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Abstract-- This paper presents simple methods for controlling MATLAB/SIMtJLINK environment under which the
permanent-magnet synchronous motors (PMSM) over a wide speed range simulation results are obtained.
without using a shaft position and speed sensor. In classical estimation
methods the voltage and current vectors are the input to the estimator,
while the rotor position and speed are the output of the estimator. To avoid II. SPEED AND CURRENT CONTROLLER
the drawback of differential and integral operations in conventional
sensorless PMSM drives a recursive approach for estimation of the rotor Fig. 1 shows a schematic diagram of the proposed sensorless
speed and angle is proposed and investigated. The position and speed PMSM drive.
estimations are based on the back electromotive force (BEMF) method in

Sensorl-ess con-trailerthe afl-stator reference frame. Two estimation strategies, one using the
steady-state equations and the other using the dynamic equations, are speedcom,aSpeed
compared. Extensive simulation results are given and discussed. controllecontrollerl

1. INTRODUCTION

Compared with the inverter-fed induction motor drive, the
n ~~~~~~~estimated angle Estimatorvotgvelo.

PMSM has no rotor loss and hence it is more efficient and a estimated speed current vector
larger torque-to-w eight ratio achievable. serious

drawback of the classical PMSM, however, is the need for a Fig 1 Schematic diagram of proposed sensorless PMSM drive
rotor position sensor, such as a high resolution encoder, for As shown in Fig. 2, a proportional-and-integral (PI) speed
proper control of the inverter switches. The presence of the controller is implemented to regulate the rotor speed by
rotor position sensor (which is a delicate and fragile device) comparing the reference speed with the estimated speed. The
impairs the reliability of the drive system increases the system PI controller delivers an output current reference iq*, while the
cost significantly. If the rotor position can be accurately direct current reference id* is set to zero in normal operation to
determined without using a sensor, a low-cost, high obtain the maximum torque-to-current ratio. At startup and low
performance motor drive capable can be produced. In some speeds, Id* is used to provide bumpless speed change as
applications, such a sensorless motor drive system may be the described in Section IV.
only option, notable examples being electric vehicle and The current controller (Fig. 3) employs two PI blocks to
aerospace drive systems. regulate the stator current and employs feed forward control to

In recent years, much attention has been paid to sensorless decouple the dynamics between the applied voltages and the
drives [4]. This paper investigates two estimation methods currents. Inputs of the current controller are the current
based on the back electromotive force (BEMF). reference and the estimated rotor speed, while its output is the

In classical estimation methods the voltage and current reference voltage. The reference voltage will be applied to a
vectors are the input to the estimator, while the rotor position space vector pulse width modulation (SVPWM) unit. The
and speed are outputs of the estimator. To avoid the drawback output of the PI controllers are limited.
of differential and integral operations in conventional
sensorless PMSM drives a recursive approach for estimation of ,efO,e-p-abswA)IO))
rotor speed and angle will be proposed. startup and id=O
Two estimation algorithms will be considered: 1 id*

A. Estimation of rotor speed and angle based on the W P |-
steady-state equations. 2 i idq*

B. Estimation of rotor speed and angle based on the
dynamicequations. ~~~~~~~~Fig. 2 Speed controller.

These methods will be developed and explained in the
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idq Ls efi= coAcos(O); ee, coAsin(O) (8)

GD-~~~~~~~~~~~p
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IV. ESTIMATION STRATEGIES

-| A. Steady-state equations
The derivative of the measured current results often in a

Ke noisy estimation of position and speed. In steady state drive
operation however the current derivative can be well

flux approximated. Let 0 be the angle of stator current vector. Then

Fig. 3 Current controller. i, =lI( cos(O) (9)

Instead of using the measured phase voltages, the reference
voltages are used as estimator input. This will improve the ia sin(O) (10)
drive robustness to noise and filtering can be omitted. This
approximation is not effective at low speeds because of the Supposing stator current magntude S constant at steady
dead times and voltage drop of the inverter bridge. This will state, derivatives of (9) and (10) are
cause relatively large errors in the voltage estimation. di=-i sin(O)dO (11)
Compensation methods can be used to improve the dt a dt
performance at low speed [5]-[7]. di =-i; cos(O) dO (12)

III. PMSM MODEL dt dt
At steady state, the current frequency is synchronous with

The motor model is described in a stationary two-axis the rotor speed co, i.e.,
reference frame. The voltages and currents are related to the

d

physical quantities by a simple linear transformation [1], [2]. d = PEc (13)
dt

2 ( iB ic) where P is the number of pole-pairs of the PMSM.
'a - 'A Substituting (9) to (12) and (10) to (11) respectively,

_Bi ic -=- #P" (14)
dt

di,# CO (15)32 ( VB VC dt= 'a (15)

(2) Substituting (14) to (3) and (15) to (4), respectively,
VB VCVA= -PC6Lsi -Rsia+ ca sin(O)+Va,\f3-m 'fl=~~~~~~~~~~~s/ (16)

Pcm Lsi = -Rs,-cosO+The dynamic model can be written as P Li - -Ri - cos() + v

L dia = Rsi + A sin(O) + Va (3) or
dt

di cAusin(O) = Rsia - PcomLsi i va (17)
Ls d = -R5 i,8 - ci cos(O)+JVA (4)

3)L cos(0) = -Ri- PCOLiP. + v. (18)
e=2-PiA(i,gycosOS-i i )(5

2 ~~~~~~~~~~~~~Basedon the above equations, the rotor angle may be
estimated from stator voltage and current as follows:
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Rsia -P~Lsi -vrVR +L dla -Vtan2(0)= sa S/ (19) R=aea ~ sa dtad-Rsil PL5isa +Vg 1 arctan 2 di55 (27)
-Rsig-Ls + Vlwhere d is the estimated rotor mechanical speed. dt

Eqn. (17) and (18) maybe written as

co{ sin(t}) Ls '8 Rsia( +Ls)-va(20)
a )2+ (-R5i-Li+vi)2 (28)

s 'a sdt a 'g dt
co{)Acos(O) + Lsi} = -Rs if + v/i. (21) Notice that the atan2 function [8] is used. This function uses

the available phase information in the numerator and
From (20) and (21), the rotor speed may be calculated as denominator to realize a [-21, 21] rotor position range.

follows To avoid noise caused by differential operation, the
- I (RIa ~Va)2+ (-R5i/i +V/i)2 approximate algorithm shown in Fig. 5 is adopted to

{,Z|(sin) -vLi)2 + (-{ciosO+ VL)2 (22) implement the current derivatives.

12 + IA COS(12 ~ ~ ~ 1 -K GJA{sin(O) + Lsi}2 +{cs0) + Lsia2
From equations (19) and (22) it can be seen that no

di/dtderivative of the measured current is used for estimation. This Gain
will improve the performance of the drive under noisy
operating conditions.
The proposed estimation algorithm is illustrated in Fig. 4.

Integrator

estimatedspeed svoltagevector Fig. 5 Approximate derivative.

current vector
An inspection of Fig. 5 gives

estimated position position lEstimator di - 1 (9

dt sIK+I
Fig. 4 Dual estimation algorithm with recursive structure. This approximate algorithm is thus a current derivative with

B. Dynamic equations a first order filter.
In the presented method A the current derivative Both proposed estimation methods A and B have difficulty

approximation will not be accurate during ramp up and down to work in closed loop. The arctan function in the position
of the speed. Large rotor position and speed error estimation estimator is sensitive to noise. Fluctuations in 0 directly
will occur. To improve the dynamic performance the dynamic influence the current control and axis transformations.
equations from (3)-(8) will be used. To improve the stability and noise performance the back

speed equals zero, (3) and (4) become EMF can be estimated using a state filter as shown in Fig. 6.
Whendthe rotor The state filter consists of two parts: the PM model without the

LJ~ dia = pR1i +Vaz (23) back EMF terms (as given in (25) and (26)) and a PI
sdt compensator. The back EMF is unmodeled but will be

dif inherently estimated by the PI compensator.
LS 1=-R5i8 +V/i. (24)

Under this condition, the rotor angle can not be estimated 2
from the stator voltages and currents. 1

Eqns. (3) and (4) maybe expressed as rs

wAsin(0) = RJiia +Ls dtVa (25)5dt a Rl
difio>coS(/9) = -R5i,s-L5 d +v/- (26)

Based on (25) and (26), the rotor angle and speed may be e*
estimated from stator voltage and current as follows:

Fig. 6 State filter for estimating back EMF.
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Strong PI compensation gives a more accurate estimation
and increases the bandwidth, but will also introduce more
noise.

The position and speed can now be calculated from 2

A ~~~~~~~~~~~~~~~w_adj
0 = arctan 2 aC (30) wd

in out

1 IA2 ^ 2 31
6(0=- Ca,), +eC * (31)

The above estimation method is not suitable for speed Fig. 8 Adaptive filter for simulation.
reversal operation. The sign of the rotor speed needs to be
considered in the rotor angle calculation, but this information
may be lost due to the division operation of the arctangent theta l

p
out atan2 ID

function. When the speed is negative, the rotor angle can be adaptive filter thetafilterd
described by 14 X

cOs in
outea co2sin(O) -sin( sin( -f )tan-) wlpf

-el3 coiCos(OS) -CO -( = Lan L) ... w_adj adaptive filtere ^ -cos(O) cos(O'- ) (32)

O=tanlKeJ+ff yFig. 9 Adaptive filtering of estimated position.
-eA

* ~ ~ ~~~~~~~~~~1 1This problem also appears in many observers in which the H= -J (33)
currents or their derivatives are used. The estimated position 1+rs I+ (r)2
and speed must be corrected for the undetectability between (0,
w) and (0+(2k+1)2t, -w).

The speed direction will be estimated according to Fig. 7. O =arctan(cr) (34)
The phase difference is used to create an adaptive speedThe hasediffrene isusedto ceat an daptve seed

where Of is the phase delay of the low pass filter. From (34) itestimator which will track the speed signal. The argument w eenis the phase delaydofthelfier.eFrom ()arg(exp(*u)) in Fig. 7 solves the modulus problem. A cabesen that the phase delay depends on the frequency. By
hysteresis function has been applied to improve the stability coosing atcan
during the noisy startup. An adaptive low pass filter is applied becopngansatedsa.ty i
to get a smooth speed signal. The bandwidth of the filter is Dring as sped r al operaion, drive italit isp a
based on (3 1) and the parameters K] and K2 in Fig. 8. Constant problem as the PMSM may experience 'hunting' at low speeds
K] gives a starting bandwidth for the filter at zero speed. To Astsoon asithe bacta mo spee changes directio t

* ~~~~~~~~~~~~estimatedposition based on (30) changes by a factor 2limit the phase lag of the low pass filter, a bandwidth equal to
a s

g y
K2tie th siae pe sse ytecntn 2 according to (32). The estimated speed, however, may not trackK2tms h stmtdspe s e yth ostn*2 the speed change simultaneously and hence the positionBy choosing a constant ratio K2 for the low pass filter the espeed ngesimutnsand he the posito

phase delay can be compensated. Eqn. (33) shows the transfer es on ill notbe ompenated.Te mo tors w
fucino* owps itr therefore increase in the original direction and the factor 2

disappears, whereupon the position estimation is correct again
- - theta and the drive regains control.

°,+pi w dj 3nth.t.flt.,dTo prevent the above phenonomen from happening, the
sign adaptiveLPfilter estimated position is first input to an adaptive filter as shown in

Fig. 9. The output from the filter can not change rapidly and
this gives the speed estimator time to track the reverse speed

uabii L t Lspeed and hence to provide the phase angle compensation.1r 1 statefilter a sedadaptive LP speed filter

equ (283) 25[53>-1 xp PIV. SIMULATION RESULTS
position'.

statefilter b

A. Speed Estimation Using Steady-State Equations
Fig. 7Estimator with state filter speed and positioncorrection. Fig. 10 and Fig. 11 shows the MVATLAB simulation results

ofthe estimator based on (19) and (22). The real position and
speed are applied to the controllers in the control structure as
described in Section II. Fig. 10 shows the result of a no-load

1735

Authorized licensed use limited to: Hong Kong Polytechnic University. Downloaded on March 13, 2009 at 04:55 from IEEE Xplore.  Restrictions apply.



drive cycle comprising an acceleration from 0 to 150 rad/s, There is a steady-state error of 0.1% in the speed estimation.
followed by a deceleration to 100 rad/s and then a further Part of the error is attributed to the applied low pass speed filter,
deceleration to 10 rad/s. The gain settings for the PI speed which will cause some phase lag at high frequencies.
controller are KP = 0.2 and KI = i.I s.

The results in Fig. 1O and Fig. 11 show that the estimation 200
errors are large during acceleration. At steady state, however, 150

the estimation errors disappear and the position and speed are -O IL L I I
tracked quite accurately. 50 L

0 0.0 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 l
speed speed estimated

200: 200

150 ---t---t---t-------150--___

I 100 I X lO0 I II
- ~~~~~~~~~~~~~~~~~~~~~~-II

0 ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~01.I .I
()0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9l

speed estimated speed error
6000 ::

_4000 - i I IIII

-2000 .5
- 5

I III I I ~~~~~~ ~ ~ ~~~~~~~~~~~~~~~~~~~-10* *

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9
00.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1 time [s]

speed error
200 Il:

100 t- t- I- Fig. 12 Speed, estimated speed, speed error: estimation using dynamic

s0 equations.
-100

-200 theta

Fig. 10 Speed, estimated speed and speed error: estimation using steady-state 2-

-4
0 0.0 0.2 0.3 0.4 0.50.6 0.7 0.8 0.9 1

theta theta estimated
4 -4

D2. . . . . . . . g j0 . . . . . . . . .

00.l 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0. g 0 0.l 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9l

theta eeu i time [s]theta er

2 4 k-~~~~~~~~~~~~~~~~~~ I II I

0 Speed,estimated speed asd error: estimation using sdtamic

-4ot.0x0t 0.400. 0. 0. 0. 0. X10< V0 qain

0 0. l 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 0 0 0 00
theta theta estimeat

Fig. 11I---Fig.13 Position, estimated position andposition error: estimation using dyn ca 4
steady-staequatiequati

B. Speed EstimationUsngDynamicEquationsCt -10 erad s.tAgatinonolawithsttappltedfrnthisrstudy.

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 10 0. 02 03 04 05 06 07 08 09

~~~~~~~~~ties]Fig. 14 and Fig. 13 showth simulation results usieetmtrWttisiainagrth,tesederrt nds ther

theta on (30) and (31) ilestimated thastate Th Fition error at drive is now

Fecig.IIPstinbsiaed poinoandpostion error estimaparion usrposcoprse anm aceerto157 t5rad/snthen aeosedrgohspeederobcms
sedrivetcyceequaetionn -Aisusd lreversbutfrom PMSMrdrieisslto rdstandufinall azeeeroaspeed

Ftig. noieha2ohthpeandFigtio are welsrckd. Frte simulation results ofo that esiathethtiestimatinagrtmthspeerortens toblerto
theta 1. 1- I . 1. ntartup error tvg f iny imetia[st] posit
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effect of parameter changes during transients and improvement
4 theta of the drive performance in the presence of noise.

E0° - APPENDIX

-2- - - ---4
DATA OF PMSM USED IN SIMULATIONS

-4 L

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
theta estimated

4 Parameter Symbol Value

2- I - - -~-- Nominal Power PI 600 W

-2 - 4 Stator winding self induction L, 20.5 mH

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 Stator winding resistance R, 1.55 Q
theta error

0.5 I I.!! I Back EMF constant i 0.22 V-s/rad
I

i -o -il- ]Ii{ j-] 14Damping constant B 2.2 x 10-3N-s/rad
° __L KI I liii [ _________________________ Number ofpole-pairs P 1

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 Rotor inertia J 2.2 x 10- kg.m2
time [s]

Nominal speed C3n 150 rad/s

Fig. 14 Position, estimated position and position error, estimation with state Drive current limit Ima 20A
filter and correction.

Drive voltage limit Vmax 300V

speed
200

~~~~~~I I I.
100 - - ----- - - - - 4 -

n- I \
~a0 --I----------..I o If - -I-A-- - X - - _ g _ __v/ACKNOWLEDGMENT
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