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An Emigration Genetic Algorithm and Its
Application to Multiobjective Optimal

Designs of Electromagnetic Devices
Yuhuai Wang, Shiyou Yang, Guangzheng Ni, S. L. Ho, and Z. J. Liu

Abstract—The emigration genetic algorithm, which is a genetic-
based algorithm, is proposed to obtain the Pareto optimal solution
of vector optimal designs of electromagnetic devices. The proposed
algorithm differs from the traditional ones in its design of an emi-
gration operator as well as the inclusion of some useful approaches
such as the fitness sharing, clustering, and elitism strategy. Detailed
numerical results on three different multiobjective design prob-
lems are reported to demonstrate the effectiveness and advantages
of the proposed algorithm for solving practical engineering multi-
objective optimal design problems.

Index Terms—Emigration operator, genetic algorithm (GA), nu-
merical method, vector optimization.

I. INTRODUCTION

MOST practical design problems involve several incom-
mensurable and sometimes conflicting objectives. As it

is well known, for a multiobjective solver, the following two is-
sues must be addressed carefully: 1) means to accomplish the
fitness assignment and selection in order to guide the search to-
ward the Pareto-optimal set and 2) means to maintain a diversi-
fied population in order to prevent premature convergence and
to smoothen the sampled Pareto front. In this sense, evolutionary
algorithms have been proven to be one of the most efficient mul-
tiobjective or vector optimal problem (MOP) solvers and, thus,
they have attracted a lot of attentions from different engineering
branches [1], [2], [4]–[8]. Although significant efforts have been
made in the study of multiobjective genetic algorithms (GAs),
the performance of the existing algorithms relating to the two
aforementioned issues is still unsatisfactory. A Pareto emigra-
tion GA is proposed in this paper. To preserve the diversity and
to smoothen the Pareto front, an emigration operator is intro-
duced. The approaches such as fitness sharing, clustering, and
the elitism strategy are also improved and used. To validate and
to show the advantages of the proposed algorithm, three numer-
ical examples are presented.
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Fig. 1. Schematic diagram of the emigration operation.

II. A PARETO EMIGRATION GENETIC ALGORITHM

A. Emigration Operator

In a real society in which a town is densely populated with
many residents, life becomes highly competitive and the re-
sources would become increasingly scarce. Hence, the less com-
petitive ones are forced to immigrate to the less developed and,
hence, less competitive, towns as illustrated in Fig. 1. For an
optimization problem, the effect of this emigration operation is
to maintain some diversities in the entire population. Based on
this analogy between our society and a vector optimal problem,
an emigration operator is introduced and explained in the fol-
lowing steps.

Step 1) Find out the maximum distance among every two so-
lutions in the population, and define a town radius
which is proportional to this maximum distance. The
number of solutions which will emigrate is propor-
tional to the population size.

Step 2) Determine the neighborhood size of every individual
by comparing the distances of it and its neighbor-
hood solutions with a predefined town radius. The
neighborhood size of an individual is proportional
to the number of the neighborhood solutions whose
distances to the specified individual are less than the
predefined town radius.

Step 3) Identify, respectively, the solutions with the max-
imum and minimum neighborhood sizes, and then
replace the maximum one by a newly generated in-
dividual. The new individual is generated from the
individual of the minimum neighborhood size by
adding a small perturbation to it. Two different ap-
proaches are used in adding the perturbations.

a) Use the solution with the minimum neigh-
borhood size only as the parent to generate
new solutions. To do so, one first selects the
last three bits of the chromosome (here, one
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Fig. 2. Flowchart of the proposed algorithm.

chooses three bits, but it depends on how
long the chromosome is in general). For each
selected bit, a random number between 0
and 1 is generated. If it is less that 0.5, one
changes the number of the bit (form “0” to
“1,” or vice versa).

b) Use the solution with minimum neighborhood
size and the one with the maximum neighbor-
hood size to generate a new individual. Select
the last few bits of the chromosomes (the size
depends on the chromosome length) of the so-
lution with the minimum neighborhood size,
and then change the selected bits with those
of the solution with maximum neighborhood
size.

Fig. 2 shows a flowchart to facilitate understanding of the pro-
posed algorithm. From this flowchart, it can be seen that the
emigration operator is following the mutation operator immedi-
ately to strengthen the robustness of a GA to maintain diversity
in the solutions.

B. Fitness Assignment

As similar, and yet different, from a reported Pareto-based
fitness assignment strategy [1], the fitness assignment of an in-
dividual in the proposed algorithm is conducted in the following
steps.

Step 1) Introduce an external population which is called the
excellent tribe, and copy the nondominated solutions
to it. The fitness value of a solution in the external
excellent tribe is decided by

(1)

where is the number of individuals in the popula-
tion which is dominated by the specific solution in
the excellent tribe, is the size of the population.

Fig. 3. Fitness assignment for a minimization problem with two objectives.

Step 2) Fitness assignment of the population. The fitness as-
signment of an individual in the population is ex-
plained as: (1) firstly, one identifies the solution with
the smallest fitness value among solutions in the ex-
cellent tribe which dominates individual , and de-
fine the smallest fitness value as smallestfitness; (2)
one then sums up all the num of the nondominated
solutions in the excellent tribe which dominate the
individual as totalnum (the num of a nondominated
solution is given by num ); (3) finally,
one will calculate the fitness value of the individual

using

(2)

From Fig. 3 and (2), one can see that a nondominated solu-
tion always has fitness values that are larger than those of in-
dividuals in the population. Moreover, the solutions in densely
populated regions are having smaller fitness values than those
in the sparsely populated regions, other things being equal; and
the individuals of a population which is dominated by more non-
dominated solutions have relatively smaller fitness values. Thus,
the proposed fitness assignment strategy would have the ability
to obtain a uniform and smooth Pareto front.

C. Local Search

Although the GA is very efficient in global searches, it is very
inefficient for local searches. Thus, some special local search
techniques are designed in the proposed algorithm. Contrary to
the commonly used local searches, the proposed approach does
not need a search radius to start, and can be summarized as the
following.

Step 1) Determine the region where a local search is re-
quired. The number of bits in the last chromosome,
instead of the traditional local search radius, is used
to define the regions.

Step 2) Copy the selected individual to a tentative indi-
vidual. For each selected bit of the chromosome of
the tentative individual, randomly change the state
of each bit.

Step 3) Evaluate the object values of the tentative individual.
If it is better than that of the original one, replace the
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TABLE I
ALGORITHM PARAMETERS USED BY THE PROPOSED AND A TRADITIONAL

GENETIC ALGORITHM

Fig. 4. Searched Pareto front of different methods for the test problem.

original individual with the tentative one and termi-
nate the local search; otherwise, go to step 1 unless
the number of iterations exceeds a predefined value

.

III. NUMERICAL RESULTS

A. Mathematical Test Function

A two-decision variable and two-objective minimization
problem, as defined in the following, is used to validate the
proposed algorithm. Mathematically

(3)

The parameters used by the proposed and traditional GAs are
given in Table I. The searched Pareto solutions by the two al-
gorithms for this mathematical problem are depicted in Fig. 4.
Obviously, although the traditional GA can sample some parts
of the Pareto front, the proposed one can give a nearly ideal uni-
form sampling of the Pareto front. Thus, these primary numer-
ical results have positively validated the feasibility and demon-
strated the advantages of the proposed algorithm in solving mul-
tiobjective optimal problems.

Fig. 5. Searched Pareto front by EPEA for the case study reported.

B. Case Study

The multiobjective shape optimization of a coreless solenoid
with rectangular cross-section and a mean radius is se-
lected as a case study [3]. If the electric current is uniformly
distributed over the cross section, it can be shown that if the
number of turns of the solenoid is given, the inductance

can be approximated from

(4)

This multiobjective design problem can then be formally
defined in the following two terms: maximize the inductance

and minimize the volume for the given
length m and m of the current carrying
wire. In order to simplify the analysis, two variables, and ,
are considered. Correspondingly, the computation of and
are simplified, respectively, to

(5)

(6)

Now, the problem reads: maximize and minimize
subject to

(7)

It should be noted that to use the proposed fitness assignment
strategy, one should transfer the maximization problem to a min-
imization one by defining . The searched Pareto front
using the proposed algorithm is illustrated in Fig. 5. Clearly, the
proposed algorithm produces a uniform sampling of the Pareto
front for this case study.

C. Application

The feasibility of the proposed algorithm for solving engi-
neering multiobjective design problems is finally tested on a two
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Fig. 6. Computed Pareto front by Emigration Pareto Evolutionary Algorithm
(EPEA) for the 400-MW, 44-pole hydrogenerator.

Fig. 7. Calculated Pareto solutions by EPEA for a 200-MW, 22-pole
hydrogenerator.

objective, five decision variable multiobjective design problem
which is a geometrical optimization problem of the multisec-
tional pole arcs in large hydrogenerators [4], that is

(8)

(9)

where, is the amplitude of the th component of the flux
density in the air gap, is the distortion factor of a sinusoidal
voltage of the machine on no-load, is the telephone har-
monic factor, and is the short circuit ratio.

The corresponding geometrical parameters to be optimized
are the center positions and radii of the multisectional arcs of
the pole shoes. The computed Pareto solutions for a 400-MW,
44-pole hydrogenerator and for a 200-MW, 22-pole hydrogen-
erator are shown, respectively, in Figs. 6 and 7. Comparing the
results of the proposed algorithm with those of a tabu-based one
as reported in [9], it can be seen that the Pareto solutions as com-

puted by the two different methods for the 400-MW, 44-pole hy-
drogenerator are nearly the same. Consequently, the feasibility
of the proposed method for finding the Pareto solutions of multi-
objective functions is confirmed further by the numerical results
of this example.

In summary, from these three numerical examples one can see
that the Pareto solutions obtained by the proposed algorithm are
more uniform and smoother when compared with those of the
traditional ones, which suggests that the proposed algorithm is
more promising in solving engineering multiobjective optimal
design problems.

IV. CONCLUSION

The classical GAs have gone a long way to preserve diver-
sity, but the sampled Pareto front obtained by these algorithms
is not as smooth as one expects. To address this problem, a
multiobjective GA called emigration Pareto evolutionary algo-
rithm, in which a newly designed operator named emigration
is included alongside with the classical GAs operators, is pro-
posed in this paper. Moreover, some other improvements to en-
hance the robustness of the proposed algorithm such as a spe-
cial fitness assignment strategy to preserve the diversity of the
solution, a modified local search approach to improve the local
search ability, are also introduced and integrated into the algo-
rithm. The efficiency and advantages of the proposed algorithm
have been demonstrated by solving a mathematical test problem
and to comparing its performances thus obtained with those of
a classical GA. The numerical results of the proposed algorithm
on two engineering multiobjective problems are also reported.
The computed results are encouraging and suggest that the pro-
posed EPEA could be used to solve more complex practical en-
gineering multiobjective optimization problems.
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