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ABSTRACT

In this paper, we consider the single machine batching problem with family setup times
to minimize maximum lateness. While the problem was proved to be binary NP-hard
in 1978, whether the problem is strongly NP-hard is a long-standing open question. We
show that this problem is strongly NP-hard.
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1 Introduction and Problem Formulation

In the single machine, family jobs, batch scheduling problem (see [1, 6]), we have n jobs
Ji, Jay ..y Jp and F family of jobs Fy, Fs, ..., Fr, which partition the job set {.J;, Jo, ..., J, }.
Each job J; has a processing time p; and a due date d;, and each family F; has an
associated setup time s;. The jobs in a family are processed in batches and each batch of
family F; will incur a setup time s;. In the literature, the problem is denoted by 1|s¢|V/,
where V' is the objective function to be minimized.
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The maximum lateness scheduling problem 1|s¢| L. was first researched by Bruno
and Downey [1] in 1978. The binary NP-hardness proof for the problem 1|ss|Ly. was
given by Bruno and Downey [1]. By Bruno and Downey [1], 1|sf|Lmax is NP-hard even
for either two distinct due dates, two jobs per family, or three distinct due dates, three
jobs per family, and equal setup times; however, it is pseudo-polynomially solvable for a
fixed number of due dates. The best algorithm for the problem 1|ss|L.y is a dynamic
programming algorithm given by Ghosh and Gupta [4] with a time bound O(F2NT),
where N = % >1<f<r |Fy| + 1. Correspondingly, it is shown by Gerodimos, Glass, Potts
and Tautenhahn [3] that, the problem 1|s;, assembly|Lyx is binary NP-hard, and can
be solved by applying the dynamic programming algorithm of Ghosh and Gupta [4] with
a time bound O(F*n!"). Bruno and Downey [1] first posed the question of whether the
problem 1]$¢|Lmay is strongly NP-hard in 1978. They wrote “One issue that we have not
been able to resolve is whether the general problem (1|s¢| >- U; = 0) is NP-complete when
the task lengths, setup times and/or change-over costs are not allowed to be exponentially
large with respect to the number of tasks.” Ghosh and Gupta [4] pointed out that the
long-standing question as to whether 1]s¢| L,y is strongly NP-hard had remained open.

To clarify the arguments, we will use the notation of the single machine, multi-
operation jobs, assembly scheduling problem for our discussion.

As introduced by Gerodimos, Glass, Potts and Tautenhahn [3], the single machine,
multi-operation jobs, assembly scheduling problem arises in a food manufacturing envi-
ronment. It can be stated as follows: Let n multi-operation jobs .Ji, Jo, ..., J, and a single
machine that can handle only one job at a time be given. Each job consists of several
operations that belong to different families. There are F' families Fi, Fs, ..., Fr. We as-
sume that each job has at most one operation in each family. If job J; has an operation
in family F, then we denote this operation by (f,j) and its associated processing time
by p(rj) > 0. The processing time of each job J; is defined by p; = 3> (s jyex, P(s.j)- Each
family F; has an associated setup time s;. If in a schedule the operations of a family
F are processed in batches, then each batch will incur a setup time s;. A job completes
when all of its operations have been processed. Hence, the completion time of the job J;
under a schedule 7 is

Cj(m) = max{C ;) (m) : (f,7) is an operation of job J;},

where C(y;)() is the completion time of the operation (f,j). Suppose that the due-date
of each job J; is d;, 1 < j < n. For a given schedule 7, we define U;(7) = 0 if C;(7) < dj,
and U;(m) = 1 if Cj(m) > d;, 1 < j < n. Hence, a job J; is tardy if and only if U; = 1.
We also define the lateness of a job J; as L;(7w) = C;(7) — d;, 1 < j < n. The objective
considered in this paper is to find a schedule 7 that minimizes the maximum lateness
Linax(T) = maxj<j<, Lj(m). We call this problem the single machine, multi-operation
jobs, maximum lateness scheduling problem. Following [3], we denote the problem by

1|sf, assembly|Lmax,

where the term “assembly” is used to describe the fact that a job completes when it
becomes available for assembly, i.e., when all of its operations have been processed. The
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related feasible problem, denoted by 1|sf, assembly| > U; = 0, asks whether there is a
feasible schedule 7 such that all jobs are on time. If each job has a single operation,
then 1|sy, assembly|Ly.x degenerates into the standard single machine, family jobs, max-
imum lateness scheduling problem, 1|s¢|Liax (see [1, 6]). In [3], the equivalence between
1|sf, assembly|Liax and 1|s¢|Liax is established.

We show in this paper that the feasibility problem 1|s¢, assembly| > U; = 0 is strongly
NP-hard. Hence, the feasibility problem 1|s¢| > U; = 0 is also strongly NP-hard. Conse-
quently, both problems 1|sf, assembly|Luyay and 1|ss|Lyay are strongly NP-hard.

2 NP-hardness Proof

As implied in [3], we have

Lemma 2.1 If the problem
1]sy, assembly| Y U; =0

is feasible, then there is a feasible schedule 7 such that, within each family, the operations
of jobs are sequenced in the earliest due date (EDD) order under 7, i.e., for two operations
(f,i) and (f, ) contained in a family F;, 1 < f < F, (f,1) is processed before (f, j) under
7 if and only if d; < d;.

We need the following strongly NP-complete 3-partition problem.

3-Partition Given a set of 3t integers aq, ao, ...., ag;, where 1 < a; < B—1, such that
>3, a; = tB, is there a partition of the a;’s into ¢ groups of 3, each summing exactly to
B?

By Garey and Johnson [2], we have
Lemma 2.2 The 3-partition problem is strongly NP-complete.
Theorem 2.3 The feasibility problem

1]sy, assembly| Y U; =0

is strongly NP-complete.

Proof: The feasibility problem is clearly in NP. To prove the NP-completeness, we
use the strongly NP-complete 3-partition problem for our reduction.

For a given instance of the 3-partition problem with a, as, ..., as;, where ]; >3 a; = B,

we construct an instance of the feasibility problem with ¢ jobs Jy, Jo, ..., J; and 4t families
Fi, Fy, .. Fy as follows:

n =t;

F =4t



Fr=A{(f,j):1<j <t} for 1 < f <3

Fari = {3t +14,1), Bt + 4,0+ 1)}, for 1 <i <t —1;

Fu={(4t,t)};

Py = 2 +ag, for 1 <j<tand 1< f <3t where Z =t(t +2)B;

sp =Y +ay, for 1 < f <3t, where Y = (3t* +1)Z;

D(3t+isi) = D(Bitiit1) = S3t4i = Plat) = Sar = X, for 1 <4 <t — 1, where X = 6tY;

dj = (3 — )X +3(t+5 — 1)y + 2 74 30U 74 (1) (1 +2) B+ L p,
for 1 <j<t.

Clearly, the construction can be done in polynomial time. We show in the sequel that
the instance of the 3-partition problem has a solution if and only if the instance of our
scheduling problem is feasible, i.e., there is a schedule such that every job is on time.

The following are some observations about the instance of our feasibility problem.
Observation 1 d; < dy < ... < d;.
Observation 2 For each job J;, 1 <j <1,

dj < (35— D)X +3(t+j—1)Yy 27 4 30V 74 7

(3 —1)X+(3t+35—2)Y
< 3jX.

IN

Observation 3 p; = X +3tZ +tB, and p, =2X +3tZ +tB for 2 <r <t.

If the 3-partition problem has a solution, we can re-lable the indices of aq,ao, ..., as
such that
aszi_o + azi_1 +as; = B, for 1 <i <t.

We construct a schedule 7 of our feasibility problem as follows.

Each family F; with 3t — 2 < f < 4¢ acts as a batch. Each family F; with 1 < f <
3(t — 1) is divided into two batches By and A such that

By ={(f0):1<i<[3/])

and
A= {(£,0) : (%ﬂ i<t}

The batches are processed according to the following order under 7:
Bl; 627 837 SERS) 832'727 B3i717 632'7 ) B3t757 B3t747 B3(t—])7 F3t727 f3t717 f3t7

f3t+17-’417~’427~/437 "'7f3t+i7A3i727'/43i717~’43i7 "'7f4t717A3t757~’43t747~’43(t—1)7f4t



The operations in each batch are sequenced by the EDD order under 7.

It is not hard to verify that, under the above schedule 7, C;(7) = d; for 1 < j <n =t,
and so 3°%_, U;(m) = 0. Hence, our problem is feasible.

Now suppose that our problem is feasible. We need to show that the 3-partition
problem has a solution. By Lemma 2.1 and Observation 1, we have the following claim.

Claim 1 There is a schedule 7 of our feasibility problem such that
(1) each job is on time under T;

(2) for every two operations (f,7) and (f,j) of any family F; with i < j, C(;;(7) <
Cyp(m);

(3) the job indices in each batch are consecutive, i.e., if H is a batch of the family
F; under 7, then for every two operations (f,i), (f,j) € H with ¢ < j, {(f, k) :i <k <
i} CH.

Let m be a feasible schedule of our problem that satisfies the properties in Claim 1.
We need more properties of .

Claim 2 FEach family F3;,.; with 1 <17 <t acts as a batch under 7.

Suppose, to the contrary, that a certain family Fs;,; with 1 < i <t —1 is divided into
two batches under 7. Because s3;,; = X for 1 < i <, we have at least ¢t + 1 batches each
of which has a setup time X. Since each family F3,.; with 1 <14 <t¢—1 has two operations,
each with processing time X, and the family F,; has one operation with processing time
X, the makespan C.y is greater than (t+1)X + (2t —1)X > d; = maxj<;<¢ d;, where the
inequality is obtained from Observation 2. This contradicts the fact that 7 is a feasible
solution of our problem. The proof of Claim 2 is completed.

Claim 3 Cj(m) = Cz4j,,)(m), i.e., (3t + 7, j) is the final operation of job J; under 7,
for1 <j<t-—1.

Otherwise, there is a job J; with 1 < j <t —1 such that the processing of every opera-
tion in the families Fa,4; with 1 < ¢ < j is completed on or before the time max; <;<; C;(7).
Then, max;<;<; C;(m) > 3jX > d;, where the latter inequality is obtained from Observa-

tion 2. This contradicts the fact that 7 is a feasible schedule of our problem. The proof
of Claim 3 is completed.

For the reason that each of the 3t + 1 families Fi, ..., Fa;, F3;41 contains an operation
of job J;, and the family Fs;,; is processed in a single batch under m, we can suppose
that By is a batch of family Fy under =, such that the operation (f,1) € By, 1 < f < 3t.
Furthermore, we re-lable the indices of Fi, ..., F3; such that

1Bi| < [|Ba| < ... <[Bay.
Write |By| = by, for 1 < f < 3t. Then, by Claim 1(3),

By = {(£.1), (£,2), e (f,b7)}, for 1 < f < 3t.



Claim 4 b3,_o >, for 1 <r <t.

Otherwise, there is a certain r with 2 < r < ¢, such that b3,_» < r — 1. Then,
by < r—1and (f,r) € By, for 1 < f < 3r —2. For each f with 1 < f < 3r — 2,
let A; be the batch under 7 such that (f,r) € A;. The setup time of each batch in
{By :1 < f<3tU{A; : 1 < f < 3r—2} is greater than Y. With the batches
Fstr, .., Faryr being considered, the maximum completion time max;<;<, C;(m) of the
jobs in {.Ji, Ja, ..., J,.} is greater than (3t + 3r — 2)Y + (3r — 1)X. By Observation 2,
max; <;<, C;(m) > d,, contradicting the fact that 7 is a feasible schedule of our problem.
This completes the proof of Claim 4.

Claim 5 b3, <r, for1 <r<t.

Otherwise, there is a certain r with 1 < r <t — 1, such that b3, > r + 1. By Claim
3, the operations in B; with 1 <4 < 3t and the operation (3t + 1,1) are processed on or
before the time C} (7). By Claim 4 and by the fact b; < b;yq for 1 < i < 3t — 1, we have

bar—o, b3p—1,b3p > k, for 1 <k <t

Since each operation in By U By U ... U B, has a processing time greater than Z, the total
processing time of the operations in B; U By U ... U By, is greater than Z + %t(t +1)Z. The
setup time of each batch B; with 1 < ¢ < 3t is greater than Y. Both the setup time of
the family F3;41 and the processing time of the operation (3t + 1,1) are X. Hence,
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This contradicts Observation 2 and completes the proof of Claim 5.

Combining Claim 4 and Claim 5 and by the fact b; < b;.q for 1 < ¢ < 3t — 1, we
deduce

Claim 6 b3r—2 = b3r—] = bgr =7, for 1 S r S t.

It is implied in Claim 6 that each family F;, 1 <i < 3(t — 1), is divided into at least
two batches under 7.

Claim 7 Each family F; with 1 < i < 3(¢ — 1) is divided into just two batches under

Otherwise, there are at least 3t +3(t — 1)+ 1 = 6t — 2 batches (under 7), each of which
consists of the operations in Uj<;<3:.;, and so each of which has a setup time greater than
Y. Then the makespan of 7 is

Crax(m) > (3t — )X + (6t — 2)Y > d;,

where the second inequality is obtained from Observation 2. This contradicts the fact
that 7 is a feasible solution of our problem. The proof of Claim 7 is completed.

Set A; = F; \ B;, for 1 <i < 3(t — 1). By Claim 2, Claim 6 and Claim 7, each family
F; with 1 <4 < 3(t — 1) is divided into two batches B; and A; under 7, and each family
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F; with 3t —2 < i < 4t acts as a batch under 7. Furthermore, from Claim 1(3) and Claim
6, we have

Bi:{(i,j):1§]<[ W} for 1 < < 3t,
and .
A = {0, ) : [%1+1§j§t}, for 1 <i<3(t—1).
Now, for 1 < r < t, write o, = ag,_o + az,_i + as,. Then 3'_, a, = tB. We establish
the value of max<;<, C;(m).

By Claim 3 and the above discussion, max;<;<, C;(m) is greater than or equal to the
value obtained by summing up the processing times of the operations in

Ur<i<aeBi U Ur<i<ar—1)Ai U Ut <icr—1 Faiti,
the processing time of the operation (3t + r,7) and the setup times of the batches in
{Bi :1<i<3t}U{A;:1<i<3(r—1)}U{Fzi:1<i<r}

Hence,
maxi <<, Cj()
2(%—nx+amw—nY+“W”Z+W*&”w
+(t+2) it an + ko (1 + k)ay

Because max; <<, Cj(m) < d, and

d,= (3r— DX +3(t+r—1)Y + 2z 4 3@z
=T 1) (tr 42
F(r— 1)(t +2)B + e p
= Br-1)X+3t+r—1)Y + 3t(?52+1)Z 4 3(7“—1)2(2t—7~)Z
+H(t+2) X2 B+ Yo, (1+k)B

it follows that

r—1 r—1

(t+2) Zak+z (L+k)ay < (t+2) ZB+Z (1+k)B
k=1 k=r k=1 k=r

holds for each r with 1 < r <t. From the fact that 22:1 ap = tB, we deduce

t t
Do(t+1— k>3 (t+1-k)B, for 1 <r<t,

k=r k=r

or equivalently, we have t inequalities (1,.), 1 <r <, as follows:

(1) : ZkatH p>ZkB_ r(r+1)B, for 1 <r <t.



Set A\, = ]E — # = k(k—H) for 1 <k <t—1,and set \; = +. It is easy to check that
¢ 1
A =—,for1<k<t.
r=k k

Because each )\ is positive, the convex linear combination of the above ¢ inequalities (),
1 < r <t, yields the following inequality (x).

B A me =3 ZkB
r=1 r=1
Now, the left hand side of the inequality (x) is

i:] Ar ZZ:] kat—i—l—k
= 2 (ke Ak
= 22:1 A1k
= Zf«:l Q.

The right hand side of the inequality (x) is

t t—1
YA T+1B ZlB ﬂB_sz

r=1

By the fact that >-f_, a,. = t B, we deduce that equality always holds for the inequality (*).
Since the inequality () is a convex linear combination of the ¢ inequalities (1), 1 < r < t,
we deduce that equality always holds for each of the ¢ inequalities (1), 1 < r < t; that is,

Z kayi_p = Z kB, for 1 <r <t.
k=1 k=1

Finally, we can trivially deduce
a, =B, for 1 <r <t.

Hence, the 3-partition problem has a solution. The result follows. O
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