively, this means that for \(q \in Q \), the link connecting \(q \) to \(p \) is not among the \(t \) slowest links of \(q \).

Another approach investigated in [6, 11] considers reducing \(\Omega \) to other failure detector classes. This approach is mainly theoretical: it aims at comparing and ranking different failure detector classes.

In the context of dynamic systems, little work has been done for the implementation of the eventual leadership. Friedman et al. [19] evaluate the gossip based failure detection in mobile ad hoc networks. An eventual leadership protocol is proposed in [31], but the proposed protocol can be viewed as a pedagogical example and is not suitable for mobile environments.

3. Computational model

The mobile networking environment consists of two distinct sets of entities: a set of MHs and a set of fixed hosts, i.e. MSSs. The set of MSSs and the communication channels among them form a static distributed system. On the other hand, the mobile processes can be viewed as a dynamic system. The MHs move in a geographical area, which is partitioned into cells. Each cell is covered by one MSS and MHs can only communicate with the MSS responsible for the cell in which it is located (and vice versa). An MH is connected to the system if and only if it is up and running and located in a cell covered by an alive MSS.

For the ease of the exposition, we assume the existence of a global discrete clock. This clock is a fictional device which is not known to the processes; it is only used to state specifications or prove protocol properties. The range \(T \) of clock values is the set of natural integers.

3.1 Mobile support stations: a static asynchronous distributed system

The set of MSSs and its underlying communication network is modeled as a static asynchronous system. The network of MSSs is made of a finite set of \(n \geq 2 \) fixed processes, namely, \(B = \{b_1, ..., b_n\} \). Each MSS knows the identities of all MSSs. An MSS may correspond to a base station in the cellular network or a mesh router node in a wireless mesh network [5]. An MSS can fail by crashing, i.e., prematurely halting but it behaves correctly (i.e., according to its specification) until it possibly crashes. A process \(b_i \) is correct in a run of the leader election protocol if it does not crash in that run, otherwise it is faulty. We assume that a majority of MSSs are correct. In this paper, we use the following notations concerning the set \(B \) of MSSs:

- \(t \) denotes the maximum number of processes that can crash in a run \((1 \leq t < n/2) \).
- \(C \subseteq B \) is the set of MSSs that are correct in a run.

MSSs communicate by sending and receiving messages through reliable yet asynchronous channels. Each pair of MSSs \(\{b_i, b_j\} \) is connected by a wired or wireless channel. Channels are reliable, i.e. they do not alter, create or lose messages. However, channels are asynchronous: the time to transfer a message from \(b_i \) to \(b_j \) is finite but unbounded.

Moreover, we consider that each MSS is provided with a query-response mechanism, which is the underlying communication approach used in our protocol. Such a query-response mechanism can be easily implemented in a time-free manner on top of a static asynchronous distributed system. More precisely, any MSS \(b_i \) can broadcast (to other MSSs) a \(\text{QUERY}() \) message and then wait for corresponding \(\text{RESPONSE}() \) messages from \(n-t \) MSSs (these are the winning responses for that query). The other \(\text{RESPONSE}() \) messages associated with the query, if any, are systemically discarded (they are the losing responses for that query).

A query issued by \(b_i \) is terminated if \(b_i \) has received \(n-t \) responses. We assume that a process issues a new query only when the previous one has terminated. Without loss of generality, the response from a process to its own query is assumed to always arrive among the first \(n-t \) responses it is waiting for. Moreover, \(\text{QUERY}() \) and \(\text{RESPONSE}() \) are assumed to be implicitly tagged in order not to confuse \(\text{RESPONSE}() \) messages corresponding to different \(\text{QUERY}() \) messages.

3.2. Mobile hosts: a dynamic system

Each mobile process has a unique identity. \(m_i \) denotes the MH whose identity is \(i \). Like MSSs, MHs are asynchronous and suffer from crash failures. The system has infinitely many MHs \(M = \{m_1, m_2, ... \} \). However, the join and leave of MHs satisfy the finite arrival model [2, 27], and each run of the protocol has only finitely many MHs. This means that there is no bound on the number of MHs for all runs but there is a bound on the number of MHs in each run. A protocol does not know that information because it varies from run to run.

An MH is connected only if it is located in a cell covered by some MSS that it is associated with. An MH can directly communicate with only the MSS located in its current cell. Messages between two MHs
must be forwarded by corresponding MSSs. When an MH moves from one cell to another, a handoff procedure is then executed.

We use the following notation concerning the set M of MHs:

- $up(\tau) \subseteq M$ is the set of MHs that are connected to the system at time τ (i.e., $up(\tau)$ is the set of MHs that joined the system before time τ and no associated crash or disconnection occurs before time τ).

4. Problem definition and additional assumptions

Before we formally define the eventual leadership in the model described in system model described above, we first introduce the assumption on the stability of the system. The set of MHs is inherently dynamic. However, if each MH periodically join and then leave the system, being connected only for a short period (i.e., the system is unstable), it is not possible to elect an MH. Therefore, the system should exhibit stable periods that last long enough. The following set definition captures this notion of stability [18, 31]:

- $STABLE = \{m_i; \exists \tau s.t. \forall \tau' \geq \tau, m_i \in up(\tau')\}$. $STABLE$ is the set of MHs that, once have entered the system, do not crash or get disconnected.

The set $STABLE$ is the dynamic counterpart of the set C of correct processes defined in the context of static models. For our purpose, $STABLE \neq \emptyset$ is a necessary condition.

Then, the leadership of the leader oracle Ω can be defined as follows:

- **Eventual Leadership**: There is a time τ and a MH $m_i \in STABLE$ such that after τ, any invocation of leader() by any process m_i returns l.

As shown in [30], a leader oracle cannot be implemented in purely asynchronous systems where processes may crash. Therefore, some assumptions are needed to circumvent this impossibility. We suppose that each MSS b_i is able to gather partial knowledge about the presence of MHs in the system. We define the information available to MSSs in the failure detector framework [9].

We assume that each MSS b_i is equipped with a local failure detector that provides a set $local_trust \subseteq M$, which provides hints on MHs that are currently up and connected. More precisely, at each MSS b_i, the set $local_trust_i$ satisfies the following properties ($local_trust_i^{\tau}$ denotes the value of $local_trust_i$ at b_i at time τ):

- **Eventual Accuracy**: $\exists m \in STABLE; \exists \tau$ such that $\forall \tau' \geq \tau, m \in \bigcup_{i \in C} local_trust_i^{\tau}$.

- **Completeness**: If an MH m never joins the system, crashes or permanently leaves the system, then, $\exists \tau$ such that $\forall \tau' \geq \tau, m \notin \bigcup_{i \in C} local_trust_i^{\tau}$.

The accuracy property requires that eventually, at least one stable MH m is continuously trusted by the MSSs. Let us notice that it is not necessary that the same MSS permanently trusts m. On the contrary, we only require that after some time τ, $\forall \tau' \geq \tau$ there exists a correct MSS $b(\tau)$ that trusts m. Let $\tau < t_1 < t_2 < \ldots$ be a sequence of time instants greater than τ. It is possible that $b(\tau_1) \neq b(\tau_2) \neq b(\tau_3) \ldots$. The completeness property requires that an MH that crashes or permanently leaves the system is eventually no longer trusted by any MSS.

Note that this failure detector does not provide much information on MHs present in the system. It only guarantees that eventually, at least one stable MH m is trusted by some MSS at each time instant, but it is possible that the $local_trust$ sets permanently disagree.

Since communications among MSSs are asynchronous and an MSS may have a different $local_trust$ set at each time instant, MSSs cannot agree on the stable MH that they trust.

Moreover, our protocol depends on the following additional assumption, called MP_{dyn}. There is a stable MH m and a time τ (m and τ are not known in advance) such that at any time instant $\tau' \geq \tau$ there exists a set $Q^i \subseteq B$ that satisfies the following property:

- $\forall \tau' \geq \tau, |Q^i| \geq 2\tau + 1$.

- $\forall b \in Q^i$; if b has not crashed by time τ', $m \in local_trust_i^{\tau'}$.

The assumption MP_{dyn} states that, eventually, there is a set of $2\tau + 1$ MSSs that trust the same MH. Moreover, this set can continuously change over time.

One concern is how to guarantee the assumption MP_{dyn}. One possible solution is to deploy a multiple coverage mobile network [1, 15, 16, 25]. Each point in the territory is covered by at least $2\tau + 1$ MSSs rather than only one MSS. Then, each MH keeps contact with at least $2\tau + 1$ MSSs simultaneously.

5. A leadership facility for mobile networks

In this section, we first describe the operations of our protocol and then provide the correctness proof of the protocol.

5.1. Description of the protocol

The pseudocode of our protocol is shown in figures 1 and 2. “τ” is a special symbol that represents the whole universe of the mobile processes. Moreover, $\tau \cap A = A$ (where A is any set of mobile processes). Our protocol extends the approach that previously appears
in [11, 30, 31]. The MSSs act as servers to provide an eventual leadership service to the mobile processes. Each MSS \(b_i \) maintains a set \(trust_i \), which consists of the MHs that are “globally” trusted by all MSSs in the view of \(b_i \). Each \(trust_i \) set is associated with a sequence number \(s_n_i \). \(s_n_i \) is a logical date defining the “age” of \(trust_i \).

The protocol consists of two tasks running in parallel at each MSS. Task \(T_1 \) is the core task in which each process initiates sequential queries and waits for corresponding responses. Task \(T_2 \) is triggered by the reception of messages. It implements the response mechanism associated with the queries: when a process \(b_i \) receives a query, it sends back a response carrying values with respect to the type of query received (lines 11 and 17).

An MSS \(b_i \) collects \(local_trust \) sets of other processes by sequentially issuing two-phase query-responses and then updates its \(trust_i \) based on the responses. In the first phase, \(b_i \) broadcasts a \(PH1_QUERY \) and then waits for the response. When a process \(b_i \) receives such a query, it sends back a \(PH1_RESPONSE \) and starts recording the identities of processes that it locally trusts until it receives a \(PH2_QUERY \) from \(b_i \). After \(b_i \) has collected response \(PH1_RESPONSE \) from at least \(n-t \) MSSs, it enters the second phase by broadcasting a \(PH2_QUERY \) with < \(s_n_i , trust_i , > \) and then waits for response.

When an MSS \(b_i \) receives a pair \(<s_n_i, trust_i,>\) (line 12), it updates \(trust_i \) according to the respective values of \(s_n_i \) and \(trust_i \). If they are equal, it updates the set of trusted mobile processes to \(trust_i \cap trust_j \) (line 13). If \(s_n_i \) is greater, i.e., its current knowledge is too old, it adopts the set received (line 14). Otherwise, it discards the message received. If \(b_i \) then discovers that its set \(trust_i \) is empty, \(b_i \) increases its sequence number \(s_n_i \) and resets \(trust_i \) to its initial value (line 15).

Then, \(b_i \) sends \(b_j \) a \(PH2_RESPONSE \) message, which carries the identities of the mobile processes that have been locally trusted by \(b_i \) since it has received the corresponding \(PH1_QUERY \) of \(b_i \) (lines 16-17).

After \(b_i \) has collected \(PH2_RESPONSE \) from at least \(n-t \) MSSs, it updates its \(trust_i \) set based on the responses collected in the two phases, i.e.,

\[
trust_i \leftarrow trust_i \cap (\bigcup_j PH1_repi \bigcap PH2_repi \bigcap LOCAL_TRUSTj)
\]

After one or more query-response cycles, there eventually exists a finite age, after which the \(sn \) values no longer increase and the sets \(trust \) are (and remain) non-empty and equal. They actually converge towards a subset of the \(STABLE \) set. The mobile process in these \(trust_i \) sets with the smallest identity is then elected as the leader.

To see why this two-phase query-response cycle is necessary, let us assume that, if a process \(b_i \) received a query at a time \(\tau \), it sends back a response message that contains the value of \(local_trust \) at time \(\tau \). \(b_i \) collects \(local_trust \) sets of \(n-t \) MSSs, but these sets may have been “seen” at distinct times. Since the set \(Q \) of “witness” processes defined in property \(MP_{dyn} \) can change over time, it is possible that the \(local_trust \) sets collected by \(b_i \) does not satisfy any global property, even if the property \(MP_{dyn} \) is established. On the contrary, we will show in the proof that this two-phase query-response mechanism guarantees that the sets \(REC_FROM \) (i.e., the union of \(local_trust \) collected, line 07) eventually satisfy a global property. More precisely, Lemma 1 states that there exists a stable
mobile process that eventually is always contained in any REC_FROM sets.

5.2. Correctness proof

In the following, x'_i denotes the value of the local variable x of process p_i (MH or MSS) at time r. Given an execution, C is the set of MSSs that are correct in that execution. STABLE is the set of MHs that, after having entered the system, do not crash nor be disconnected.

Lemma 1. There is a time τ and a stable MH m (i.e., $m \in STABLE$) such that every REC_FROM set computed (at line 07) after τ is such that $m \in REC_FROM$.

Proof. Given an execution that satisfies the MP$_{dyn}$ assumption, there is a time τ_0 and an MH $m \in STABLE$ such that the following holds: $\exists \varphi \in \tau_0$, there exists a set $Q \subseteq \varphi$ such that (1) $|Q| \geq 2r+1$ and (2) $\forall b_i Q^j$: m belongs to local_i trust j, or b_i has crashed before time τ.

Let us consider an MSS b_i that starts a query (at line 02) after τ_0. Let b_i be an MSS such that $j \in \text{PH1_rec} \cap \text{PH2_rec}$. This means that, for each phase of the query issued by b_i, the responses messages sent by b_i arrived among the first $n-1$ ones at MSS b_i. Let τ_{start} be the time instant at which the PH1_QUERY from b_i is delivered to b_j and τ_{end} be the time at which b_j sends back the PH2_RESPONSE message. Note that the PH2_RESPONSE message sent by b_j carries the identities of all the MHs that has been trusted at least once by b_j during the time interval $[\tau_{start}, \tau_{end}]$ (lines 16-17).

The rest of the proof relies on the following observations: Observation 01: $|\text{PH1_rec} \cap \text{PH2_rec}| \geq n-2t$ and Observation 02: $\exists \tau$ time instant such that $\forall j \in \text{PH1_rec} \cap \text{PH2_rec}, \exists (\tau_{start}, \tau_{end})$.

Let us consider the set REC_FROM computed by b_i after completing its query. This set is the union of the MHs that has been trusted by the MSSs $b_j \in \text{PH1_rec} \cap \text{PH2_rec}$ at some time instant between the beginning and the end of the two phase query of b_i. Let τ_i be the time instant introduced in O2. In particular, $\bigcup_j \text{PH1_rec} \cap \text{PH2_rec} \text{local}_j\text{trust}^i \subseteq \text{REC_FROM}$. As $\tau_i \geq \tau_0$, it follows from the assumption MP_{dyn} that there exists at time τ_i a set Q^{ℓ} of at least $\geq 2t+1$ MSSs that either has crashed or trust m at time τ_i. Since $|\text{PH1_rec} \cap \text{PH2_rec}| \geq n-2t$ (01), it follows that $Q^{\ell} \cap (\bigcup_j \text{PH1_rec} \cap \text{PH2_rec} \text{local}_j\text{trust}^i) \neq \emptyset$, from which we conclude that REC_FROM. We have shown that there exists a time τ_i after which any REC_FROM set computed by b_i contains the identity of the stable mobile m. Taking $\tau_{max} = \max \{\tau_i \mid i \in B\}$ completes the proof.

Observation 01. For any MSS b_i that initiates and completes a two phases query, $|\text{PH1_rec} \cap \text{PH2_rec}| \geq n-2t$.\[r \geq 1\]

Observation 02. Let b_i be an MSS that initiates and completes a two-phase query:

$\bigcap_j \text{PH1_rec} \cap \text{PH2_rec} \left[\tau_{start}, \tau_{end}\right] \neq \emptyset$

Due to the limit in space, we do not present the proof of the two observations in this paper.

Lemma 1. $\exists \text{SN}, \exists \tau$ such that, $\forall i \in B, \forall \tau' \geq \tau$ if $i

Proof. Let τ_0 be a time such that (1) all faulty MSSs have crashed and (2) all messages sent by faulty MSSs have been delivered. Let τ_i be the time defined in Lemma 1 and let $\tau_{clean} = \max(\tau_0, \tau_i)$. The idea is that after time τ_{clean} the system exhibits a “clean” behavior.

Let SN_{clean} be the maximal sequence number s_n among the correct MSSs b_i at time τ_{clean}. Moreover, let say “the set trusted is associated with the sequence number s_n” if there is a correct MSS b_i such that $s_n = s_i$ (let us observe that several sets can be associated with the same sequence number).

Claim C1. Let us assume that \emptyset is associated with SN_{clean}. There is then: (1) an MSS b_i that executes the reset statement at line 15, after which we have $(b_i, s_n) = (\tau, \text{SN}_{clean} + 1)$, and (2) the pair $(\tau, \text{SN}_{clean} + 1)$ is sent to all MSSs.

Due to the limit in space, we do not provide the proof of Claim C1 in this paper.

We now show that $\text{SN} = \text{SN}_{clean}$ or $\text{SN} = \text{SN}_{clean} + 1$. According to the definitions of SN_{clean} and SN_{clean}, there exists a correct MSS b_i such that $s_n = \text{SN}_{clean}$. Due to the gossiping mechanism, after some time we will have $s_n \geq \text{SN}_{clean}$ for each $b_i \in C$. We consider two cases:

- **Case 1**: \emptyset is never associated with SN_{clean}. In that case, no correct MSS b_i will ever execute the reset statement at line 15. It follows that no MSS b_i will increase its s_n variable, and the lemma follows.

- **Case 2**: \emptyset is associated with SN_{clean}. From Claim C2, there is an MSS b_i that eventually executes the reset statement at line 15, after which we have $(b_i, s_n) = (\tau, \text{SN}_{clean} + 1)$, and this pair is sent to all the correct MSSs. This means that after some time, each MSS b_i will be such that $s_n \geq \text{SN}_{clean} + 1$. As this occurs after time τ_i, the time defined in Lemma 1, it follows that, from now on, any set trusted permanently contains the stable MH m defined in Lemma 1. This is because each time b_i updates its set of trusted MHs (line 08), it intersects trust i, which has been reset to τ (the whole universe of MHs) with REC_FROM, that always contains m. Consequently, no PH2_QUERY$(\emptyset, \text{SN}_{clean} + 1)$ is
sent. Hence, no MSS can execute the reset statement at line 15, from which we conclude that no sequence number >SN<clean>+1 can be generated and the lemma follows.

\[\text{Lemma 2.} \]

Theorem 1. In any execution that satisfies the MP_{dyn} assumption, the protocol described in Figure 1 implements a leader facility in a mobile networking environment.

Proof. Given a run that satisfies MP_{dyn}, let PL = \(\cap\{\text{trust}_i; b_i \in \text{C trust}_i \text{ is associated with } SN\}\), where SN is defined in Lemma 2.

We first show that PL ≠ Ø. Due to lemma 2, no sequence number greater than SN can be generated. This implies that PL cannot be associated with SN. Moreover, it follows from Lemma 1 and updates of trust, (line 08) that any trust_i associated with SN contains the stable MH m introduced in Lemma 1.

We now show that PL ⊆ STABLE. This is a consequence of the completeness property satisfied by the local_trust_i. More precisely, the completeness property states that an MH that crashes or gets disconnected from the system is eventually no longer locally trusted by each MSS b. Consequently, there is a time after which every REC_FROM does not contain crashed or disconnected MHs. Therefore, there is a time after which the REC_FROM contains only stable hosts. Moreover, as the trust_i sets are never reset to τ_i, it follows that, after that time, these trust_i sets can contain only stable MHs.

Finally, there is a time \(\tau\) after which we have \(\forall i \ C \text{ trust}_i = PL\). This is a consequence of the finite arrival model (after some time, no more MH join the system) and the gossiping mechanism (lines 04 and reception of PH2_QUERY in task T_i). Let us consider an invocation made after \(\tau\) of leader() that returns \(m_i\). We have \(m_i = \min(\text{trust}_i)\) where \(i\) is the identity of some correct MSS. Since trust_i = PL ⊆ STABLE, it follows that any of these invocations returns the same stable MH.

\[\text{Theorem 1.} \]

6. Conclusions and future work

This paper investigates the eventual leader oracle \(\Omega\) in the context of dynamic mobile networking environments, where MHs are associated with fixed mobile support stations to communicate with one another. MHs can join and leave the system at any time and the number of participating hosts can change arbitrarily as time passes. To implement \(\Omega\), we let MSSs act on behalf of MHs to select an eventual unique MH as the leader. MSSs conduct the message exchange using a two-phase query-response mechanism in order to elect an eventual unique leader. Such a design can reduce the workload of MHs and the consumption of various resources, e.g. battery power and bandwidth. Since no assumption on the time property of processing speed or message delay, the proposed protocol is time-free and consequently especially attractive for mobile networks.

In future, we will evaluate the performance of our proposed protocol and compare it with similar work. Both numerical analysis and experimental simulations would be conducted.

Acknowledgements. This research is partially supported by Hong Kong University Research Grant Council under the CERG grant PolyU 5183/04E and France/Hong Kong Joint Research Scheme F-HK16/05T.

References

