This is the Pre-Published Version

The single machine batching problem with family
setup times to minimize maximum lateness is strongly

NP-hard

T.C.E. CHENG'*, C.T. NG' and J.J. YUAN!?

Department of Management, The Hong Kong Polytechnic University,
Hung Hom, Kowloon, Hong Kong, People’s Republic of China

2Department of Mathematics, Zhengzhou University,
Zhengzhou, Henan 450052, People’s Republic of China

ABSTRACT

In this paper, we consider the single machine batching problem with family setup times
to minimize maximum lateness. While the problem was proved to be binary NP-hard
in 1978, whether the problem is strongly NP-hard is a long-standing open question. We
show that this problem is strongly NP-hard.

Keywords: Scheduling; Batching; Due-dates; Maximum lateness; Multi-operation
jobs

1 Introduction and Problem Formulation

In the single machine, family jobs, batch scheduling problem (see [1, 6]), we have n jobs
Ji, Jay ..y Jp and F family of jobs Fy, Fs, ..., Fr, which partition the job set {.J;, Jo, ..., J, }.
Each job J; has a processing time p; and a due date d;, and each family F; has an
associated setup time s;. The jobs in a family are processed in batches and each batch of
family F; will incur a setup time s;. In the literature, the problem is denoted by 1|s¢|V/,
where V' is the objective function to be minimized.

*Corresponding author

The maximum lateness scheduling problem 1|s¢| L. was first researched by Bruno
and Downey [1] in 1978. The binary NP-hardness proof for the problem 1|ss|Ly. was
given by Bruno and Downey [1]. By Bruno and Downey [1], 1|sf|Lmax is NP-hard even
for either two distinct due dates, two jobs per family, or three distinct due dates, three
jobs per family, and equal setup times; however, it is pseudo-polynomially solvable for a
fixed number of due dates. The best algorithm for the problem 1|ss|L.y is a dynamic
programming algorithm given by Ghosh and Gupta [4] with a time bound O(F2NT),
where N = % >1<f<r |Fy| + 1. Correspondingly, it is shown by Gerodimos, Glass, Potts
and Tautenhahn [3] that, the problem 1|s;, assembly|Lyx is binary NP-hard, and can
be solved by applying the dynamic programming algorithm of Ghosh and Gupta [4] with
a time bound O(F*n!"). Bruno and Downey [1] first posed the question of whether the
problem 1]$¢|Lmay is strongly NP-hard in 1978. They wrote “One issue that we have not
been able to resolve is whether the general problem (1|s¢| >- U; = 0) is NP-complete when
the task lengths, setup times and/or change-over costs are not allowed to be exponentially
large with respect to the number of tasks.” Ghosh and Gupta [4] pointed out that the
long-standing question as to whether 1]s¢| L,y is strongly NP-hard had remained open.

To clarify the arguments, we will use the notation of the single machine, multi-
operation jobs, assembly scheduling problem for our discussion.

As introduced by Gerodimos, Glass, Potts and Tautenhahn [3], the single machine,
multi-operation jobs, assembly scheduling problem arises in a food manufacturing envi-
ronment. It can be stated as follows: Let n multi-operation jobs .Ji, Jo, ..., J, and a single
machine that can handle only one job at a time be given. Each job consists of several
operations that belong to different families. There are F' families Fi, Fs, ..., Fr. We as-
sume that each job has at most one operation in each family. If job J; has an operation
in family F, then we denote this operation by (f,j) and its associated processing time
by p(rj) > 0. The processing time of each job J; is defined by p; = 3> (s jyex, P(s.j)- Each
family F; has an associated setup time s;. If in a schedule the operations of a family
F are processed in batches, then each batch will incur a setup time s;. A job completes
when all of its operations have been processed. Hence, the completion time of the job J;
under a schedule 7 is

Cj(m) = max{C ;) (m) : (f,7) is an operation of job J;},

where C(y;)() is the completion time of the operation (f,j). Suppose that the due-date
of each job J; is d;, 1 < j < n. For a given schedule 7, we define U;(7) = 0 if C;(7) < dj,
and U;(m) = 1 if Cj(m) > d;, 1 < j < n. Hence, a job J; is tardy if and only if U; = 1.
We also define the lateness of a job J; as L;(7w) = C;(7) — d;, 1 < j < n. The objective
considered in this paper is to find a schedule 7 that minimizes the maximum lateness
Linax(T) = maxj<j<, Lj(m). We call this problem the single machine, multi-operation
jobs, maximum lateness scheduling problem. Following [3], we denote the problem by

1|sf, assembly|Lmax,

where the term “assembly” is used to describe the fact that a job completes when it
becomes available for assembly, i.e., when all of its operations have been processed. The

2

related feasible problem, denoted by 1|sf, assembly| > U; = 0, asks whether there is a
feasible schedule 7 such that all jobs are on time. If each job has a single operation,
then 1|sy, assembly|Ly.x degenerates into the standard single machine, family jobs, max-
imum lateness scheduling problem, 1|s¢|Liax (see [1, 6]). In [3], the equivalence between
1|sf, assembly|Liax and 1|s¢|Liax is established.

We show in this paper that the feasibility problem 1|s¢, assembly| > U; = 0 is strongly
NP-hard. Hence, the feasibility problem 1|s¢| > U; = 0 is also strongly NP-hard. Conse-
quently, both problems 1|sf, assembly|Luyay and 1|ss|Lyay are strongly NP-hard.

2 NP-hardness Proof

As implied in [3], we have

Lemma 2.1 If the problem
1]sy, assembly| Y U; =0

is feasible, then there is a feasible schedule 7 such that, within each family, the operations
of jobs are sequenced in the earliest due date (EDD) order under 7, i.e., for two operations
(f,i) and (f,) contained in a family F;, 1 < f < F, (f,1) is processed before (f, j) under
7 if and only if d; < d;.

We need the following strongly NP-complete 3-partition problem.

3-Partition Given a set of 3t integers aq, ao,, ag;, where 1 < a; < B—1, such that
>3, a; = tB, is there a partition of the a;’s into ¢ groups of 3, each summing exactly to
B?

By Garey and Johnson [2], we have
Lemma 2.2 The 3-partition problem is strongly NP-complete.
Theorem 2.3 The feasibility problem

1]sy, assembly| Y U; =0

is strongly NP-complete.

Proof: The feasibility problem is clearly in NP. To prove the NP-completeness, we
use the strongly NP-complete 3-partition problem for our reduction.

For a given instance of the 3-partition problem with a, as, ..., as;, where]; >3 a; = B,

we construct an instance of the feasibility problem with ¢ jobs Jy, Jo, ..., J; and 4t families
Fi, Fy, .. Fy as follows:

n =t;

F =4t

Fr=A{(f,j):1<j <t} for 1 < f <3

Fari = {3t +14,1), Bt + 4,0+ 1)}, for 1 <i <t —1;

Fu={(4t,t)};

Py = 2 +ag, for 1 <j<tand 1< f <3t where Z =t(t +2)B;

sp =Y +ay, for 1 < f <3t, where Y = (3t* +1)Z;

D(3t+isi) = D(Bitiit1) = S3t4i = Plat) = Sar = X, for 1 <4 <t — 1, where X = 6tY;

dj = (3 —)X +3(t+5 — 1)y + 2 74 30U 74 (1) (1 +2) B+ L p,
for 1 <j<t.

Clearly, the construction can be done in polynomial time. We show in the sequel that
the instance of the 3-partition problem has a solution if and only if the instance of our
scheduling problem is feasible, i.e., there is a schedule such that every job is on time.

The following are some observations about the instance of our feasibility problem.
Observation 1 d; < dy < ... < d;.
Observation 2 For each job J;, 1 <j <1,

dj < (35— D)X +3(t+j—1)Yy 27 4 30V 74 7

(3 —1)X+(3t+35—2)Y
< 3jX.

IN

Observation 3 p; = X +3tZ +tB, and p, =2X +3tZ +tB for 2 <r <t.

If the 3-partition problem has a solution, we can re-lable the indices of aq,ao, ..., as
such that
aszi_o + azi_1 +as; = B, for 1 <i <t.

We construct a schedule 7 of our feasibility problem as follows.

Each family F; with 3t — 2 < f < 4¢ acts as a batch. Each family F; with 1 < f <
3(t — 1) is divided into two batches By and A such that

By ={(f0):1<i<[3/])

and
A= {(£,0) : (%ﬂ i<t}

The batches are processed according to the following order under 7:
Bl; 627 837 SERS) 832'727 B3i717 632'7) B3t757 B3t747 B3(t—])7 F3t727 f3t717 f3t7

f3t+17-’417~’427~/437 "'7f3t+i7A3i727'/43i717~’43i7 "'7f4t717A3t757~’43t747~’43(t—1)7f4t

The operations in each batch are sequenced by the EDD order under 7.

It is not hard to verify that, under the above schedule 7, C;(7) = d; for 1 < j <n =t,
and so 3°%_, U;(m) = 0. Hence, our problem is feasible.

Now suppose that our problem is feasible. We need to show that the 3-partition
problem has a solution. By Lemma 2.1 and Observation 1, we have the following claim.

Claim 1 There is a schedule 7 of our feasibility problem such that
(1) each job is on time under T;

(2) for every two operations (f,7) and (f,j) of any family F; with i < j, C(;;(7) <
Cyp(m);

(3) the job indices in each batch are consecutive, i.e., if H is a batch of the family
F; under 7, then for every two operations (f,i), (f,j) € H with ¢ < j, {(f, k) :i <k <
i} CH.

Let m be a feasible schedule of our problem that satisfies the properties in Claim 1.
We need more properties of .

Claim 2 FEach family F3;,.; with 1 <17 <t acts as a batch under 7.

Suppose, to the contrary, that a certain family Fs;,; with 1 < i <t —1 is divided into
two batches under 7. Because s3;,; = X for 1 < i <, we have at least ¢t + 1 batches each
of which has a setup time X. Since each family F3,.; with 1 <14 <t¢—1 has two operations,
each with processing time X, and the family F,; has one operation with processing time
X, the makespan C.y is greater than (t+1)X + (2t —1)X > d; = maxj<;<¢ d;, where the
inequality is obtained from Observation 2. This contradicts the fact that 7 is a feasible
solution of our problem. The proof of Claim 2 is completed.

Claim 3 Cj(m) = Cz4j,,)(m), i.e., (3t + 7, j) is the final operation of job J; under 7,
for1 <j<t-—1.

Otherwise, there is a job J; with 1 < j <t —1 such that the processing of every opera-
tion in the families Fa,4; with 1 < ¢ < j is completed on or before the time max; <;<; C;(7).
Then, max;<;<; C;(m) > 3jX > d;, where the latter inequality is obtained from Observa-

tion 2. This contradicts the fact that 7 is a feasible schedule of our problem. The proof
of Claim 3 is completed.

For the reason that each of the 3t + 1 families Fi, ..., Fa;, F3;41 contains an operation
of job J;, and the family Fs;,; is processed in a single batch under m, we can suppose
that By is a batch of family Fy under =, such that the operation (f,1) € By, 1 < f < 3t.
Furthermore, we re-lable the indices of Fi, ..., F3; such that

1Bi| < [|Ba| < ... <[Bay.
Write |By| = by, for 1 < f < 3t. Then, by Claim 1(3),

By = {(£.1), (£,2), e (f,b7)}, for 1 < f < 3t.

Claim 4 b3,_o >, for 1 <r <t.

Otherwise, there is a certain r with 2 < r < ¢, such that b3,_» < r — 1. Then,
by < r—1and (f,r) € By, for 1 < f < 3r —2. For each f with 1 < f < 3r — 2,
let A; be the batch under 7 such that (f,r) € A;. The setup time of each batch in
{By :1 < f<3tU{A; : 1 < f < 3r—2} is greater than Y. With the batches
Fstr, .., Faryr being considered, the maximum completion time max;<;<, C;(m) of the
jobs in {.Ji, Ja, ..., J,.} is greater than (3t + 3r — 2)Y + (3r — 1)X. By Observation 2,
max; <;<, C;(m) > d,, contradicting the fact that 7 is a feasible schedule of our problem.
This completes the proof of Claim 4.

Claim 5 b3, <r, for1 <r<t.

Otherwise, there is a certain r with 1 < r <t — 1, such that b3, > r + 1. By Claim
3, the operations in B; with 1 <4 < 3t and the operation (3t + 1,1) are processed on or
before the time C} (7). By Claim 4 and by the fact b; < b;yq for 1 < i < 3t — 1, we have

bar—o, b3p—1,b3p > k, for 1 <k <t

Since each operation in By U By U ... U B, has a processing time greater than Z, the total
processing time of the operations in B; U By U ... U By, is greater than Z + %t(t +1)Z. The
setup time of each batch B; with 1 < ¢ < 3t is greater than Y. Both the setup time of
the family F3;41 and the processing time of the operation (3t + 1,1) are X. Hence,

3

This contradicts Observation 2 and completes the proof of Claim 5.

Combining Claim 4 and Claim 5 and by the fact b; < b;.q for 1 < ¢ < 3t — 1, we
deduce

Claim 6 b3r—2 = b3r—] = bgr =7, for 1 S r S t.

It is implied in Claim 6 that each family F;, 1 <i < 3(t — 1), is divided into at least
two batches under 7.

Claim 7 Each family F; with 1 < i < 3(¢ — 1) is divided into just two batches under

Otherwise, there are at least 3t +3(t — 1)+ 1 = 6t — 2 batches (under 7), each of which
consists of the operations in Uj<;<3:.;, and so each of which has a setup time greater than
Y. Then the makespan of 7 is

Crax(m) > (3t —)X + (6t — 2)Y > d;,

where the second inequality is obtained from Observation 2. This contradicts the fact
that 7 is a feasible solution of our problem. The proof of Claim 7 is completed.

Set A; = F; \ B;, for 1 <i < 3(t — 1). By Claim 2, Claim 6 and Claim 7, each family
F; with 1 <4 < 3(t — 1) is divided into two batches B; and A; under 7, and each family

6

F; with 3t —2 < i < 4t acts as a batch under 7. Furthermore, from Claim 1(3) and Claim
6, we have

Bi:{(i,j):1§]<[W} for 1 < < 3t,
and .
A = {0,) : [%1+1§j§t}, for 1 <i<3(t—1).
Now, for 1 < r < t, write o, = ag,_o + az,_i + as,. Then 3'_, a, = tB. We establish
the value of max<;<, C;(m).

By Claim 3 and the above discussion, max;<;<, C;(m) is greater than or equal to the
value obtained by summing up the processing times of the operations in

Ur<i<aeBi U Ur<i<ar—1)Ai U Ut <icr—1 Faiti,
the processing time of the operation (3t + r,7) and the setup times of the batches in
{Bi :1<i<3t}U{A;:1<i<3(r—1)}U{Fzi:1<i<r}

Hence,
maxi <<, Cj()
2(%—nx+amw—nY+“W”Z+W*&”w
+(t+2) it an + ko (1 + k)ay

Because max; <<, Cj(m) < d, and

d,= (3r— DX +3(t+r—1)Y + 2z 4 3@z
=T 1) (tr 42
F(r— 1)(t +2)B + e p
= Br-1)X+3t+r—1)Y + 3t(?52+1)Z 4 3(7“—1)2(2t—7~)Z
+H(t+2) X2 B+ Yo, (1+k)B

it follows that

r—1 r—1

(t+2) Zak+z (L+k)ay < (t+2) ZB+Z (1+k)B
k=1 k=r k=1 k=r

holds for each r with 1 < r <t. From the fact that 22:1 ap = tB, we deduce

t t
Do(t+1— k>3 (t+1-k)B, for 1 <r<t,

k=r k=r

or equivalently, we have t inequalities (1,.), 1 <r <, as follows:

(1) : ZkatH p>ZkB_ r(r+1)B, for 1 <r <t.

Set A\, =]E — # = k(k—H) for 1 <k <t—1,and set \; = +. It is easy to check that
¢ 1
A =—,for1<k<t.
r=k k

Because each)\ is positive, the convex linear combination of the above ¢ inequalities (),
1 < r <t, yields the following inequality (x).

B A me =3 ZkB
r=1 r=1
Now, the left hand side of the inequality (x) is

i:] Ar ZZ:] kat—i—l—k
= 2 (ke Ak
= 22:1 A1k
= Zf«:l Q.

The right hand side of the inequality (x) is

t t—1
YA T+1B ZlB ﬂB_sz

r=1

By the fact that >-f_, a,. = t B, we deduce that equality always holds for the inequality (*).
Since the inequality () is a convex linear combination of the ¢ inequalities (1), 1 < r < t,
we deduce that equality always holds for each of the ¢ inequalities (1), 1 < r < t; that is,

Z kayi_p = Z kB, for 1 <r <t.
k=1 k=1

Finally, we can trivially deduce
a, =B, for 1 <r <t.

Hence, the 3-partition problem has a solution. The result follows. O

Acknowledgements

This research was supported in part by the Research Grant Council of Hong Kong under
grant number PolyU 5191/01E. The last author was also supported by the National
Natural Science Foundation of China and the Huo Ying Dong Education Foundation of
China.

References

[1] J. Bruno and P. Downey, Complexity of task sequencing with deadlines, setup times
and changeover costs, SIAM Journal on Computing, 7(1978), 393-404.

2] M.R. Garey and D.S. Johnson, Computers and Intractability: A Guide to the theory
of NP-Completeness, Freeman, San Francisco, CA, 1979.

3] A.E. Gerodimos, C.A. Glass, C.N. Potts and T. Tautenhahn, Scheduling multi-
operation jobs on a single machine, Annals of Operations Research, 92(1999), 87-105.

[4] J.B. Ghosh and J.N.D. Gupta, Batch scheduling to minimize maximum lateness,
Operations Research Letters, 21(1997), 77-80.

[5] J.K. Lenstra, A.-H.G. Rinnooy Kan and P. Brucker, Complexity of machine scheduling
problems, Annals of Discrete Mathematics, 1(1977), 343-362.

(6] C.L. Monma and C.N. Potts, On the complexity of scheduling with batch setup
times, Operations Research, 37(1988), 798-804.

