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Abstract—The frequency assignment problem is to assign a fre-
quency which is a nonnegative integer to each radio transmitter so
that interfering transmitters are assigned frequencies whose sepa-
ration is not in a set of disallowed separations. This frequency as-
signment problem can be modelled with vertex labelings of graphs.
An �� ��-labeling of a graph is a function from the vertex
set � � to the set of all nonnegative integers such that � �
� � � if � � � � and � � � � � if � � � �,

where � � denotes the distance between and in . The
�� ��-labeling number � � of is the smallest number such

that has an �� ��-labeling with ��� � � 	 � � �
. In this paper, we develop a dramatically new approach on the

analysis of the adjacency matrices of the graphs to estimate the
upper bounds of -numbers of the four standard graph products.
By the new approach, we can achieve more accurate results and
with significant improvement of the previous bounds.

Index Terms—Channel assignment, �� ��-labeling, Cartesian
product, lexicographic product, direct product, strong product.

I. INTRODUCTION

T HE frequency assignment problem is to assign a fre-
quency which is a nonnegative integer to each radio

transmitter so that interfering transmitters are assigned frequen-
cies whose separation is not in a set of disallowed separations.
Hale [9] formulated this into a graph vertex coloring problem.

In 1991, Roberts [19] proposed a variation of the channel as-
signment problem in which “close” transmitters must receive
different channels and “very close” transmitters must receive
channels that are at least two channels apart. To translate the
problem into the language of graph theory, the transmitters are
represented by the vertices of a graph; two vertices are “very
close” if they are adjacent and “close” if they are of distance 2
in the graph. Based on this problem, Griggs and Yeh [8] con-
sidered an labeling on a simple graph. An -la-
beling of a graph is a function from the vertex set to
the set of all nonnegative integers such that if
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and if , where
denotes the distance between and in . A - -labeling
is an -labeling such that no label is greater than . The

-labeling number of , denoted by , is the smallest
number such that has a - -labeling.

From then on, a large number of articles have been published
devoted to the study of the frequency assignment problem and
its connections to graph labelings, in particular, to the class of

-labelings and its generalizations: Over 100 references
on the subject are provided in a very comprehensive survey
[3]. In addition to graph theory and combinatorial techniques,
other interesting approaches in studying these labelings include
neural networks [7], [14]; genetic algorithms [17], and simu-
lated annealing [18]. Most of these papers are considering the
values of on particular classes of graphs.

From the algorithmic point of view, it is not surprising that
it is NP-complete to decide whether a given graph allows an

-labeling of span at most [8]. Hence, good lower and
upper bounds for are clearly welcome. For instance, if is a
diameter2graph, then .Theupperboundisattainable
by Moore graphs (diameter 2 graph with order ), see [8].
Such graphs exist only if , and possibly 57.

The above considerations motivated Griggs and Yeh [8] to
conjecture that for any graph with the maximum degree

, the best upper bound on is (Griggs-Yeh conjecture).
Noted that this is not true for . For example,

but . Griggs and Yeh provided an upper bound
for general graphs with maximum degree . Chang

and Kuo [4] improved the bound to and later on Král
and S̆krekovski [16] further reduced the bound to .

Graph products play an important role in connecting various
useful networks and they also serve as natural tools for different
concepts in many areas of research. For example, the diagonal
mesh with respect to multiprocessor network is representable by
the direct product of two odd cycles [22] and one of the central
concepts of information theory, the Shannon capacity, is most
naturally expressed with the strong product of graphs, cf. [23].

The Cartesian product, the lexicographic product, the direct
product and the strong product constitute the four standard
graph products [10]. In [21] and [13], Shao et al. proved that
the (2,1)-labeling number of the four standard product graphs
are bounded by the square of its maximum degree respectively.
Hence, the Griggs–Yeh conjecture holds (with some minor ex-
ception). Recently, Shao et al. [20] improved the upper bounds
obtained in [13] with a more refined analysis of neighborhoods
in product graphs than the analysis in [13].

The main contribution of this paper is to present a new ap-
proach to derive the upper bounds of -numbers of the four stan-
dard graph products.
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Fig. 1. Cartesian product of graphs.

Fig. 2. Composition of graphs.

A heuristic labeling algorithm is presented that forms the
basis for these considerations in Section 3 while the four stan-
dard products of graphs are considered respectively in Section 4.
Improvements (if any) with respect to the previously known
upper bounds are explicitly computed.

Throughout the paper, all graphs are assumed to be simple
(i.e., no loop and no parallel edge).

II. FOUR STANDARD PRODUCTS OF GRAPHS

Let and be two graphs of orders and , respec-
tively. Let and be the maximum degrees of and ,
respectively.

There are four standard products of graphs, namely, the Carte-
sian product, composition product (i.e., lexicographic product),
direct product and strong product. Let
and be the vertex sets of and , re-
spectively. The vertex sets of these four product graphs are the
same, which is . In this paper, we shall list the
vertex set in a lexicographic order.

The Cartesian product of and is denoted by . In
, the vertex is adjacent to the vertex if and

only if either and , or and
. Fig. 1 shows the Cartesian product of and .

The composition (or lexicographic product) of with is
denoted by or . In is adjacent to
if and only if either , or and .
Fig. 2 shows the composition of with .

The direct product of and is the graph in which
the vertex is adjacent to the vertex if and only if

and . Fig. 3 shows the direct product
of and .

The strong product of and is the graph, in which
the vertex is adjacent to the vertex if and only
if and , or and , or

Fig. 3. Direct product of graphs.

Fig. 4. Strong product of graphs.

TABLE I

and . Fig. 4 shows the strong product
of and .

Suppose and are the adjacency matrices of and ,
respectively. We can write down the adjacency matrices of these
four product graphs. Those matrices involve the Kronecker
product of the matrices (cf. [5]). Namely, we have Table I,
where is the identity matrix of order is the identity
matrix of order , is the square matrix of order with all
entries 1.

III. LABELING ALGORITHM

A subset of is called an -stable set (or -independent
set), if the distance between any two vertices in is greater
than . A 1-stable (independent) set is a usual independent set.
A maximal 2-stable subset of a set is a 2-stable subset of
such that is not a proper subset of any 2-stable subset of .

Chang and Kuo [4] proposed the following algorithm to ob-
tain an (2,1)-labeling and the maximum value of that labeling
on a given graph.

Algorithm 2.1.

Input: A graph .

Output: The value is the maximum label.

Idea: In each step, find a maximal 2-stable set from
unlabeled vertices that are of distance at least two away
from those vertices labeled in the previous step. Then label



804 IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS—II: EXPRESS BRIEFS, VOL. 55, NO. 8, AUGUST 2008

all vertices in that 2-stable set with the index in the current
stage. The index starts from 0 and then increases by 1 in
each step. The maximum label is the final value of .
Initialization: Set ;

; .
Iteration:

1) Determine and .
• is unlabeled and for

all .
• a maximal 2-stable subset of .
• If , then set .

2) Label vertices in (if any) by .
3) .
4) If , then and go to Step 1.
5) Record the current as (which is the maximum

label). Stop.

Thus is an upper bound on . In addidtion, we would
like to obtain a bound in terms of the maximum degree
of instead of in terms of the chromatic number .

Let be a labeling obtained in the Algo-
rithm 2.1 and be a vertex with the largest label . Denote

and

for some

for some

and

for some

for some

and

for all
It is clear that . For any , ;

otherwise is a 2-stable subset of , which contradicts
the choice of . That is, for some vertices in

; i.e., . So, . Hence,
.

In order to find the upper bound of , it suffices to estimate
in terms of .

Before eliminating the upper bound of , we introduce a nota-
tion first. Let be a matrix with rows. For
denote the number of nonzero entries in the th row of ex-
cluding the diagonal entry.

Let be the adjacency matrix of with respect to the list
of vertices . Then it is well-known that the th
entry of is the number of different -walks in of
length , for .

Thus, is the number of vertices
joining by a walk of length 2 from excluding itself and

is the number of vertices of distance 1 or 2 from .
So that

(1)

(2)
For convenience, the notations which have been introduced

in this section will also be used in the following section.

IV. MAIN RESULTS

The upper bounds of those four standard product graphs were
studied in [13], [20], [21]. In this section, we will reconsider

those cases by our new approach. Most of the upper bounds are
improved.

Theorem 4.1: Let and be maximum degrees of and
, respectively. Then

Proof: Note from Table I that, the adjacency matrix of
is . Then

Note that the rules of algebra of Kronecker product matrices can
be found in [5].

Let be the maximum label obtained by the Algorithm 2.1.
Let be the vertex with the label . We
look at the th row of the matrix . We have

Note that the last equality is obtained by applying (2).
Also we have known that .

Thus,

The above result agrees with Shao and Yeh’s result in [21].
Theorem 4.2: Let and be the maximum degree of

and , respectively and let be the order of . Then

Proof: From Table I, we get that the adjacency matrix of
is . Then

Since all entries of the involved matrices are nonnegative, the
number of nonzero entries in the th entry of

is the same as that of
. Thus, the number of nonzero entries in the

th entry of excluding the diagonal entry is at most
. Note that

. Thus,
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This completes the proof.
Hence if , then and .

It agrees with Chang and Kuo’s result [4].
In [21], it was proved that ,

where the maximum degree of is .
Since

we have reduced the bound
by .

In [15] and [20], they obtained an upper bound for the
-labeling number of the direct product of two graphs in

terms of the maximum degrees of the graphs involved. We shall
improve this bound.

Theorem 4.3: Let and be maximum degrees of and
, respectively. Then

Proof: From Table I, we get that the adjacency matrix of
is . Then

Similar to the proof of the previous theorem, by (1) we have

This completes the proof.
In [20], it was proved that

, where the maximum degree of
is . Theorem 4.3 is an improvement of this result.
Since

, we have
thus reduced the bound by .

In [12] the -numbers of the strong product of cycles are con-
sidered. In [15] and [20], they obtained a general upper bound
for the -number of strong products in terms of maximum de-
grees of the factor graphs (and the product).

Theorem 4.4: Let , and be the maximum degree of
and , respectively. Then

Proof: From Table I, we get that the adjacency matrix of
is . Then

Similar to the proof of the previous theorem, by (1) and (2) we
have

This completes the proof.
In [20], it was proved that

, where the maximum
degree of is . Since

, we have reduced the bound
by .

V. CONCLUSION

By our new developed approach, most of the previous results
about the upper bounds of -numbers of the four standard graph
products have been improved significantly. In addition, the new
approach is easy to follow and will reduce many unnecessary
counting procedures that occurred in many previous papers. In
other words, we believe that our method is a new direction for
researchers and engineers to derive the upper bounds of -num-
bers more efficiently.
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