a2 United States Patent
Luk et al.

US006976025B2

US 6,976,025 B2
Dec. 13, 2005

(10) Patent No.:
5) Date of Patent:

DATABASE AND METHOD FOR STORING A
SEARCHABLE SET OF KEYWORDS

(54

(75) Inventors: Robert Wing Pong Luk, Kowloon

(HK); Wai Chung Yip, Kowloon (HK)
(73

Assignee: Hong Kong Polytechnic University,

Hong Kong (HK)
Notice: Subject to any disclaimer, the term of this
patent is extended or adjusted under 35
U.S.C. 154(b) by 409 days.

*)

Appl. No.:
Filed:

10/112,043
Apr. 1, 2002
Prior Publication Data

€2y
(22)
(65)

US 2003/0187856 Al Oct. 2, 2003

Int. CL7 oo GO6F 17/30; GO6F 7/00;
GO6F 17/00

US.Cl e, 707/100; 707/3
Field of Search 707/100, 3

G

(52)
(58)

(56)

References Cited
U.S. PATENT DOCUMENTS

5745600 A *
6,263,333 Bl *

4/1998 Chen et al. 382/218
7/2001 Houchin et al. 707/5

L

2002/0156551 Al * 10/2002 Tackett et al. 700/245
OTHER PUBLICATIONS

Larsson N. Jesper “Structure of String Matching and data
compression”, Department of computer science Lund Uni-
versity, Copyright 1999.*

Miguel A. Ruiz—Sanchex et al. “Survey and Taxonomy of IP
address lookup algorithms”, IEEE Network Mar./Apr.
2001.*

Panar Altin Yilmaz et al. “A Trie-based algorithm for IP
lookup problem”, New Jersey Institute of Technology ,copy-
right 2000.*

* cited by examiner

Primary Examiner—Frantz Coby
Assistant Examiner—Cindy Nguyen
(74) Attorney, Agent, or Firm—Jackson Walker, LLP

(7) ABSTRACT

A methods for storing a searchable set of keywords includes
concatenating the keywords to form a string, and defining
one or more links between two or more characters in the
string. A delimiting character separates the keywords in the
string, and the links are pointers. Any inaccessible characters
in the string are removed to improve the storage cost the
method.

13 Claims, 14 Drawing Sheets

, Inaccessible substrings

-

s
Fd
7

¢c i t vy u # h k u #

~
~
~
~
~

st#po]yu#bu#
I

— Skip pointer

U.S. Patent Dec. 13, 2005 Sheet 1 of 14 US 6,976,025 B2

O\~

K e~ labelled — " |°

K = {cityu, hkbu, hku, hkust, polyu}

Figure 1 (Prior Art)

US 6,976,025 B2

Sheet 2 of 14

Dec. 13, 2005

U.S. Patent

n

T om31]

wouod dDfS ———

n £ [o d g 3

-

»

]

~ sSugsqns 9[qIssadoeny

7

U.S. Patent Dec. 13, 2005 Sheet 3 of 14 US 6,976,025 B2

y u # b u #

1

o

Figure 3

— Skip pointer

U.S. Patent Dec. 13, 2005 Sheet 4 of 14 US 6,976,025 B2

|
Y l Y
i k 0
|
l \ Y
t u| —T—b 1
Y \ Y Y
y s u 1y
l
[Y
u t u
Character
:
" -t- Sibling pointer
|
e Word flag (Gray filled
' represent true)
[
Child pointer

Figure 4 (Prior Art)

U.S. Patent

1

t

y u # b u #

Dec. 13, 2005

(@)

Sheet 5 of 14

p o1l y u # b u #|u h k

t

S

I

u

k

y u #

t

t

Unmatched suffix

of cuhk

US 6,976,025 B2

(b)
Figure 5

US 6,976,025 B2

Sheet 6 of 14

Dec. 13, 2005

U.S. Patent

9 am3yg

13ut0d SUT[qIs B UXIO] 0] PAUIQUIOD ST[99 MO
Sumojog oy sereo1pal Je 120 v S

L T —

(P[RS AL " A = S # T L el <[o[oM 5T] o] o Bl 3] o] e[o ol #[[< "

HEOK

8€ LE 9t St vE €€ Tt 1€ OE 6T 8T LT 9T ST ¥T €T TT IT OT 61 8I LT 9T ST #1 €1 2V IT O 6 8 L 9
mmouvvuﬁomeuL

S v £ T I

US 6,976,025 B2

Sheet 7 of 14

Dec. 13, 2005

U.S. Patent

L 2m31g

speoponq Ut szaputod prayo

2 | atesms | | —

szis1jong

US 6,976,025 B2

Sheet 8 of 14

Dec. 13, 2005

U.S. Patent

- —— a— a Em m am o . e o e = e Ee S e e
- — e et = e W e = o — -

g am3ig

n q # n 4

Sumnsdg

z
K
sizjutod dS —-——
saousod worssaIdwos 9A3] < - - -
I d
g n £ 1 1 9
A A
]
S DU T e I
]
1
I
t
1
]
I
(R R >
q
Keire uoissa1dwiod [9A9] — e

guins uoissaIduwiod 1349 \

US 6,976,025 B2

Sheet 9 of 14

Dec. 13, 2005

U.S. Patent

(1 I0113) 9rn-om] (€) 6 9m3Lg

U, premyjoeg SLIL premIog

5pou 100y

opou 300y

US 6,976,025 B2

Sheet 10 of 14

Dec. 13, 2005

U.S. Patent

Surnsds orm-om, (q) 6 omBrg

(8uiysds 1ap1o puy) su1y, premsoeq 103 Surnsdg

(s1oyurod yusred) sisyurod doyg
98w1038 9A®S 0 \
PAIBUTI]S 93¢ UeD
ugonisod snoraaxd _ «
o[03 Sunuy 8 L 9 § v € T 1
swyurod juared MI' - O|'v _l' %l'fl'%

b]

(szayayod Sumqrs) aV_a drys

ou] premrog 10y Suinsdg

9L premoeq 9qy 105 Surnsds oy ur
STOTE00] Medipul 0 pasn sxsjutod dojg

S 8 [A m\
A A A A

3 # 9 # s # n j ¢

ji s

(szoyurod 3urqrs) sysyured doyg

U.S. Patent Dec. 13, 2005 Sheet 11 of 14 US 6,976,025 B2

_— Root node

Figure 10(a) BST-Trie (Prior Art)

US 6,976,025 B2

Sheet 12 of 14

Dec. 13, 2005

U.S. Patent

3unsdg 19p10 puz (q) 01 231y

apou a1y ® Jo 1suod 397 o Sunueserdal sxoymod dojg
> \ |
LA

4 0 £ [o d # n g # 3 s # n ¥ g # n & 3 19

t I

U< 0<

apou a1 € Jo 1o3urod 1y3u 3y fmuasardar sisyurod doig

U.S. Patent Dec. 13, 2005 Sheet 13 of 14 US 6,976,025 B2

[Symbol | Description |

K A set of keywords.
K The ith keyword in K.
int(.) | A function that returns the integer value of the argument (usuaily
a character).
R* | The square of the correlation value of a regression curve.
L The depth + 1 of the deepest node of a trie accessible by level
compression.
Ln(.) | The natural logarithm of the argument.
card(.) | The cardinality of the argument which is a set.
Ca Storage cost of a character (typically 1 byte).
Cp Storage cost of a pointer (typically assumed to be 4 bytes).
> An alphabet or a character set.
Z The (infinite but denuemerable) set of integers.
Z* | The set of semi-definite positive integers,
R R = card(X).
|4 The set of nodes of a trie.
T The number of transitions of a trie.
° Concatenation operator.
The symbol representing delimiters.
Ao A special null symbol such that the concatenation of integers with
it remains the same, '
Q The infinite alphabet of tulpes over (¥ U {delimiter}) x (Z* U {0}).
A The null element,
A The null tuple element which is (A,).
o The Kleene closure over the (finite or infinite) alphabet Q.

Table 1

Figure 11A

U.S. Patent Dec. 13, 2005 Sheet 14 of 14 US 6,976,025 B2

Symbol | Description
|k] | The length of the keyword or string k measured in bytes or

the length of a spstring k.
k[s] | The ith character of the string k or the tuple at the ith position
of the spstring k.
¢(.) | The homomorphism that extracts the character string of a spstring.
Itis defined as ¢(z = (a,p)) =aforz € Q,c(A,) = A

and ¢(z o y) = ¢(z) o c(y).

r(.) [The projection for the pointer p of z = (a,p) € Q, i.e. r(z) =

O, The stem or character string of the spstring s, i.e. g, = c(s).
f() | Aninjective function that maps the set nodes of a trie to positions
in the corresponding spstring that represent the trie.
L(K) | The total length of a set K of keywords including the termmatmg character
(i.e. the delimiter) of each keyword.
ic Time to match a character,

tp Time to traverse a skip pointer.
Sp(K) | The storage requirement of a spstring implemented using extensible array
for the set K of keywords.

Ap(K) | The worst-case time complexity of a successful search over a spstring
implemented using extensible arrays, representing the set X of keywords.
Sc(K) | The storage requirement of a spstring implemented using packed array
for the set X of keywords.

= The immediate sibling relation that exist between two trie nodes n

and m such thatif n = m, then f(n) = r(s[f(m))).

& The sibling equivalence relation such that if n <> m,

there exists s, such that s = n and s = m.

E(s) | Asetofnodessuchthatifn € E(s), s = n.

Table 2

Figure 11B

US 6,976,025 B2

1

DATABASE AND METHOD FOR STORING A
SEARCHABLE SET OF KEYWORDS

BACKGROUND TO THE INVENTION

1. Field of the Invention

The present invention relates to methods for storing a
searchable set of keywords. More specifically the invention
relates to data structures for storing a set of keywords, and
which permits the searching of the set of keywords.

2. Background Information

ATrie, Tree Retrieval, is a well known data structure used
to store a searchable set of keywords. Tries solve many
diverse and important computational problems, for example
dynamic hashing for database systems, dictionary
management, approximate string matching (e.g. handwriting
recognition [8]) and inverted files for text retrieval to name
a few. Recently, tries and their variants, Level Compression
tries (LC-tries) and two-tries, have been used in routing, in
particular for IP address lookup.

FIG. 1 illustrates a topical trie representing a set of
keywords cityu, hkbu, hku, hkust, polyu. Each keyword is
represented as a path from the root of the tree, where the
edges of the path are labeled with the individual characters
of the keyword. The keyword nodes are nodes where the
paths from the root node to those nodes represent individual
keywords in the set. Hence, all leave nodes of the trie are
keyword nodes.

One major advantage of tries is their access speed, which
is proportional to the length of the search string and inde-
pendent of the number of keywords. Another major advan-
tage of tries is their prefix range properties. This enables
searching the set of keywords in K which have the same
common prefix of an incoming keyword, efficiently, in
constant time.

Due to the wide scope of applications of tries, they can be
applied in many large-size (database) problems and lean
applications. However, one problem with tries is that the
have a very high cost of storage, i.e. they take up a lot of
memory.

One specific example of the use of tries is for search
engines to look up postings of query terms. If both the
postings and tries are searched based on disk access, then the
number of file seeks increase significantly. It would advan-
tageous to load the tries onto main memory and only load the
postings of the query terms from disks or from disk caches.
However the large size of tries increases the likelihood of
page faults.

With the advent of wireless communications, many
mobile applications may find tries useful, for instance, word
completion algorithms that assist users input text messages
and to formulate queries. They can also be used for approxi-
mate string matching to support on-line handwritten char-
acter recognition for Portable Digital Assistants (PDAs), and
for string searching for pocket-size electronic dictionaries
and spelling checkers. Again, the problem with the use of
tries in these situations is their high cost of storage.

The storage cost of tries is typically between 4 and 5 times
the original storage cost of keywords contained in it.
Although the price of RAM is falling, tries are still not space
efficient enough to be deployed widely for large-size prob-
lems and for lean applications, in particular those operating
in mobile devices, even though there are many mobile
applications for them.

SUMMARY OF THE INVENTION

It is an object of the present invention to provide a method
for storing a searchable set of keywords that requires less
storage than known child-sibling linked lists and hashing
techniques.

10

15

20

25

30

35

40

45

50

55

60

65

2

It is a further object of the present invention to provide a
data structures for storing a set of keywords, and which
permits the searching of the set of keywords.

It is yet a further object of the present invention to
ameliorate the disadvantages of known methods and data
structures or at least to provide the public with a useful
alternative.

According to a first aspect of the invention there is
provided a method for storing a searchable set of keywords,
each keyword comprising a sequence of characters, includ-
ing concatenating the keywords to form a string, defining
one or more links between two or more characters in the
string, and removing any inaccessible characters from the
string.

Preferably, the keywords in the string are separated by one
or more flags and/or delimiting characters.

Preferably, the link(s) are pointer(s) stored in the string
after the character with which they are associated.

Preferably, information associated with each keyword is
stored in the string after the keyword. Alternatively, the
information is stored in a separate data structure, and a
pointer is stored in the string after the keyword to point to
the information.

According to a second aspect of the invention there is
provided a method for storing a searchable set of keywords,
each keyword comprising a sequence of characters, includ-
ing:

providing on a computer a data structure for the linear

storage of a plurality of characters,

assigning two or more keyword to said data structure,

wherein the keywords are separated by one or more
flags and/or delimiting characters, and

defining one or more pointers associated with one or more

characters in the data structure respectively, each
pointer linking a character to another character in the
data structure.

Preferably, the method further includes removing any
inaccessible characters from the data structure.

Preferably, the data structure is an array or a stream.

Preferably, the pointers are stored in a separate data
structure.

Alternatively, the data structure is a packed array, and the
pointers are stored in the array after the character with which
they are associated.

Preferably, the data structure is a bucket array for storing
the keywords and pointers.

Preferably, the method further includes implementing a
level compression technique on the data structure.

Preferably, the data structure includes a forward array and
backwards linked list, and wherein each node of the linked
list has three pointers.

Preferably, the data structure includes a forward array, a
backward array and an additional pointer associated with
one or more characters in the data structure.

Further aspects of the invention will become apparent
from the following description, which is given by way of
example only.

BRIEF DESCRIPTION OF THE DRAWINGS

Embodiments of the invention will now be describe with
reference to the accompanying drawings in which:

FIG. 1 illustrates a prior art trie representing the set of
keywords cityu, hkbu, hku, hkust, polyu,

FIG. 2 illustrates the keyword stored in a string,

FIG. 3 illustrates the keyword stored in a string according
to a method or apparatus of the invention,

US 6,976,025 B2

3

FIG. 4 illustrates a prior art Child-sibling pointer or
linked-list representation of the trie in FIG. 1,

FIG. §: illustrates the steps for inserting a keyword the
string,

FIG. 6 illustrates a packed array implementation of the
string in FIG. 3,

FIG. 7 illustrates a bucket array implementation of the
string in FIG. 3,

FIG. 8 illustrates compression of the string in FIG. 3,

FIG. 9 illustrates a known the two-trie compared to a
corresponding two-string according to a method or appara-
tus of the invention,

FIG. 10 illustrates a known the BST-trie compared to a
corresponding BST-string according to a method or appa-
ratus of the invention,

FIGS. 11A, 11B are tables of mathematical notation used.

DESCRIPTION OF THE PREFERRED
EMBODIMENTS

The method of storing a set of keywords according to the
invention includes creating a string that is augmented with
links in the form of skip pointers. In the following descrip-
tion the string will be referred to as spstring, and the
invention will be illustrated using a set of keywords, denoted
by K, comprising the keywords cityu, hku, hkust, polyu, and
hkbu. Each keyword is a sequence of characters, for
example the first keyword is the sequence cityu. In math-
ematical notation this is. K={cityu, hku, hkust, polyu,
hkbu}. However, this is not to be taken as limiting on the
invention.

The keywords in K are linearized as a string using a
delimiter # to separate different keywords in the linearized
string, which is called the stem of the spstring. In terms of
the set of keywords K listed above this linearized string is:

cityu#hku#hkust#polyu#hkbu#

Referring to FIG. 2, skip pointers, indicated by arrows —,
are added to the string to indicate the amount of elements to
skip if a mismatch occurs. For example, if searching is
carried out from left to right and the search keyword is hku,
then a mismatch occurs with the first character ¢ for the
above stem. A skip pointer is inserted to skip the entire
keyword cityu to the next keyword hku. The skip pointers
are stored differently depending on the implementation of
the string. These implementations are described later.

The keywords in the string have associated information/
data, for example keywords in a dictionary string would
have a definition associated with each keyword. In one
embodiment of the string this associated information is
included in the string immediately after the relevant key-
word. To store contact information for Cityu the string might
be:

cityu#City:Anycity, Phone:12245678, Fax:

910111212#hku# . . .

A further delimiter (#) indicates the end of the associated
information. In an alternative embodiment the information
can be stored separately with a pointers stored in the string
after the keyword. The pointer indicates the location of the
information. For example,

cityu#000#hku# . . .

The first # is a delimiter and the following 0000 is the
pointer. The number of bytes in the pointer is fixed (e.g. 4
bytes) so that the pointer can be skipped when moving
through the string. The separately stored information is
stored as follows:

10

15

20

25

30

40

45

50

55

60

65

0000 City: Anycity
0013 Phone: 12345678
0027 Fax: 910111212

The pointers can optionally be compressed (e.g. using
unary coding, gamma compression, delta compression and
Goulomb compression) to reduce storage space.

Some sets of characters within individual keywords,
which shall be refer to as sub-strings, are inaccessible
because there are no accessible paths to them. There are
indicated by the shaded regions in FIG. 2. These inaccessible
sub-strings occur for the following reasons. The sub-string
hku representing the first three characters in the keyword
hkust would never be used for matching because it does not
have a skip pointer arriving at the first character h of hkust
and no matching occurs beyond the delimiter # proceeding
it. The inaccessible sub-strings are distinguished by being
preceded in the stem by identical sub-strings within preced-
ing keywords.

Because the inaccessible sub-strings will never be reached
during a search there is no need to store them in the string,
spstring, and FIG. 2 can be simplified to FIG. 3 by removing
the shaded inaccessible sub-strings. The number of pointers
of this representation is much smaller than other represen-
tations. In particular, the number of skip pointers is 1 less
than the number of keywords in the set of keywords K. For
example, the spstring in FIG. 3 has 5 keywords and 4 skip
pointers. There is only one incoming skip pointer for every
keyword (for accessibility), except the keyword at the begin-
ning. If there were two incoming skip pointers to the same
keyword, then the tree structure of the trie that the spstring
is supposed to represent is destroyed since there are two
prefixes of two different keywords that can reach the same
node, i.e. the node has two parent nodes. There are only skip
pointers because all child pointers are not necessary since
the entire keywords are stored as sub-strings.

The spstring illustrate in FIG. 2 represents the entire set
of keywords K with skip pointers. The alternative spstring in
FIG. 3 corresponds to a child-sibling linked list representa-
tion of a trie. This alternative spstring, represented in FIG.
3, is the preferred embodiment as it is more memory cost
efficient.

The above string can be defined mathematically as fol-
lows. The mathematical notation used is defined in the tables
of FIGS. 11A and 11B. An infinite alphabet Q can be defined
as Q=(EU{#H(ZTU{r,})), where each element in Q is a
tuple (a, p) of a character a and a semi-definite positive
integer p. A, is a special character that corresponds to the
null character of a string over semi-definite positive integers.
Aspecial character called the null element A is (A, A) where
A 1s the null character or string. In the following description,
if it is clear from the context, then the suffix s of A, is
dropped. The concatenation of two characters in Q: x=(x,
X,) and y=(y,, V), is defined as:

xy=(x1.y1, X5-%2)

The concatenation of A, with X is X, requiring that
xh=(x1, 2%5) (Mho)=(x1. X5 ho)=(x1, X2)

A spstring s is an element of the Kleene closure of Q, i.e.
SEQ*

All the characters in £ have length one, except that of A,
which is 0. The length of a spstring is the total length of

US 6,976,025 B2

5

every Q2-character in the spstring. The function |.| returns the
length of a spstring if the argument is a spstring. For
example, the length of the spstring (a, 1)(b, 2)(c, 3)=(abc,
1.2.3) is 3. In general,

|x € | = max {lal, |pl}
x=(a,p)

The content of a specific location x of a s pstring is
indicated using a pair of square brackets and the returned
value is a tuple of the form (a, p), i.e.

slxl=(a.p)

A projection ¢:Q*—XU{#})* is defined that maps a
spstring to a character string and another projection r:Q—7Z*
that maps the tuple to a position. The following defines the
value of the projections, ¢(.) and r(.) for a character x in Q:

clr=(a,p))=a rx=(ap))=p

The projection c(.) is also defined as a homomorphism,
ie.

c(h)=h
e(ey)=c(®).c(y)

where x and y are in *. The character string of the spstring
is called the stem o of the spstring, which can be defined as:

o,=c(s)

FIG. 4 shows the child-sibling trie representation of the
set of keywords K. This trie, represented as a child-sibling
linked list, can be converted to a spstring according to the
invention. In the child-sibling linked list a node n has a
character n—=char, a child pointer n—child, a sibling pointer
n—>sibling and a flag n—=word indicating whether the prefix
reaching that node is a keyword.

The conversion of a trie T to a spstring s is based on the
following 6 conversion properties. Again, the mathematical
notation used is defined in the tables of FIGS. 11A and 11B.
1. Injective Property: There exists an injective function f:

V—Z*, that maps a node m of T to a position in s, such

that ¢(s[f(m)])=m—>char. Since f(.) is injective, for every

pair of nodes m and n, if m=n, then f(m)=f(n).

2. Root Property: if r is the root node of <, then f(r)=1.

3. Termination Property: for every node m of T, if m—word=
true then c(s[f(m)+1])=delimiter.

4. Prefix Word Property: for every node m of T, if m—word=
true and m—child=n=NULL then f(n)=f(m)+2 and r(s[f
(m)+1]=i(n).

5. Continuity Property: for every node m of T, if m—word=
false and m—=child=n=NULL then f(n)=f(m)+1;

6. Sibling Property: for every node m of T, if m—sibling=
0=NULL then r(s[f(m)])=f(n);

To make the conversion, firstly, the root property is
applied so that f(1)=1 and c(s[1])=c. Next, the spstring is
extended using the continuity property. In this case, f(2)=f
(1)+1=2 and c(s[2])=i. The sibling property cannot be
applied to a node before the continuity property because this
will destroy the continuity property of that node. In general,
the sibling property is applied last. Hence, by the continuity
property, f(3)=f(2)+1=3, and f(4)=f(3)+1=4 and £(5)=f(4)+
1=5. The termination property will imply that c(s[5+1])=
delimiter. Since no other properties can be applied, the
sibling property is applied. By the infective property posi-
tions 1 to 6 cannot be assigned for node 6 since these

10

15

20

25

30

35

40

45

50

55

60

65

6

positions are used. To maintain the spstring short position 7
is used, so that, by the sibling property, f(6)=7 and r(s(1))=7.
Since the continuity property can be applied, f(7)=£(6)+1=8
and f(8)=£(7)+1=9. Since the word flag of node 8 is true, the
termination property is applied before the continuity prop-
erty. In this case, c(s[9+1])=delimiter. Since the prefix word
property has a higher priority than the continuity property,
f(9)=£(8)+2=11 and r(s[+1])=11. By the continuity property,
f(10)=£(9)+1=12. Since the word flag of node 10 is true, the
termination property is applied and c(s[12+1]) delimiter.
Since no other properties apply apart from the sibling
property, it is applied. In this case, there are two possible
extensions of spstring based on the sibling property: using
node 6 or node 8.

Since they are the same property, using either node 6 or
node 8 to extend the spstring is acceptable. In this case, the
sibling property is applied to node 6, and f(13)=14 and
r(s[6])=f(13)=14. The continuity property can be applied
from node 13, so that f(14)=f(13)+1=15, f(16)=f(15)+1=17
and f(17)=f(16)+1=18. Since the word flag of node 17 is
true, by the termination property, c(s[18+1])=delimiter. The
only property that can be applied is the sibling property of
node 8. Hence, f(11)=20 and r(s(8))=f(11)=20. By the con-
tinuity property, f(12)=f(11)+1=21. Finally, by the termina-
tion property, ¢(s[21+1])=delimiter. Hence, the length of the
spstring that represents the trie in FIG. 4 is 22.

The following algorithm converts the trie in FIG. 4 to an
pstring according to the invention.

line 0 integer Generate(node n, spstring s)

line 1 begin

line 2 node r < n;

line 3 integer len < |sf;

line 4 integer result < len;

line 5 while (r = NULL) begin {write the path to the

sptring }

line 6 s < s - (r—>char, 0); {continuity property}

line 7 if (r—=word = true) then

line 8 if (r—>child = NULL) then s <—s- (delimiter,
0) {termination property}

line 9 else s < s - (delimiter, |s| + 1); {prefix
word property}

line 10 r < r—>child;

line 11 end;

line 12 T < 1

line 13 while (r = NULL) begin {update the sibling/

skip pointer}
line 14 if (r—»sibling = NULL) then {update if
there are siblings}

line 15 s[len] < (r—=char, Generate(r—sibling, s));
{sibling property}

line 16 len < len + 1;

line 17 if (r—=word = true) then len < len + 1;

line 18 r < r—>child;

line 19 end;

line 20 return result;

line 21 end;

The algorithm begins with the root node, root, of the trie

and the null spstring (i.e. Generate(root, A)). Since initially
the spstring is a null string, the root node will be assigned the
first position (i.e. 1), satisfying the root property. Lines 5 to
10 add the path, accessed via traversing the child pointer of
the nodes of the trie from the current node, to the spstring,
for the continuity property. If word flag of the node is true,
then a delimiter is inserted into the spstring (for the prefix
word or termination properties). Finally, lines 13 to 19
update the skip pointers of the spstring for the sibling
property. Since every skip pointer of an spstring corresponds
to a sibling pointer of a child-sibling linked-list implemen-
tation of the corresponding trie, skip pointer and sibling
pointer may be used interchangeably.

US 6,976,025 B2

7

The length of the spstring s built using the conversion
properties for the trie T, which has card(v) nodes and which
is representing the set K of keywords, is card(v)+card(K).

Two basic operations for an spstring according to the
invention will now be described. These are searching for a
keyword and updating the spstring with a new keyword.

Searching: consider searching the spstring in FIG. 3 using
the search keyword hkbu. The first character is ¢ and is not
matched. The skip pointer is followed from the first char-
acter c to the first character of the next keyword hku. In this
case, the prefix hk of hkbu is matched but the third character
b does not match with the third character u of hku. Since
there is a mismatch at u, the skip pointer is followed. The
new keyword hkbu to be matched starts from the third
character, which is b. Matching continues with the fourth
character u of the search string hkbu and a match was found.
Finally, to indicate the hkbu is in K the delimiter is matched.

For a failure search, the termination occurs when the
current mismatch character (including the delimiter) does
not have a skip pointer to further the search. For example,
the search string ma cannot match with the first character ¢
in the linearized string in FIG. 3, nor the character h pointed
to by the skip pointer, nor the character p pointed to by the
skip pointer of the character h. The search has to terminate
since there are no more skip pointers from p.

The following algorithm, Search(.,.,.), is used to search
for a search keyword k in an spstring s. The integers i and
] are positions of matching k and s, respectively. The return
value is a tuple (x, y). The x value indicates the position in
which the spstring has matched up to. If y>0, y indicates the
position in which the keyword has matched up to for a
failure search. If y=0, then this indicates that the search is
successful and the keyword must have matched to the end.

line O (integer, integer) Search(spstring s, string k,
integer I, integer j)
line 1 begin
line 2 if (i = k| + 1) then begin {Termination}
line 3 if (e(s[j]) = delimiter) then return (j, 0);
{termination property: successful search}
line 4 else if (r(s[j]) = 0) then return (j, [k}+1);
{failure}
line 5 else return Search(s, k, i, r(s[j])); {sibling
property: find sibling}
line 6 end;
line 7 else if (e(s[j] = k[i]) then return Search(s, k,
i+1, j+1);
{continuity property: match next position}
line 8 else if (r(s[j]) = 0) then return (j, i); {failure}
line 9 else return Search(s, k, i, r(s[j]));
{sibling and prefix word properties: find sibling
or find child node}
line 10 end;

In the above algorithm searching begins with i=1 and j=1.
If there is a successful match between k[i] and c(s[j]), then
matching continues with the next position of k and s (line 7).
If there is an unsuccessful match between k[i] and c(s[j)),
then matching continues with the new position of s, indi-
cated by the skip pointer r(s[j]) (line 9). If the entire keyword
is matched (line 2), then the delimiter must be matched (line
3-5). Sometimes c(s[j]) is not a delimiter and all siblings
have to be searched (line 5). If there are no more siblings to
match then a search failure occurs (line 4 and 8).

Updating: The incremental construction of an spstring
starts with the null linearised string and uses the following
algorithm, Insert(..., ...), to added keywords.

10

15

20

25

30

40

45

50

55

60

65

line O void Insert(spstring s, string k)
line 1 begin
line 2 integer pos;
line 3 integer last;
line 4 (pos, last) < Search(s, k, 1, 1);
line 5 if (last = 0) then begin {no keyword k in
spstring s}
line 6 s[pos] < (c(s[pos]), |s| + 1);
{sibling property: update skip/sibling pointer}
line 7 pos < last;
line 8 while (pos < [k|) begin {add the unmatched
suffix of the keyword k}
line 9 s < s - (k[pos], 0); {continuity property}
line 10 pos < pos + 1;
line 11 end;
line 12 s < s - (delimiter, 0); {termination property}
line 13 end;
line 14 end;

In this algorithm, the spstring s is searched for each
keyword k; to be inserted (line 4). When there is a search
failure, say at character X, at position p (line 5) a skip pointer
is added for x at position p (line 6). That skip pointer points
to the last position of the spstring plus one. The unmatched
suffix of k; is appended to the linearized string (line 8 to 11)
and the final position is terminated with the delimiter
character (line 12).

FIG. § illustrates the two steps for inserting the keyword
cubk to spstring. The first step, in FIG. 5(a), shows the
mismatch position two, assuming that the first character is in
position one. The second step, in FIG. 5(b), adds the skip
pointer and the unmatched suffix uhk at the end of the
linearized string.

The correctness of the algorithm can be verified by
examining whether the added skip pointer and the
unmatched suffix satisfy the conversion properties. For
adding the skip pointer (line 6) there are no violation of the
sibling property because the skip pointer is added at the
position pos of search failure where the skip pointer value
r(s(k[pos])) must be O (i.e. not destroying any previous skip
pointers) and the skip pointer points to a new position in the
spstring, not affecting the original spstring.

For appending the unmatched suffix more conversion
properties need to be considered. First, since each character
of the unmatched suffix is appended to the spstring (line 9
and 10) the injective property is satisfied. Appending the
adjacent characters of the unmatched suffix is also in adja-
cent positions satisfying the continuity property. Since the
delimiter # is appended at the end (line 12) the termination
property is also satisfied. Since there are no skip pointers for
the unmatched suffix there is no need to consider the sibling
property. Hence, the incremental insertion does not produce
a new spstring that violates the conversion properties.

A number of data structures can be used to implement an
spstring string. These are discussed below. The keywords k;
in K are indexed by i. The number of characters I(K) of the
linearized string for the set K of keywords is:

K|

LK) =Y (il + D

i=1

If the storage cost of a character is the unit cost then L(K)
represents the amount of storage needed for the linearised
string. Due to caching, reading adjacent characters in a
string only incurs a fractional cost ¢, compared with tra-
versing a pointer.

Direct implementation of the string uses an (extensible)
array or a stream, and stores the set of skip pointers using an

US 6,976,025 B2

9

array of pointers. Since it is not known which character has
a skip pointer there is one sKkip pointer for every character in
the string. Therefore, the total storage S,(K) is:

SpE)=LE)+LK)xc,

where c,, is the storage cost of a pointer and where every
character incurs a unit cost.

The extensible array implementation wastes a lot of
storage for storing skip pointers with null values, An alter-
native implementation of the packed array illustrated in FIG.
6. This implementation stores the skip pointers after the
character. A bit is used to indicate whether the character has
a trailing skip pointer. The storage demand SK) of a
packed array implementation of the spstring is:

Sc®)=LE)A+cp)+(K|-1)c,

where ¢, is the storage cost of a bit.

The search speed of the extensible array and packed array
implementations are approximately equivalent. To increase
the search speed without significantly increasing the storage
demand, the skip pointers are stored in bucket arrays as
illustrated by FIG. 7.

The bucket array stores the character and the associated
pointer. Each bucket has a size variable which incurs the
same storage cost as a character (i.e. [log, [Z|] bits). An extra
bit is allocated for each position, to distinguish between a
character and a bucket size variable. Once the bucket size
variable identified, the number of characters in the buckets
and the number of pointers in the buckets are known. For
example, the first position of the spstring in FIG. 7 is a
bucket size variable, which has a value of 3. In this case, the
following 3 positions store the 3 characters of the bucket and
the next 12 positions store the pointers, assuming each
pointer incurs 4 times the storage cost of a character. The
skip pointers in the bucket array are the child pointers of the
corresponding trie instead of the sibling pointer.

The bucket array allows an interpolation binary search
[29] to be used to improve the search speed.

One concern of the spstring is that they may be slow to
access. To improve access speed, level compression
techniques, which were used in LC-tries, can also be used
for spstrings. For a discussion on level compression tech-
niques used in L.C-tries is: Nilsson, S. and Karleson N. 1999.
G. [P-address lookup using LC-tries, IEEE Journal on
Selected Areas in Communications, 17, 6, 1083-1092. FIG.
8 illustrates the spstring in FIG. 3 with level 0 compression.

Two-trie data type can also be implemented using
spstrings. The forward trie is implemented using the exten-
sible array implementation of spstrings and the backward
trie is implemented using a child-sibling linked list where
each node of the linked list has three pointers for effective
insertion and search speed (i.e. tri-pointer nodes).

To improve storage efficiency an alternative embodiment
uses spstrings implemented using extensible arrays for the
backward tries. To ensure the fast access speed, an additional
pointer is added to each position of the spstring. The
additional pointer points to a previous position, representing
the equivalent parent trie node of the trie node represented
by the current position of the spstring. Hence, for an
extensible array implementation of spstrings each position
has two pointers. This type of extensible array is called a
second-order extensible array and the corresponding
spstrings of the invention are called second-order spstrings.
In general, an N* order spstrings would require N skip
pointers for each position of the spstring. For static two-trie
data types (i.e. with no updates) the forward trie could be

10

15

20

25

30

35

40

45

50

55

60

65

10

implemented using packed or bucket array implementation
of spstrings and the backward trie could be implemented as
the union-find data structure, which is simply an array of
parent pointers. In this latter case the number of parent
pointers is equal to the number of transitions in the backward
trie.

FIG. 9 shows the two-trie representation of the set of
keywords in FIG. 3. The leave nodes of the forward trie
contain a pointer to a node in the backward trie for matching
purposes. If the two-trie is implemented using a linked list
the child pointer of a leave node is used to point to the
corresponding node in the backward trie. To indicate that
this is not an ordinary child pointer the pointer value is
negative, whereas original child pointer values are positive.
The forward trie is represented by an spstring.

In the spstring embodiments described so far the delimiter
is used to indicate the end of the keyword. In this
embodiment the delimiter has a corresponding pointer that
points to the location in the corresponding spstrings that
represent the corresponding backward trie. For example, to
determine whether hkust is a keyword, search begins with
the forward trie. The leftmost delimiter is reached after
matching the prefix hku. Since the (leftmost) delimiter is
encountered, search continues with the backward trie at
location 7 (stored as the skip pointer value of the delimiter).
At location 7 of the spstring for the backward trie, the
character s is matched. Since the match is successful the
parent trie node is accessed by traversing the corresponding
skip pointer below the spstring for the backward trie (FIG.
9). Location 6 is found and the character t is matched. Since
the match is also successful the parent node is accessed by
traversing the corresponding skip pointer below the spstring
for the backward trie (FIG. 9). Location 1 is accessed. Since
the entire keyword is matched when location 1 of the
spstring for the backward trie is reached the search is
successful.

The length of the spstring for the backward trie is clearly
the number of transitions in the backward trie since there is
no need to store a delimiter for each leave node of the
backward trie. For static representations of backward tries
parent pointers that point to the previous locations can be
eliminated. For instance, the parent pointers for location 2,
3,4,5,7 and 10 of the spstring for the backward trie in FIG.
9 can be eliminated. The parent pointers left in the spstring
correspond to the sibling pointers of the backward trie in the
reverse direction. Hence, the total number of parent pointers
is [K]-1.

Spstring can be extended to represent a BST-trie 7,=(V,,
E,) as well where V, is a set of nodes of the BST-trie and
E, is the set of edges of the BST-trie. For a discussion of
PST-trie see: Bentley, J. and Segewick, R. 1997. Fast algo-
rithms for sorting and searching strings. In Proc. 87 Annual
ACM-SIAM Symposium on Discrete Algorithm, New
Orleans, 360-369.

The number of nodes of BST-trie is at least card(V) and
at most card(V)+card(K)-1, where V is the set of nodes of
the correspond trie representing K. Hence, the storage cost
of BST-tries implemented as an array of 3 child pointers is
at least 3x(C,+C,_)xcard(V) and at most 3x(C,+C)x[card
(V)+card(K)-1].

Instead of associating a single skip pointer for every
position, two skip pointers are stored. This second order
spstring can be defined as a string over Z*x(Z*U{h,x(Z*
U{Ao}). Each node of a BST-trie corresponds to a position
in the second-order spstring. The left pointer of a BST-trie
node is represented by the first skip pointer and the right
pointer by the second skip pointer. The child pointer of a

US 6,976,025 B2

11

BST-trie node is not represented in the second-order
spstring. Instead, it is implicitly represented by the adjacent
positions in the spstring. If the current character is matched,
the following character is compared in the spstring, which is
equivalent to traversing the child pointer of the current
BST-trie node. FIG. 10 shows a BST-trie and the corre-
sponding second order spstring representing the keywords in
FIG. 3. This second order spstring is called a BST-trie
spstring. The set of skip pointers on top of the spstring in
FIG. 10(b) represents the right pointers of the BST-trie nodes
and the set below the spstring represents the left pointers of
the BST-trie nodes.

The length of the second-order spstring is the number of
BST-trie nodes that have child pointers plus card(K) (for the
delimiters). The extensible array implementation of the
second-order spstrings would save one child pointer for each
BST-trie node. This represents a storage saving of about a

31%
(5}

BST-tries can be represented by second-order spstrings
using packed arrays.

Where in the foregoing description reference has been
made to elements or integers have known equivalents or
substitutes then such are included as if individually set forth
herein.

Embodiments of the invention have been described, along
with specific implementations thereof. It is understood that
variations, improvement or modifications can take place
without departure from the spirit of the invention or scope of
the appended claims.

What is claimed is:

1. A method in a computer of storing as a string a
searchable set of keywords, comprising:

inputting into a computer a least two keywords each

consisting of a sequence of characters,

concatenating the keywords to form a string consisting of

the sequences of characters separate by delimiter
characters,

defining a match path consisting of a next character in the

string,

defining a mismatch path comprising a pointer linking a

first character in one of the sequences of characters
with a second character in another one of the sequences
of characters, and

removing from the string any characters inaccessible by

either the match path or the mismatch path.

2. The method of claim 1 wherein the pointer is stored in
the string immediately after the first character.

3. The method of claim 1 wherein information associated
with the keywords is concatenated with the string immedi-
ately after the keywords.

4. The method of claim 1 wherein information associated
with the keywords is stored in a separate data structure, and

5

15

20

25

35

40

45

50

12

a pointer to the separate data structure is concatenated with
the string immediately after the keyword.
5. A method in a computer of storing a searchable set of
keywords, comprising:
providing in a computer a data structure for linear storage
of plurality of characters,

inputting into the computer at least two keywords each
consisting of a sequence of characters,

entering into the data structure the keyword characters
and a delimiting character separating the keywords in
the data structure, and

defining search paths through the data structure compris-
ing a match path consisting of the next sequential
character in the data structure and a mismatch path
comprising a pointer linking a first character in the data
structure with a second character in another part of the
data structure, and

removing from the data structure any characters inacces-

sible by the search paths.

6. The method of claim 5 wherein the data structure is an
array or stream.

7. The method of claim § wherein the pointers are stored
in a second data structure.

8. The method of claim 5 wherein the data structure is a
packed array, and the pointers are stored in the array after the
character with which they are associated.

9. The method of claim § wherein the data structure is a
bucket array for storing the keywords and pointers.

10. The method of claim 5 further including implementing
a level compression technique on the data structure.

11. The method of claim 5 wherein the data structure
includes a forward array and backwards linked list, and
wherein each node of the linked list has three pointers.

12. The method of claim 5 wherein the data structure
includes a forward array, a backward array and an additional
pointer associated with one or more characters in the data
structure.

13. A method in a computer of storing in a string a
searchable keyword consisting of two or more characters,
the string having one or more existing groups of characters
separated by delimiter characters and skip-pointers, the
method comprising:

inputting into a computer keyword,

identifying in the keyword a first sub-group of characters
identical to an existing group of characters in the string
and a second sub-group of characters not existing in the
string,

concatenating the second sub-group of characters with the
string, and

defining a pointer linking the existing group of characters
to the second sub-group of characters.

#* #* #* #* #*

	us006976025-001
	us006976025-002
	us006976025-003
	us006976025-004
	us006976025-005
	us006976025-006
	us006976025-007
	us006976025-008
	us006976025-009
	us006976025-010
	us006976025-011
	us006976025-012
	us006976025-013
	us006976025-014
	us006976025-015
	us006976025-016
	us006976025-017
	us006976025-018
	us006976025-019
	us006976025-020
	us006976025-021

