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Abstract: The availability of accurate empirical models for multi-step-ahead 
(MS) prediction is desirable in many areas. Some ANN technologies, such as 
multiple-neural-network, time-delay neural network (TDNN), and adaptive 
time-delay neural network (ATNN), have proven successful in addressing 
various complicated problems. The purpose of this study was to investigate the 
applicability of neural network MS predictive model. Motivated by the above 
mentioned technologies, we proposed a hybrid neural network model which 
integrated characteristics decomposition units, and a dynamic spline 
interpolation unit into the multiple ATNNs. Inside the net, the regular and 
certain information were extracted to ATNN, while both time delays and 
weights were dynamically adapted. The yearly average of the sunspots, which 
has been considered by geophysicists, environment scientists, and climatologists 
as a complicated nonlinear system, was selected to test hybrid model. 
Comparative results were presented between traditional MS predictive model 
based on TDNN and the proposed model. Validation studies indicated that the 
proposed model is quite effective in MS prediction, especially for single factor 
time series. 
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1 Introduction 

 
Multi-step-ahead (MS) is a classical model predictive algorithm with which at any 
given time the process outputs can predict time series values of many time-steps 
into the future. In most of the published literature, single-step (SS) prediction was 
used although reliable MS prediction has important applications ranging from 
system identification to ecological modeling. This can be attributed to several 
reasons (Parlos et al., 2000). The lack of measurements in the prediction horizon 
necessitates the recursive use of SS predictors for reaching the end-point in the 
horizon. Even small SS prediction errors at the beginning of the horizon 
accumulate and propagate, often resulting in poor prediction accuracy. The 
situation is even worse for complex systems which are characterized by poorly 
understandable, noisy and often nonlinear dynamics. Furthermore, the presence of 
one or more independent process inputs increases the dimensionality of the input 
space, resulting in a challenging MS prediction problem. The use of linear model 
structures for MS prediction has been proven unsatisfactory in real-world 
applications. 

One of the earliest attempts in using neural networks for long-range (or 
multi-step) prediction was reported by Su et al. (1992). Schenker proposed a 
method for training two distinct networks in order to perform long-range prediction 
(Schenker et al., 1995), in which feedforward networks were used in a feedback 
configuration. A neural network in a nonrecursive form based on MS prediction 
was presented by Yang et al. (1997). Prasad et al. (1998) employed a multivariable 
long-range predictive control strategy based on a neural network and detailed its 
application for power plant control. Atiya et al. (1999) presented the comparison of 
various neural methods for MS prediction in time-series. Two approaches to MS 
prediction were found to attain promising performance. The recurrent neural 
network was proven to be able to improve MS-based prediction. (Khotanzad et 
al.,1994; Parlos et al., 2000; Bone et al.2002) whilst Zhang et al. (1998) and 
Duhoux et al. (2001) improved long-term (which is equivalent to MS) prediction 
by utilizing a combined neural networks. Ahmad et al. (2002) also illustrated that 
combining multiple-neural-network can improve long range (MS) prediction for 



nonlinear process modeling. In summary, accurate long range predictions can be 
obtained from recurrent neural networks or combined neural networks. However, 
training of a recurrent neural network is usually very time consuming and a single 
recurrent neural network might lack in robustness (Ahmad et al., 2002). In view of 
these, a combined multiple-neural-network was selected as model primary 
architecture in this study.  

In general, there is no assurance that any individual model has extracted all the 
relevant information from the data set. Wolpert (1992) proposed the idea of stacked 
generalization to combine multiple models. Sridhar et al. (1996) implemented the 
stacked generalization for neural network models by integrating multiple neural 
networks into an architecture known as stacked neural networks (SNNs). Among 
different SNNs-based approaches, the combination of multiple-neural-networks 
shows some encouraging results by improving the overall prediction properties 
(Hashem, 1997; Sharkey, 1999; Sridhar et al.1999; Zhang, J., 1999; Ahmad et al., 
2002).  

Time-Delay neural network (TDNN), introduced by Waibel (1989) and 
employed time delays on connections in feedforward networks, has been 
successfully applied in many areas (Haffner et al., 1992; Yamashita, 1997; Ng et al., 
1998; Tan et al., 1999, Luk et al., 2000; Shi et al., 2003). An adaptive version of 
TDNN, adaptive time-delay neural network (ADNN), which was originally 
proposed by Day et al. (1991), adapts its time-delay values and its weights to better 
accommodate to changing temporal patterns, and to provide more flexibility for 
optimization tasks. It was successfully utilized in nonlinear system identification 
(Lin et al., 1995; Yazdizadeh et al., 2000; Yazdizadeh et al., 2002).  

In this paper we propose a MS prediction model dynamic spline ATNN (DSTNN) 
in the form of combined multiple-neural-networks. The model utilizes multiple 
ATNNs combined with characteristics decomposition units and dynamic spline 
interpolation units. Inside the net, via features extraction and dynamical spline 
interpolation units, current and delayed (or past) observations of the measured 
system input and output are supplied as inputs to the ATNN. Moreover, we employ 
other numerical algorithms including characteristics decomposition and dynamic 
spline interpolation as technologies of the above special units. In this paper, the 
effectiveness of the MS prediction is demonstrated by the application to real-world 
case studies, and comparison is made with a traditional MS ANN model based on 
TDNN (simply termed TDNN). 

Sunspots time series were selected as the empirical data sets. Nowadays, the 
study of sunspots activity has practical significance to geophysicists, environment 
scientists, and climatologists. It is a well-known benchmark time series which is 
often regarded as nonlinear and non-Gaussian, and is often used to evaluate the 
effectiveness of nonlinear models (Zhang, 2003). By performing prediction on the 
sunspots time series, comparative experiments with both TDNN and DSTNN were 
obtained. All the error analysis demonstrated the effectiveness of the proposed 
model. By taking advantages of the technology of every unit embodied in the 
combined network, the model presented can be an effective way to improve 
forecasting accuracy for MS prediction.  

The remainder of this paper is organized as follows. Section 2 reviews the 
mechanism of a general ATNN neuron and multiple-neural-network architecture 
for MS prediction. Section 3 presents the hybrid ATNN model as the resolution for 
multi-step ahead forecasting, and then gives the model structure and algorithms. 
Section 4 presents prediction results and discussion and also shows the error 



analysis with linear regression. Section 5 presents the conclusion. 
 

2 ATNN and Multiple-neural-network architecture  
 
2.1 ATNN 
 

Insert Figure 1 
The structure of the corresponding dynamic neuron of ATNN is shown in Figure 1, 
in which q τ−  is the shift operator. The input-output mapping is then governed by 
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where iω ’s are the neuron weights, iτ ’s are the delays, and ( )σ ⋅ is a nonlinear 
activation function. It has been shown that, even by making the above simplifying 
assumption, the resulting input-output map is still capable of representing the 
nonlinear system (Waibel, 1989). It should be noted that the output of the neuron at 
time t depends on the previous values of the inputs resulting in a dynamic behavior. 
This dynamics will be modified subsequently for representing the nonlinear system. 
 
2.2 Multiple-neural-network for MS prediction 
 
In this paper, we only consider the one-stage p-step ahead MS prediction, which is 
termed iterative prediction. It is a standard MS iterative approach that is widely 
utilized in most ANN predictions, and also is a kind of challenging algorithm for 
testing the adaptability and the generalization of neural networks.  

There are many theoretical approaches to network combination such as stacked 
network and bootstrap aggregation network where multiple networks are created on 
bootstrap re-sample of the original training data (Sridhar, 1996). For 
multiple-neural-network, an iterative MS approach as shown in Figure 2 could be 
followed.  

Insert Figure 2 
Figure 2 shows a schematic view of general multiple-neural-network structure, in 

which X is the input of combined network, and Y is the output. Inside the 
architecture of neural network, there are more than one subnets conjoined together 
which can be simulative or not. For single factor MS prediction, the procedure of 
input-output can be described as Eq. (2). The net shifts new estimates by the input 
vector, and thus needs a single one-step ahead predictor. Given the time series data 
set{ }1 2| ( , , , )nX x x x , the new predictions are based on observations, parts of 

X, and a group of previous ones, parts of { }1 2ˆ ˆ ˆ| ( , , )t t t pY x x x+ + + . 
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where the quantities with a “hat” such as 1ˆ ˆ ˆ, ,t p t p t p mx x x+ + − + −  represent estimates 
of the actual states and outputs, and the others without a “hat” represent 
observations, i.e. tx  and t p mx + − . p  is the number of steps ahead of 
p-step-ahead prediction model F(.). m  is defined as the number of inputs of the 
model which implies the size of moving window of prediction horizon. It is easily 



seen that, if p m< , the model input consists of observations and prediction 
values, and if p m≥ , it consists of all prediction values. It should be noticed that 
the variable to be predicted uses a constant number of previous values, namely q. 
That is the reason why the network ( )F ⋅ can be used in all the steps. In fact, it is 
trained in a feedforward manner and used as a recurrent model to generate the 
prediction (Duhoux et al.,2001). 
 
3.DSTNN architecture and algorithm 
 
3.1 DSTNN architecture 
 

Insert Figure 3 
Integrating dynamic neurons of ATNN, special units and multiple-neural-network, 
we proposed a combined neural network DSTNN. Its schematic view is shown in 
Figure 3. DSTNN embodies characteristics decomposition units 

eT  and 
eP , 

dynamic spline interpolation unit 
IS , and several ATNNs. The decomposition units 

eT  and eP  extract the trend and period factors from observations in order to offer 
more information to the net. SI dynamically develops a group of derivative data 
between two sampling points with cubic polynomial spline interpolation. ATNN  is 
a general adaptive time-delay neural network based on feedforword neural network. 
It is worth observing that all the inputs and neural network components of the 
model, i.e. ATNN, are preprocessed by the moving time window with parameter m 
( m n≤ ) that can be dynamically adjusted inside the ATNN. In all, a single-factor 
time series X is supplied to the network. Through the cooperation of the 
abovementioned units, the prediction results of X , Y , can be obtained. The input 
of net X  can be defined as follows: 

{ }1 2| ( , , , ),m tX x x x P  (3) 

where 1 2( , , , )mx x x  is input of net, which is the portion of time sequences, 
m  is the number of input knots, and Pt is the step number of MS method at which 
the model can terminate. 

 
3.2 Algorithms 
 
3.2.1 Multilayer ATNN with spline interpolation  
In this study, ATNN with spline interpolation is a dynamic multilayer feedforward 
network, which is constructed by utilizing the dynamic neuron described in the 
previous section. The network consists of L  layers with 

LN  neurons in the L th 
layer. Since the structures proposed here are intended for identification of 
single-input single-output nonlinear systems, therefore, the networks have only one 
input neuron and one output neuron. The bipolar sigmoid function is applied as the 
activation function. By using the spline interpolation, the typical neuron governing 
equations are developed as follows 
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The output of the j th neuron in the lth layer at time t is denoted by ( )l
jO t . The 

first equation depicts the governing algorithm of original typical multilayer 
adaptive time-delay, in which the weight and associated delay connecting the jth 
neuron in the lth layer to the i th neuron in the (l-1)th layer are denoted by l

jiw  and 
l
jiτ , respectively. It should be noted that j varies from 1 to lN , i  varies from 1 to 

1lN − , and l
jiτ  values form 0 to maxτ . The other neuron governing algorithm 

related to the spline interpolation is described by the second equation, in which the 
spline interpolation function ( )lS ⋅  corresponds to the l th layer with 

1( )l l
i jio t τ− −  and l

jis  as two parameters. 1( ( ), )l l l l
i ji jiS o t sτ− −  returns a group of 

the interpolation values between 1( )l l
i jio t τ− −  and 1( 1)l l

i jio t τ− − +  with the 

number of fitted data depending on l
jis . For simplicity, in the following, we use a 

value of ( 2)l
jiτ − , implying that there are ( 2)l

jiτ −  spline interpolation data are 

simulated and inserted into region between 1( )l l
i jio t τ− −  and 1( 1)l l

i jio t τ− − + . 

The weight of the corresponding spline interpolations is expressed by l
ji

l
jis

w  with 

l
jis  denoting the order of interpolation data. ( )l

jnet t  is the weighted input of the 

jth neuron in the lth layer at time t , while ( )sl
jnet t  is the weighted input of the 

jth neuron in the lth layer at time t  related to all the spline interpolation data. 
Besides, the jth output of lth ( )l

jo t collects all the inputs including both 

( )l
jnet t and ( )sl

jnet t  by a nonlinear activation function ( )δ ⋅ . Thus, when the 
distance between the sampling points and forecasting point increases, the 
interpolation number inserted between the current point and the next will also 
increase. Assume that several prediction values are needed for iteration into inputs 
node for MS forecasting, we can enrich net inputs with spline interpolation data to 
reduce the effect of errors iteration.  

Thus, the prediction model Eq. (2) can be rewritten as shown  
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where two groups of derivative data set, 

max( 3) ( 4) ( ) maxˆ ˆ{ ( ,1), ( , 2), , ( , ( 2)), , ( , ( 2)}t p t p t t pS x S x S x t p S x τ τ+ − + − + −+ − −  (if 

maxp τ< ) and 
max( 3) ( 4) ( ) maxˆ ˆ ˆ{ ( ,1), ( , 2), , ( , ( 2)}t p t p t pS x S x S x τ τ+ − + − + − − (if 

maxp τ≥ ), are given by the spline interpolation function ( )S ⋅ . Regarding the 
above inputs rule, the input knots will be increased on a pro rata basis by spline 
interpolation. 

The basic idea of the net is to use higher temporal resolution (i.e., a higher 
sampling rate and higher frequencies) for the long-term history while using lower 
temporal resolution for the short-term history (we can compare this approach to the 
“detailed” certain-memory versus the “general” uncertain-memory that are 
combined by the human brain when predicting future events). By this means, we 
can use more essential information on the “detailed” and “general” history of the 
time series with a relative small number of inputs to the forecasting system. When 
we make multi-step ahead prediction, the simulated data are uncertain, whereas 
observations are certain data. 

The accumulation of the errors in the recursive predictions renders higher 
difficulty to achieve accurate long range predictions than accurate one-step-ahead 
predictions. By using the spline interpolation technology, however, we can reduce 
the stimulation of previous prediction error on the model, and thus enforce the 
robustness of net.  

 
3.2.2 Decomposition unit  

 
Single factor prediction systems exist widely in real-world, or to some extent, 
whilst other factors are not easy to be obtained. For example, in hydrological 
forecasting area, how to make use of single factor information sufficiently has 
become more and more vital. Grassberger (1983) proposed a method of time series 
analysis based on expanding the one-dimension into multi-dimension with 
phase-space expansion, which can efficiently gather more potential information 
from single factor observations. He has successfully built a dynamic model and 
accomplished analysis on climate changing. 

Time series is a random variable series that is sorted by time. Almost all 
measured samples of nonlinear time series have some of the following features 
such as tendency, period and random. We consider that most time series can be 
extracted into components by function transforming. The process is shown as 
follows: 

1,2,...t t t tX Te Pe Ra t n= + + =                         (6) 
where tTe  is the tendency component； tP e  is the periodic component；

tRa is 
the random component. 

In view of the above, we attempt to expand one-dimension time series to 
multi-dimension for neural network by determining the tendency component and 



periodic component time series. The method can supply more regular information 
for training net. 

Period extraction 
Identifying and extracting potential period components in nonlinear time series is 

very significant yet difficult. Currently spectra analysis is a relatively fundamental 
and efficient technology. Entropy in classical thermodynamics in the 19th century 
is a vital physical quantum. Janes (1957) proposed Principle of Maximum Entropy 
(POME) on the basis of Entropy and developed the Maximum Entropy Method 1 
(MEM1) spectra analysis. Because of its smooth spectrum curve and high 
resolution ratio, many application methods were later developed by different 
researchers. The detailed process of period extraction comprises the following 
steps: 

 Step1 Make spectral estimate with MEM1,  
 Step2 Obtain remarkable frequencies.  
 Step3 Build filters with above frequencies as parameters. 
 Step4 Gain period components. 
 Step5 Repeat the above four steps until there is no remarkable periods. 
According to the entropy analysis theory and its physical background (Press, 

1991; Gliebin, 1991), not all the frequencies can be useful. The general rule is a 
higher frequency together with a lower power (Ma et al., 1996). So the remarkable 
periods with high frequency can be ignored. On the other hand, the less the phase 
difference, the more will be errors after filtering. So we also ignore those 
frequencies with small phase difference. 

Tendency extraction 
We adapt moving average (MA) and polynomial fit to accomplish tendency 

extraction. Moving Average (MA) is a primary technology to analyze the tendency 
of nonlinear system. In the study, we first apply MA to calculate evolution trend of 
observations, then fit the results with polynomial equation, and lastly extend the 
polynomial to develop tendency components to enrich prediction model parameters. 
On the other hand, polynomial fit is based on a polynomial. Different polynomials 
have different shapes with larger powers (and therefore larger numbers of terms) 
having steadily more eccentric shapes. Given a set of data, we may want to fit a 
polynomial curve (i.e., a model) to explain the data. The data is probably noisy, so 
it is not necessarily to expect the best model to pass exactly through all the points. 
A low-order polynomial may not be sufficiently flexible to fit closely to the points, 
whereas a high-order polynomial is actually too flexible. In this study, a 
least-square algorithm is selected to perform the fit. 

Prediction with expanded –dimension  
We append the tendency and period components into the prediction model, 

termed dimension expansion. Then the prediction equation of the net is given by  

ˆ ˆ ˆ[ ( ), ( ), ( )]SATNN ATNN Te ATNN PeY P F X F X F X=              (7) 

where 
SATNNF  is the forecasting model based both on ATNN and spline 

interpolation; 
ATNNF  is the model based on ATNN only; X̂  is the input data 

including previous prediction values; ˆ
TeX and ˆ

PeX  are all estimations of tendency 
and periodic components. The prediction procedure of the model can be clearly 
illustrated by schematic view of the DSTNN (Figure 3). The original input data set 



X  is transformed into two kinds of characteristic data sets, tendency component 
ˆ

TeX  and period component ˆ
PeX , and the number of each set is determined by X . 

Meanwhile, via dynamic spline interpolation unit, X  can also be changed into X̂  
in which many spline interpolation values are dynamically inserted into the original 
time sequence at a certain position. Then, semi-finished data sets are converged 
into the integration model P(.) which is usually a simple linear function as the 
prediction result Y arises. 

4. Empirical results 

4.1 Data sets 
 
Sunspots are dark blotches on the sun which are caused by magnetic storms on the 
surface of the sun. The underlying mechanism for sunspot appearances is not 
exactly known. Geller (1988) proposed that increased solar activity during active 
sunspot periods can influence the atmospheric temperature. The study of sunspot 
activity has practical importance to geophysicists, environment scientists, and 
climatologists. The data series is regarded as nonlinear and non-Gaussian, and is 
often used to evaluate the effectiveness of nonlinear models (Zhang, 2003). The 
yearly average of the sunspots area has been recorded since 1700, which is a 
classical example of a combination of periodic and chaotic phenomena and has 
been served as a benchmark in the statistics literature of time series. Much work 
has been done in trying to analyze the sunspots data using linear and nonlinear 
methods. Amir (1998) employed ScaleNet to predict the sunspots from 1700 
through 1920 with single step method.  

In our study, as a single factor nonlinear sequence, the sunspots average of years 
1810 through 1974 is chosen to train and test model for multi-step-ahead 
forecasting. Two training sets and two testing sets are selected form it. The two 
testing sets: set 1 (set1)—years 1865 through 1879 and set 2 (set2)—years 1960 
through 1974, while the remaining are training sets. The latter are used exclusively 
for net development, and the former for evaluation. 

  
4.2 Results and discussion  
 
Two neural networks, DSTNN and TDNN, are implemented over the sets 
mentioned earlier. The 15-step-ahead forecasting is considered. The root-square 
error (RMSE) and mean absolute error (MAE) are employed as the forecasting 
accuracy measures. Figure 4 gives the result of entropy analysis with MEM1. Two 
remarkable frequencies with high amplitude are found, which is 0.0957Hz and 
0.01807Hz (the equalities of 11 and 6 years for period depiction) . By tendency 
extraction, the fit equation is attained as 2 321.42 1.24 0.02 7.29 5Y x x E x= + − + − . 
The tendency is plotted in Figure 5. Appling filters with the above frequencies as 
parameters, we get period data sets shown in Figures 6 and 7. 

Inset Figure 4 
Inset Figure 5 
Inset Figure 6 
Inset Figure 7 
DSTNN and TDNN are all trained and tested using time-delay technique. The 

comparison between them for 15-step-ahead forecasting is given in Figures 8 and 9. 



Though at some data points, the DSTNN model gives worse predictions than 
TDNN, its forecasting capability is improved in all. For the first six or seven points, 
the prediction results are quite similar. But with time moving forward, the 
forecasting values of DSTNN show better accuracy than TDNN, especially in the 
end of process. More errors occur at 14th and 15th points related to TDNN. The 
overall forecasting results for the two sets are summarized in Table 1. 

Inset Figure 8 
Inset Figure 9 
Inset Table 1 
Error analyses are shown in Figures 10 to 13. In the graph, parameters of linear 

regressions (correlation coefficients and slope of the best fit lines) for relationships 
between measured and predicted values by DSTNN and TDNN are presented. The 
former model predicted better than the latter for two data sets. The difference is 
apparent for the first data set (see Figures 10 and 11) where DSTNN predicted 
reasonably well (the correlation coefficient and slope of the best fit lines are 0.9713 
and 1.11031, respectively), whereas TDNN predicted poorly (the correlation 
coefficient and slope of the best fit lines are 0.87755 and 0.92052, respectively). In 
general, DSTNN can give more focused results on the measured values, although 
its predicted values are most likely larger than measured values compared with 
TDNN. The same tendency for set2 of DSTNN predicting better than TDNN is 
observed in Figures 12 and 13. (refer to the correlation coefficient), but difference 
in slope of the best fit. In DSTNN forecasting, the correlation coefficient and a 
slope of best fit line are 0.98988 and 1.29151, respectively, whereas its counterparts 
of TDNN are 0.96926 and 1.42496. Thus, DSTNN can predict in a more 
concentrative manner and closer to observations than TDNN for set2. 

Inset Figure 10 
Inset Figure 11 
Inset Figure 12 
Inset Figure 13 
 

5.Conclusion 
 

Time series analysis and forecasting is an active research area over the past few 
decades. The objective of this research study is to present a method for improving 
MS prediction model for nonlinear systems, which is capable of performing 
accurate MS, especially in the single factor system. Among all the ANN methods, 
most predictive models have some drawbacks, which include potential inaccuracies 
to drifts, inability to incorporate aging, and wear-and-tear effects, development and 
execution cost (Parlos et al., 2000). On the contrary, several approaches to neural 
network prediction, such as multiple-neural-network, TDNN and ATNN, have 
provided satisfactory results. 

Inspired by theories and applications of the above mentioned and other 
technologies, we propose a hybrid model for MS forecasting on single factor time 
series. The model integrates characteristics discomposing unit, spline interpolation 
unit, and several ATNNs together. The comparison of empirical results for classical 
time series of sunspots and a benchmark model based on TDNNs indicate that the 
multi-function combined model is capable of capturing potential information and 
relationship in the time series, and takes advantage of the unique strength of every 
unit. For MS forecasting based on time-delay problems, the net have both dynamic 
and correlation structures, and can be extended to other professional areas as well. 
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Figure 2 MS prediction based on multiple-neural-networks. Input vector set X, contains 
all the observations. Output vector set Y, consists of prediction values. In iteration 
prediction, a previous prediction of the model iterates into the input knots. 
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Figure 1 Dynamic neuron in ATNN. q τ− , the shift operator. ( )σ ⋅ , activation function. 

Reprinted from Lin (1993). 



 

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 3  A schematic view of the DSTNN. Characteristics decomposition units, eT  and 

eP . Dynamic spline interpolation unit,
IS .Net input, X . Prediction result, Y . General 

feedforward adaptive time-delay neural network, ATNN . The values corresponding to  
dashed dotted curves between t1 and t2 can be obtained by dynamic spline interpolation unit. 
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Figure 5 Polynomial fit results for three sets. Dashed pentacle for testing set1 and set2. 
Dashed square for all the training set.  
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Figure 4 The result of entropy analysis with MEM1. Two remarkable amplitudes (db) can 
be obtained. The corresponding frequencies are 0.0957 and 0.01807. 
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Figure 6 Two curves obtained by using band pass filters on set 1with different periods: ─△─, 
curve with period of 11-year ; ─■─, curve with period of 6-year.  
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Figure 7 Two curves obtained by using band pass filters on set 2 with different periods: ─△─, 
curve with period of 11-year ; ─■─, curve with period of 6-year. 
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Figure 8 Prediction results of two neural networks for set 1. First 5 points are similar, while 
from 1870 the DSTNN obtains more accurate values than TDNN, especially in the end of 
multi-step-ahead. 
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Figure 9 Prediction of two neural networks for set 2. First 7 points are similar, while from 
1967 the DSTNN obtains more accurate values than TDNN, especially in the end of 
multi-step-ahead. 
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Figure 10 Correlation between the prediction results for set1 with DSTNN and the 
observations. The correlation coefficient and slope are 0.9713 and 1.11031, respectively. 
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Figure 11 Correlation between the prediction results for set1 with TDNN and the 
observations. The correlation coefficient and slope are 0.87755 and 0.92052, respectively. 
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Figure 12 Correlation between the prediction results for set2 with DSTNN and the 
observations. The correlation coefficient and slope are 0.98988 and 1.29151, respectively. 
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Figure 13 Correlation between the prediction results for set2 with TDNN and the 
observations. The correlation coefficient and slope are 0.96926 and 1.42496, respectively. 

 

Table 1 The RMSE and MAE results for forecasting accuracy measures. Both RMSE and 
MAE indicate that DSTNN can offer more accurate results.  

 set 1 set 2 
 DSTNN TDNN DSTNN TDNN 

RMSE 0.26 0.78 0.19 0.3 
MAE 8.52 20.76 11.69 16.37 




