
 1

Scheduling Start Time Dependent Tasks with Deadlines

and Identical Initial Processing Times on a Single Machine

T. C. E. Cheng Q. Ding

Department of Management

The Hong Kong Polytechnic University

Hung Hom, Kowloon, Hong Kong

E-mail: mscheng@polyu.edu.hk

July 2001

Abstract

In this paper we study the feasibility problem of scheduling a set of start time dependent tasks on a

single machine with deadlines, processing rates and identical initial processing times. First, we

show that the cases with arbitrary deadlines are strongly NP-complete. Second, we show that the

cases with two distinct deadlines are NP-complete in the ordinary sense. Finally, we give an optimal

polynomial algorithm for the makespan problem with two distinct processing rates. We solve a

series of open problems in the literature and give a sharp boundary delineating the complexity of the

problems.

Keywords: Sequencing, Time dependence scheduling, Computational complexity.

This is the Pre-Published Version.

 2

1. Introduction

Machine scheduling problems with start time dependent processing times have received

increasing attention in recent years. The linear model is one of the most popular ones. Formally,

these problems can be stated as follows. A task system consists of n independent tasks and is

denoted by { } { } { } { }()iiii badTTS ,,,= . Each task iT is associated with a deadline id and

characterized by an initial processing time 0≥ia and a processing rate 0≥ib . Depending on the

task starting time is , the actual processing time of task iT is 0≥±= iiii sbap and its completion

time is () iiiiii sbapsC ±+=+= 1 . For all tasks, the release time is 0 . Since the processing times

are not integers in many practical cases, values ia , ib and id are allowed to be rational numbers.

Adopting the three-field notation proposed by Graham et al [9] to describe a scheduling problem,

we denote the makespan problem as max,1 Cdsbap iiiii ±= .

A nonpreemptive schedule is feasible if each iT is completely processed in the interval []id,0 .

The feasibility problem is to decide whether there exists a feasible schedule for TS . Let

{ }i
ni

CC max
1

max
≤≤

= denote the maximum completion time of a schedule and { } max
1
max ddG i

ni
≡=

≤≤

denote a threshold. The feasibility problem is equivalent to the decision version of the makespan

problem, which is to decide whether there exists a feasible schedule for TS with GC ≤max .

Several papers consider the makespan problems of single machine scheduling with start time

dependent tasks. For the model 0≥+= iiii sbap without deadlines, Gupta and Gupta [10] show

that the schedule of tasks arranged in nondecreasing order of the ratios
i

i

b
a

 is optimal for the

makespan problem. Meanwhile, Browne and Yechiali [2] obtain a similar result for a stochastic

version of the problem. Cheng and Ding [7] show that the makespan problem with arbitrary

deadlines is strongly NP-complete, and the case with bbi = can be solved in ()5nO time. Kononov

[12] shows that the maximum lateness problem is NP-complete in the ordinary sense even with

0=ia for all tasks except one, and the due dates ddi = for all tasks with 0=ia .

For the model 0≥−= iiii sbap , Ho et al [11] show that the schedule of tasks arranged in

nonincreasing order of the ratios
i

i

b
a

 is optimal for the makespan problem with identical deadlines.

 3

Cheng and Ding show that the case with bbi = and arbitrary deadlines is strongly NP-complete [6],

while the case with bbi = and two distinct deadlines is NP-complete in the ordinary sense [4].

Woeginger [14] and Chen [3] give two dynamic programming algorithms to solve the number of

late task problem with identical deadlines in ()3nO and ()2nO time, respectively. The more recent

results for scheduling models with time dependent processing times are surveyed in Alidaee and

Womer [1].

The scheduling problem with identical processing times is an important branch in classical

scheduling theory (see the results surveyed in Tanaev et al [13]). However, the corresponding

problem with time dependent processing times is a virtually new area of study. In this paper, we

focus on the complexity of the feasibility problems with arbitrary processing rates and identical

initial processing times, i.e., aai = . We show that the cases with arbitrary processing rates and

arbitrary deadlines, denoted as max,1 Cdsbap iiii ±= , are strongly NP-complete. We also show

that the cases with arbitrary processing rates and two distinct deadlines, denoted as

{ } max21,,1 CDDdsbap iiii ∈±= , are NP-complete in the ordinary sense. Finally, we give an

optimal polynomial algorithm for the makespan problem with only two distinct processing rates,

denoted as { } max21 ,,,1 CBBbdsbap iiiii ∈±= .

The considered models are rich in practical applications. Ho et al [11] introduce an interesting

military application with negative processing rates. The task is to destroy an aerial threat and its

execution time decreases with time as the longer the action is delayed, the closer the threat gets.

This application is actually a problem with aai = , considering that the efficient scope of the action

is usually a sphere. For the case with positive processing rates and aai = , we consider medical

treatment as an application example. At the outset, the treatment is common to the patients that take

an identical processing time. However, if the treatment is delayed, additional efforts are needed for

each treated individual, resulting in a longer time for each subsequent treatment.

For the model 0≥−= iiii sbap , not only ip , but also iC is decreasing in is if 1>ib . In such

a case, some performance measures become non-regular. We assume 10 ≤≤ ib in this paper. Ho et

al [11] make some additional assumptions, such as iiii dadb ≤< , which are reasonable and indeed

help eliminate some uninteresting cases. However, they are not necessary for the results in this

paper. On the other hand, a similar model with arbitrary processing rates is considered in Cheng et

al [5].

 4

Furthermore, only schedules without idle time need to be considered. Without affecting the

results of NP-completeness, in Sections 2 and 3, we assume that the identical initial processing time

is 1, i.e., 1=a , is used in the formula describing the completion time of a task.

2. NP-completeness of the problems with arbitrary deadlines

The strongly NP-complete 3-Partition problem (see Garey and Johnson [8]) can be reduced to

max,11 Cdsbp iiii −= .

3-Partition. Given a list { }mhhhH 321 ,,, = of m3 integers such that mBh
m

i
i =∑

=

3

1

 and
24
BhB

i <<

for each mi 31 ≤≤ , can H be partitioned disjointedly into mHHH ,,, 21  such that ∑
∈

=
ji Hh

i Bh for

each mj ≤≤1 ?

Given an instance I of 3-Partition with a list { }mhhhH 321 ,,, = and B , define mBq 2= ,

qBmv 232= . Construct an instance II of max,11 Cdsbp iiii −= as follows.

The set of tasks is 11 −∪∪∪∪= mQQRVTS  , where { }vTTTV ,02,01,0 ,,, = ,

{ }mTTTR 321 ,,, = , { }qiiii TTTQ ,2,1, ,,, = , for 11 −≤≤ mi . Define 3
1 3nA = and nmBAA 232 == ,

where qmmvn)1(3 −++= is the number of tasks in TS .

Given the threshold ()∑∑∑
−

=

−

= =

++
−

−++
−=

1

0 321

1

1 1 31

33 m

k

m

k

q

l AAA
Bkqkv

AA
lkqkvnG and the constants

()∑∑∑
−

=

−

= =

++
−

−++
−++=

1

0 321

1

1 1 31

333
i

k

i

k

q

l
i AAA

Bkqkv
AA

lkqkviqivD , for 11 −≤≤ mi . We assume that the

processing rates and the deadlines are

,0,0 =ib vd i =,0 , for vi ≤≤1 ,

31

,
1
AA

b ji = , iji Dd =, , for 11 −≤≤ mi and qj ≤≤1 ,

 5

321 AAA

h
b i

i = , Gdi = , for mi 31 ≤≤ .

Now, we analyze the structure of the feasible schedule for II (see Figure 1). Let S be a given

feasible schedule for II . Since vd i =,0 , for vi ≤≤1 , the tasks in V should be scheduled in the first

v positions in S . Since the tasks in 11 −∪∪ mQQ  have identical processing rates, we can arrange

them in nondecreasing order of their deadlines and indices. The set of tasks after vT ,0 and before qT ,1

consists of the tasks in 1Q and some tasks in R . All of their deadlines are larger than 1D . We re-

arrange the task set in nonincreasing order of the processing rates. Since the processing rates of

tasks in R are smaller than the processing rates of tasks in 1Q , the resulting schedule is in the form

of ()11 ,QR . Since the schedule of tasks in nonincreasing order of the processing rates minimizes the

total processing time (see Ho et al [11]), the resulting schedule is also feasible. Similarly, we can

swap the tasks after qiT , and before qiT ,1+ in the form of ()11 , ++ ii QR for 21 −≤≤ mi . Finally, we

obtain a new feasible schedule in the form of ()mm RQRQRV ,,,,,, 1211 − , which is called a basic

schedule. Thus, we obtain the following lemma.

Lemma 1. If there exists a feasible schedule for II , then there exists a feasible basic schedule.

In a basic schedule for II , if there are exactly three tasks in each jR and Bh
ji RT

i =∑
∈

, for

mj ≤≤1 , then we obtain an ideal schedule, which is called a standard schedule. Now we illustrate

that every standard schedule is feasible as follows.

Given a standard schedule S , since the processing rates are very small, all actual processing

times are almost equal to 1 . For any task ji RT ∈ in S , the actual processing time is

[] iiiiii sbqjvbsbp ∆⋅−−+⋅−=−=)1(11 , where qjvss ii)1(−−−=∆ is much smaller than q .

Since there are exactly three tasks in jR and Bh
ji RT

i =∑
∈

, we have

()[] ∑∑∑
∈∈∈

∆−
−+

−=−=
jijiji RT

ii
RT

ii
RT

i sb
AAA

Bqjvsbp
321

133 . (1)

 6

Define ()[]
321

13
AAA

BqjvP
jR

−+
−= , for mj ≤≤1 . Since the error term ∑

∈

∆
ji RT

ii sb is much smaller

than
321 AAA

q , from (1), we have

j

ji

j R
RT

iR Pp
AAmA

qP ≤≤− ∑
∈3214

. (2)

If jQ is scheduled consecutively and completed exactly at jD , then the total actual processing time

of jQ is its minimum, denoted as
jQP , for 11 −≤≤ mj .

Note that
111 QR PPvD ++= ; that is, if 1Q is scheduled consecutively and completed exactly at

1D , then the length of the interval left for 1R is exactly
1RP . Such a sub-schedule),(11 QR is feasible.

By induction, we can generalize the above results to the reminder of the schedule and obtain the

following lemma.

Lemma 2. If a schedule for II is standard, then it is feasible.

On the other hand, if a basic schedule is not standard, then we can show that it is not feasible

either. Given a basic schedule S , if there are more than j3 tasks in jRR ∪⋅⋅⋅∪1 , then, from (1), it

is easy to see that ∑∑
=∪∪∈

>+>
j

i
R

RRT
i i

ji

Pjp
12

13
1 

. From the definition of jD , the task set jQ cannot

meet jD . Similarly, if there are exactly j3 tasks in jRR ∪⋅⋅⋅∪1 and jBh
ji RRT

i <∑
∪∪∈ 1

, then we also

have that ∑∑
=∪∪∈

>
j

i
R

RRT
i i

ji

Pp
11 

 and jQ cannot meet jD . Thus, we obtain the following remark.

Remark 1. For a feasible basic schedule, there are no more than j3 tasks in jRR ∪⋅⋅⋅∪1 and

jBh
ji RRT

i ≥∑
∪∪∈ 1

, for mj ≤≤1 .

Now, we analyze the converse cases. Given a basic schedule, suppose that there are only two

tasks in 1R . Comparing with a standard schedule, the starting times of tasks in 1Q are all earlier by

 7

almost 1. The total actual processing time of tasks in 1Q is near
21

1 AA
qPQ + . Meanwhile, the total

actual processing time of tasks in jQ is always larger than its minimum
jQP . As to the tasks in R ,

similar to (2), we have

3211

23)(
AAA

mqBmvsbPp
RT

ii

m

i
R

RT
i

i

i

i

⋅⋅
≤−⋅≤− ∑∑∑

∈=∈

. (3)

Since
21 AA

q is much larger than ()
321

123
AAA
mBmq +⋅⋅ , from (3) and the definition of G , we get

GC >max ; that is, the schedule is not feasible. Thus, we have that there are exactly three tasks in 1R .

By induction and Remark 1, we obtain the following remark.

Remark 2. For a feasible basic schedule, there are exactly j3 tasks in jRR ∪⋅⋅⋅∪1 and

jBh
ji RRT

i ≥∑
∪∪∈ 1

, for mj ≤≤1 .

Given a feasible basic schedule, from Remark 2, there are exactly j3 tasks in jRR ∪⋅⋅⋅∪1 and

jBh
ji RRT

i ≥∑
∪∪∈ 1

, for mj ≤≤1 . Suppose that

1
1

+=∑
∈

Bh
RT

i
i

, Bh
ji RRT

i =∑
−∪∪∈ 12 

 and 1−=∑
∈

Bh
ji RT

i . (4)

Similar to (1), we have

321

)1(3
1

AAA
Bvp

RT
i

i

+
−≈∑

∈

 (5)

and

[]
321

)1()1(3
AAA

Bqjvp
ji RT

i
−−+

−≈∑
∈

. (6)

From (5) and (6), we have

()
321321

1 2
)1(

1
AAA

q
AAA
qjPRPRp j

RRT
i

ji

≥
−

≈+−∑
∪∈

. (7)

If the other parts of the given schedule are in the standard form, then, from (2), we have

3212,, 4
1

AAA
qPp

mjji
R

RTRRT
i i

ij

−≥− ∑∑
≤≤≠∈∪∉

. Further, from (7) and the definition of G , we have that

 8

3211 4 AAA
qPp

mj
R

RT
i i

i

≥− ∑∑
≤≤∈

 and GC >max , contradicting the feasibility assumption. Thus, the given

schedule is standard. If there exists another sub-schedule which is not in the standard form, then,

from Remark 2, the structure of this sub-schedule should fulfil the assumption for the originally

given schedule. Repeating the above analysis and results, we obtain the following lemma.

Lemma 3. If a basic schedule for II is feasible, then it is standard.

 Given a solution for I , we can construct a corresponding standard schedule. From Lemma 2,

it is feasible. Given a feasible schedule for II , from Lemmas 1 and 3, there exists a feasible basic

schedule, which is standard and corresponds to a solution for I . A similar reduction with a detailed

proof is presented in Cheng and Ding [6]. Thus, we obtain the following theorem.

Theorem 1. The problem of whether there exists a feasible schedule for the problem

max,11 Cdsbp iiii −= is strongly NP-complete.

A similar technique can be used to tackle max,11 Cdsbp iiii += . Given an instance I of 3-

Partition with a list { }mhhhH 321 ,,, = and B , define Bmq 232= , qBmv 216= and construct an

instance II of max,11 Cdsbp iiii += as follows.

The set of tasks is 11 −∪∪∪∪= mQQRVTS  , where { }vTTTV ,02,01,0 ,,, = ,

{ }mTTTR 321 ,,, = and { }qiiii TTTQ ,2,1, ,,, = , for 11 −≤≤ mi . Define mnBE 4= and 2332 EnA = ,

where qmmvn)1(3 −++= is the number of tasks in TS .

 Given the threshold () ()
A
mB

A
kqkvB

A
kqkvEnG

m

k

m

k

213133 1

0

1

0
+

+++
+

+++
+= ∑∑

−

=

−

=

 and the

constants () ()
A
mB

A
kqkvB

A
kqkvEiqivD

i

k

i

k
i

2131333
1

0

1

0
+

+++
+

+++
+++= ∑∑

−

=

−

=

, for 11 −≤≤ mi .

We assume that the processing rates are

 ,0,0 =ib vd i =,0 , for vi ≤≤1 ,

 0, =jib , iji Dd =, , for 11 −≤≤ mi and qj ≤≤1 ,

 9

A

hE
b i

i
+

= , Gdi = , for mi 31 ≤≤ .

Let S be a given feasible schedule for II . Since vd i =,0 , for vi ≤≤1 , the tasks in V should be

scheduled in the first v positions. Since the schedule of tasks arranged in nonincreasing increasing

processing rates minimizes the total processing time (see Gupta and Gupta [10]) and the increasing

processing rates of tasks in R are larger than those of tasks in 11 −∪∪ mQQ  , the tasks in R

should be scheduled as early as possible. By swapping tasks in 11 −∪∪ mQQ  and R , we obtain a

feasible schedule in the form of ()mm RQRQRV ,,,,,, 1211 − . Moreover, the number of tasks in each

jR is exactly three and the sum of the processing rates is exactly
A

BE +3 . Similar to Theorem 1, we

obtain the following theorem.

Theorem 2. The problem of whether there exists a feasible schedule for the problem

max,11 Cdsbp iiii += is strongly NP-complete.

3. NP-completeness of the problems with two distinct deadlines

Now we discuss the complexity issue for cases with two distinct deadlines. The NP-complete

Partition problem (Garey and Johnson [8]) can be reduced to { } max21,,11 CDDdsbp iiii ∈−= .

Partition. Given a list { }mhhhH ,,, 21 = of m integers such that Bh
m

i
i 2

1
=∑

=

, can H be

partitioned disjointedly into 1H and 2H such that Bhh
Hh

i
Hh

i
ii

== ∑∑
∈∈ 21

?

Given an instance I of Partition with a list { }mhhhH ,,, 21 = and B , construct an instance II

of { } max21,,11 CDDdsbp iiii ∈−= as follows.

 10

The set of tasks is mRRRTS ∪∪∪= 10 , where { }1,2,1,0, ,,,, += miiiii TTTTR  , for mi ≤≤0 .

Define 3
1 4nA = and BnmAA mm 21

32 2 +== , where)2)(1(++= mmn is the number of tasks in

TS . We assume that the processing rates are

 ,01,00,0 == bb
31

,0
1
AA

b j = , for 12 +≤≤ mj ,

321

0,)1(
2

AAAi
hBm

b i
ii

i +
−

= ,
321

,)1(
2

AAAi
Bmb

ii

ji +
= , for mi ≤≤1 and 11 +≤≤ mj .

Define

321321

1

2
,0

1
1,1 2

1)()1(22
AAAAAA

BbjmbimD
m

j
j

m

i
i +++−+−+= ∑∑

+

==

and

[] .

2
1)1)(1(

)1)(1()()1(

3213211 1
1,

1
0,

1

2
,0

1
1,2

AAAAAA
mBbjmi

bmibjmbinD

m

i

m

j
ji

m

i
i

m

j
j

m

i
i

+−+++−

++−+−+−=

∑∑

∑∑∑

= =
+

=

+

==

The deadlines are 1,0 Dd j = and 2, Dd ji = , for mi ≤≤1 and 10 +≤≤ mj . The threshold is

2DG = .

If there exists a feasible schedule, then, using a strategy similar to the above two reductions, we

get a basic feasible schedule in the form of () ()2,2,22,12,01,1,21,11,0 ,,,,,, mm RRRRRRRR  , where

iii RRR =∪ 2,1, , for mi ≤≤0 . Moreover, if a basic schedule is feasible, then we have

{ }1,00,01,0 ,TTR = and there is exactly one task, either 0,iT or 1,iT , in 1,iR . That is, the schedule is in a

standard form such as ()()()()2,2,22,12,0,,2,11,00,0 ,,,,,,,
21 mkmkk RRRRTTTTT

m
 , 0=ik or 1, (see Figure

2). The total actual processing time of a schedule with 0=ik is different from that of the

counterpart case with 1=ik by a multiple of ih . The multiple for each index i is equal, ensured by

the structure of II . For the case
{ }

Bh
jkji

i >∑
=∈ 0:

, the sum of processing rates before 2,0R is so small and

the total actual processing time before 2,0R is so large that 2,0R cannot meet 1D . On the other hand,

for the case
{ }

Bh
jkji

i <∑
=∈ 0:

, the sum of processing rates after 2,0R is so small and the total actual

 11

processing time after 2,0R is so large that we have 2max DGC => . Each standard feasible schedule

for II corresponds to a solution for I . A similar reduction with a detailed proof is presented in

Cheng and Ding [4]. Thus, similar to Theorems 1 and 2, we obtain the following theorem.

Theorem 3. The problem of whether there exists a feasible schedule for the problem

{ } max21,,11 CDDdsbp iiii ∈−= is NP-complete in the ordinary sense.

An instance II of { } max21 ,,11 CDDdsbp iiii ∈+= is constructed as below: TS consists of

)1)(2(++= mmn tasks: { } { } { }1,1,0,1,11,10,11,01,00,0 ,,,,,,,,, +++ ∪⋅⋅⋅∪∪= mmmmmm TTTTTTTTTTS  .

Define BmnE mm 222 2= and 2316 EnA = . The processing rates are

,2
1,00,0 A

Ebb == 0,0 =jb , for 12 +≤≤ mj ,

Ai

hBmE
b i

imim

i)1(
2 222222

0, +
++

=
+−+−

,
Ai

h
bb i

iji)1(0,, +
−= , for mi ≤≤1 , 11 +≤≤ mj .

 Define

()∑
=

++
+−

++=
m

i
ibi

A
BEmD

1
0,1 1

2
12422

 and

() ()()[]∑∑∑
= =

+
=

++++++
++

+=
m

i

m

j
ji

m

i
i bjmibi

A
mBEnD

1 0
1,

1
0,2 111

2
124 .

The deadlines are 1,0 Dd j = and 2, Dd ji = , for mi ≤≤1 and 10 +≤≤ mj . The threshold is

2DG = . Similar to Theorem 3, we obtain the following theorem.

Theorem 4. The problem of whether there exists a feasible schedule for the problem

{ } max21 ,,11 CDDdsbp iiii ∈+= is NP-complete in the ordinary sense.

4. Solvable cases

Now we present a polynomial optimal algorithm for the makespan problem

{ } max21 ,,,1 CBBbdsbap iiiii ∈±= . In this algorithm, we try to generate a feasible schedule, in

 12

which the tasks with the smaller processing rate 1B are scheduled as early as possible and the tasks

with the larger processing rate 2B are scheduled as late as possible (see Figure 3).

Given an instance I of { } max21 ,,,1 CBBbdsbap iiiii ∈−= with m distinct deadlines

mDDD <⋅⋅⋅<< 21 . A schedule is called canonical, if it satisfies that the tasks with the same ib are

in the early due date (EDD) order and the tasks in { }],(: 1 iiiii DDCTR −∈= , where mi ≤≤1 and

00 =D , are in nondecreasing ib order. If there exists a feasible schedule for a given instance, then,

similar to Lemma 1, we can get the following lemma.

Lemma 4. If there exists a feasible (optimal) schedule for an instance of

{ } max21 ,,,1 CBBbdsbap iiiii ∈−= , then there exists a canonical feasible (optimal) schedule.

 Now, we introduce the algorithm. Schedule the tasks with the same ib in EDD order and we get

two task chains 1S and 2S . Insert the tasks in 2S into []mD,0 from backward as follows. Schedule

the tasks in 2S with the largest deadline mD as a consecutive subschedule mS ,2 completed at mD .

Schedule the tasks in 2S with 1−mD as a consecutive subschedule 1,2 −mS completed at the minimum

of 1−mD and the stating time of mS ,2 . By induction, we can insert the remainder tasks in 2S and

generate a schedule in the form of ()() ()kk MIMIMI ,,, 2211 ⋅⋅⋅ , where iI is the i -th idle time and

iM is the i -th consecutive subschedule, mk ≤ . This schedule is called the middle schedule,

denoted as M . If some tasks in 2S cannot be inserted in M , then put them in a late task set,

denoted as L . Then, we insert the tasks in 1S into the idle times in M from forward. Starting from

the beginning of 1I , insert the tasks according to the order in 1S , until the spare space of 1I cannot

hold the next task. If an inserted task cannot meet its deadline, then take it out of the schedule and

put it in L . Then, insert the following task continuously. Let 1,1S denote the inserted consecutive

subschedule. Shift 1M forward to connect with 1,1S . Apply the same operations to the remaining

schedule. We get a final schedule F in the form of ()() ()kk MSMSMS ,,, ,122,111,1 ⋅⋅⋅ and a late task

set L . The following two lemmas are used to show that the above algorithm is optimal.

 13

Lemma 5. For an instance of { } max21 ,,,1 CBBbdsbap iiiii ∈−= , the final schedule is optimal if

the late task set is empty.

Proof. Since L is empty, all tasks with 2Bbi = are scheduled in M . From the generation of F , F

is a feasible schedule for II and the tasks in M and 1S are inserted in EDD order, respectively.

From Lemma 4, there exists a canonical optimal schedule for II , denoted as S . In S , the tasks

with the same ib are also in EDD order. In S before the last task in 1M , the tasks with 1Bbi = are

no more than the tasks in 1,1S . Otherwise, from the generation of 1,1S , the last task in 1M cannot

meet its deadline in S , a contradiction.

In S , advancing the tasks in 1,1S to the beginning of schedule, the resulting schedule *S starts

with ()11,1 , MS . Since the tasks with the smaller processing rate 1Bbi = always shift forward, the

makespan of *S is no larger than the makespan of S . A task with 2Bbi = before a task in 1,1S may

shift backward, but its completion time is still no larger than that in F . Hence, *S is also an

optimal schedule. Applying the above policy to the remaining part of S , we finally get an optimal

schedule with the same task order as F . That is, the final schedule F is optimal.

Lemma 6. If the late task set is not empty, then an instance of { } max21 ,,,1 CBBbdsbap iiiii ∈−=

does not have a feasible schedule.

Proof. Let *T denote the first late task generated by the algorithm. For the case with 2
* Bb = , there

exists a continuous sub-schedule consisting of),,(1 jMM ⋅⋅⋅ , which cannot be inserted in []jD,0 ,

according to the generation of M and L . The makespan of this sub-instance is independent of the

order of tasks, since they have identical initial processing times and processing rates. Thus, the

instance has no feasible schedule.

For the case with 1
* Bb = , according to the algorithm, the tasks with 2Bbi = and the tasks

before *T in 1S have been inserted in a partial schedule *F . However, *T cannot be inserted in *F .

On the other hand, if the instance has a feasible schedule, then it has a canonical feasible schedule

F , in which the task order is the same as that of the tasks in *F , according to the proof in Lemma

5. This means that *T can be inserted in *F , a contradiction.

 14

From Lemmas 5 and 6, we obtain the following optimal algorithm for

{ } max21 ,,,1 CBBbdsbap iiiii ∈−= .

Algorithm A: for { } max21 ,,,1 CBBbdsbap iiiii ∈−=

1. Establish task chains 1S and 2S .

2. Establish the middle schedule M , the final schedule F and the late task set L .

3. If L is empty, then F is optimal. Otherwise, there exists no feasible schedule.

Since each step in Algorithm A can be completed in ()nnO log time, the total running time of

Algorithm A is ()nnO log . This method can be readily adapted to deal with

{ } max21 ,,,1 CBBbdsbap iiiii ∈+= . Thus, we obtain the following theorem.

Theorem 5. The makespan problem { } max21 ,,,1 CBBbdsbap iiiii ∈±= can be solved in

()nnO log time.

5. Conclusions

In this paper, we have examined the single machine scheduling problems with start time

dependent tasks that have identical initial processing times. We have shown that the feasibility

problems, max,11 Cdsbp iiii ±= , are strongly NP-complete, and the feasibility problems with two

distinct deadlines, { } max21 ,,11 CDDdsbp iiii ∈±= , are NP-complete in the ordinary sense. As

usually the case, all these results can be adapted to their corresponding scheduling problems with

the popular regular performance measures of total flow time and maximum lateness.

On the other hand, we have shown that the makespan problem

{ } max21 ,,,1 CBBbdsbap iiiii ∈±= can be solved in ()nnO log time. For the general makespan

problem max,1 Cdsbap iiii ±= , it is not difficulty to develop a heuristic based on the intuition of

Algorithm A or design an exact algorithm by enumerating all canonical schedules. The combination

 15

of these approaches should be effective on average, but it is hard to get an ideal upper bound for the

error or running time. For further research, it would be interesting to design approximation

algorithms with a constant worst-case bound for the problems or prove infeasibility of such

approximations.

Acknowledgements

We are grateful to two anonymous referees for their constructive comments on an earlier

version of this paper. This research is supported in part by The Hong Kong Polytechnic University

under grant number 350/239. The first author is partially supported by the Croucher Foundation

under a Croucher Senior Research Fellowship.

References

[1]. B. Alidaee and N. K. Womer (1999). Scheduling with time dependent processing times: review

and extensions, Journal of the Operational Research Society, 50, 711-720.

[2]. S. Browne and U. Yechiali (1990). Scheduling deteriorating jobs on a single processor,

Operations Research, 38, 495-498.

[3]. Z.-L. Chen (1995). A note on single-processor scheduling with time-dependent execution times,

Operations Research Letters, 17, 127-129.

[4]. T. C. E. Cheng and Q. Ding (1998). The complexity of single machine scheduling with two

distinct deadlines and identical decreasing rates of processing times, Computers and

Mathematics with Applications, 35, 95-100.

[5]. T. C. E. Cheng, Q. Ding and M. Y. Kovalyov (1998). Scheduling jobs with linearly decreasing

processing times, Working Paper, Faculty of Business and Information Systems, The Hong

Kong Polytechnic University, Hong Kong.

[6]. T. C. E. Cheng and Q. Ding (1999). The time dependent machine makespan problem is strongly

NP-complete, Computers and Operations Research, 26, 749-754.

[7]. T. C. E. Cheng and Q. Ding (2000). Single machine scheduling with deadlines and increasing

rates of processing times, Acta Informatica, 36, 673-692.

 16

[8]. M. R. Garey and D. S. Johnson (1979). Computers and Intractability: A Guide to the Theory of

NP-Completeness, W. H. Freeman and Co., New York.

[9]. R. L. Graham, E. L. Lawler, J. K. Lenstra and A. H. G. Rinnooy Kan (1976). Optimization and

approximation in deterministic sequencing and scheduling: a survey, Annals of Discrete

Mathematics, 5, 287-326.

[10]. J. N. D. Gupta and S. K. Gupta (1988). Single facility scheduling with nonlinear processing

times, Computers and Industrial Engineering, 14, 387-393.

[11]. K. I-J. Ho, J. Y-T. Leung and W-D. Wei (1993). Complexity of scheduling tasks with time-

dependent execution times, Information Processing Letters, 48, 315-320.

[12]. A. V. Kononov (1997). Scheduling problems with linear increasing processing times,

Operations Research Proceedings 1996: Selected Papers of the Symposium on Operations

Research (SOR ‘96), Braunschweig, Sept. 3-6, 1996, 208-212, Springer, Berlin.

[13]. V. S. Tanaev, V. S. Gordon and Y. M. Shafransky (1994). Scheduling Theory, Single–stage

Systems, Kluwer, Dordrecht.

[14]. G. J. Woeginger (1995). Scheduling with time dependent execution times, Information

Processing Letters, 54, 155-156.

 17

V 1R 1Q ... 1−mR 1−mQ mR

vTT ,01,0 ,, ⋅⋅⋅
321

,, iii TTT qTT ,11,1 ,, ⋅⋅⋅ ...
334353

,,
−−− mmm iii TTT qmm TT ,11,1 ,, −− ⋅⋅⋅

mmm iii TTT
31323

,,
−−

 vd j =,0 1,1 Dd j = 1,1 −− = mjm Dd Gdi =

Figure 1. The basic and standard schedule of II for max,11 Cdsbp iiii ±=

1,0R 1,1R ... 1,mR 2,0R 2,1R … 2,mR

1,00,0 ,TT
1,1 kT ...

mkmT , 1,02,02,0 ,,, +⋅⋅⋅ mTTT { }
1,1

1,11,10,1 ,,,

k

m

T
TTT

−

⋅⋅⋅ +
… { }

mk

mmm

T
TT

,1

1,0, ,,
−

⋅⋅⋅ +

 1,0 Dd j = GDd ji == 2,

Figure 2. The basic and standard schedule of II for { } max21 ,,11 CDDdsbp iiii ∈±=

1D 2D 3D 1−mD mD

1I 1,2S ()2B 2,2S ()2B 2I 3,2S ()2B ⋅⋅⋅ kI mS ,2 ()2B

1,1S ()1B 1M ()2B 2,1S ()1B 2M ()2B ⋅⋅⋅ kM ()2B

1D 2D 3D 1−mD mD

Figure 3. The middle and final schedule of Algorithm A

	Scheduling Start Time Dependent Tasks with Deadlines
	and Identical Initial Processing Times on a Single Machine
	T. C. E. Cheng Q. Ding
	Abstract
	2. NP-completeness of the problems with arbitrary deadlines

