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Abstract: Autostereoscopic three-dimensional measuring systems are a kind of portable and fast
precision metrology instrument. The systems are based on integral imaging that makes use of a
micro-lens array before an image sensor to observe measured parts from multiple perspectives. Since
autostereoscopic measuring systems can obtain longitudinal and lateral information within single
snapshots rapidly, the three-dimensional profiles of the measured parts can be reconstructed by shape
from focus. In general, the reconstruction process consists of data acquisition, pre-processing, digital
refocusing, focus measures, and depth estimation. The accuracy of depth estimation is determined by
the focus volume generated by focus measure operators which could be sensitive to the noise during
digital refocusing. Without prior knowledge and surface information, directly estimated depth maps
usually contain severe noise and incorrect representation of continuous surfaces. To eliminate the
effects of refocusing noise and take advantage of traditional focus measure methods with robustness,
an adaptive focus volume aggregation method based on convolutional neural networks is presented
to optimize the focus volume for more accurate depth estimation. Since a large amount of data and
ground truth are costly to acquire for model convergence, backpropagation is performed for every
sample under an unsupervised strategy. The training strategy makes use of a smoothness constraint
and an identical distribution constraint that restricts the difference between the distribution of the
network output and the distribution of ideal depth estimation. Experimental results show that the
proposed adaptive aggregation method significantly reduces the noise during depth estimation and
retains more accurate surface profiles. As a result, the autostereoscopic measuring system can directly
recover surface profiles from raw data without any prior information.

Keywords: 3D measurement; autostereoscopic metrology; convolutional neural network; machine
learning

1. Introduction

Precision metrology is of significance to the machining quality for precision manufac-
turing. Contact measuring systems make use of a stylus installed in a Coordinate Measuring
Machine (CMM) to physically scan target surfaces to sample profile data. Non-contact
systems mostly take advantage of optical instruments or sensors to acquire 3D information
of measured parts. Due to their faster speed and contactless nature, non-contact systems
play important roles in the precision measurement field. Popular non-contact measuring
systems are based on interferometry [1], structured light [2], confocal microscopy [3], au-
tostereoscopy [4], etc. Based on the 3D profiles acquired by these systems, data analysis
studies including surface topography analysis [5], thickness characterization [6], defect
detection, and segmentation [7] are performed to achieve more accurate measurement and
characterization.

Due to the rapid speed of data acquisition, ease of implementation, and portability [4],
autostereoscopic 3D measuring systems based on the integral imaging theory have emerged
as a precision on-machine profile measurement method. To further improve measurement
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performance, disparity patterns [8] based on the parallax information of the recorded data
were presented to enhance the accuracy of depth estimation. Methods based on epipolar
space [9], point spread function [10], and structured light [11] were proposed for a more
accurate depth reconstruction from the measurement data. Research on the elimination of
specular light [12] and enhancement of data resolution [13] was performed to strengthen
the quality of acquired data.

The autostereoscopic measurement method makes use of a microlens array (MLA)
in front of an image sensor to detect targets from multiple perspectives so that redundant
parallax information of the targets can be recorded into elemental images within one
snapshot. Due to the various observation perspectives of the microlenses, any one point
of the target will be recorded multiple times in different elemental images behind the
microlenses. The points reflecting the same target point are called corresponding points.
As shown in Figure 1, the corresponding points in different elemental images are coloured
in the same colour. The coordinate differences between the adjacent corresponding points
are the disparity, which is definitely determined by the depths of the target points.
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Figure 1. Digital refocusing using the measurement data recorded by the autostereoscopic measuring
system. A and C are two points at the same depth. B is a point at a different depth. (a) Points A, B,
and C are out of focus. (b) Point B is in focus. (c) Points A, B, and C are out of focus. (d) Points A and
C are in focus.

Shape from focus is an effective method to retrieve disparity from multi-perspective
elemental images. In general, depth retrieval based on shape from focus is to detect the
focus point in digital-refocused images. A focus measure operator is generally used to
process the refocused images for the generation of a volume of focus measurements. The
depth can be directly retrieved from the focus volume based on the winner-take-all (WTA)
strategy. Various focus measure operators were developed to detect the focus points,
including the Sobel gradient operator, Laplacian-based operators, the gray-level-variance
operator, adaptive operators with flexible window sizes [14], and filters based on discrete
cosine transform [15]. Since noise is inevitable during recording, refinement and volume
aggregation are required to diminish the effects of noise in the focus volume. However,
the robustness of the measure operators and aggregation methods is more challenging for
the refocused images of the autostereoscopic measuring systems because of the limited
resolution of the autostereoscopic data and the noise sensitivity of the systems.

Traditional focus measure operators such as the Sobel operator and Laplacian-based
operator are robust for most scenes, albeit high-frequency noise will affect the accuracy of
focus detection. However, it is difficult to train a learning-based focus measure method
with satisfying the generalization capabilities for autostereoscopic measurement since



Sensors 2023, 23, 9419 3 of 11

the measurement data are limited, and slight changes to the recording conditions could
result in large differences in autostereoscopic imaging. Hence, it is important to seek an
adaptive manner to achieve more accurate estimation and measurement on the basis of
the integration of existing and learning methods to maximize the advantage of traditional
methods. In this paper, a method for adaptive focus volume aggregation is presented to
diminish the noise produced during digital refocusing so as to realise more accurate depth
estimation. The proposed method exploits a convolutional neural network (CNN) model
to adaptively aggregate the focus volume generated from focus measures. The model is
constrained with a smoothness constraint and an identical distribution constraint during
backpropagation. The identical distribution constraint restricts that the refined results
of the proposed network and the preliminary results generated by traditional methods
are sampled from the same ideal distribution of the desired depth map. As a result, the
network is able to approach the ideal distribution to generate more accurate results. The
weight optimization of the proposed model is performed in an unsupervised fashion for
every measured sample so that no establishment of datasets is required. Experimental
analysis reveals that the adaptive aggregation method is effective in reducing the effects
of the refocusing noise. More accurate depth estimation with smooth surfaces and sharp
edges is obtained after the proposed aggregation.

2. Shape from Focus

Shape from focus is a method that retrieves the geometrical information of the target
samples from refocused image stacks. The raw measurement data, which are also called
elemental images, store corresponding points regarding a target point. Hence, the dis-
parity can be acquired via the determination of the coordinate differences between the
neighbouring corresponding points. Digital refocusing simulates the inverse process of
recording, virtually placing an MLA behind the elemental image plane so that the corre-
sponding points focus again on different depth planes. Based on the refocusing concept,
refocused images are easily acquired, and the corresponding points are solely focused in
the refocused image at the correct depth. Figure 1 illustrates the blue, red, and green points
in different elemental images corresponding to target points A, B, and C. The distances
from the recording lens to these target points differ. Passing through the virtual MLA,
these corresponding points focused on different depth planes. The corresponding points
to B focus on (b) and those to A and C focus on (d). As a result, a refocused image stack
is acquired through projecting these corresponding points to different depth planes. An
example of a refocused image stack is exhibited on the right of Figure 1, where the points
closer to the lens focus on (b) and those farther to the lens focus on (d).

Focus volume is obtained through applying a focus measure operator to the refocused
image stack. After focus measures, a box filter is usually used to aggregate the acquired
focus volume. This is equivalent to local aggregation on focus volumes [16]. A coarse depth
map can be obtained from the aggregated focus volume through the winner-take-all (WTA)
strategy. One all-in-focus image that contains all focused visible contents can be recovered
using the coarse depth map and the refocused image stack. Eventually, a guided filter can
be used to filter the coarse depth map and the all-in-focus image to obtain a refined depth
map with smooth patterns.

2.1. Adaptive Focus Volume Aggregation

On the basis of shape from focus, the proposed method for adaptive aggregation first
recovers an initial depth map and an initial all-in-focus image following the procedure
as shown in Figure 2. Data recorded by the autostereoscopic sensor are going through
calibration, trimming, preliminary denoising, and pre-enhancement. Digital refocusing
is conducted on the pre-processed autostereoscopic data to generate a stack of refocused
images at different depth planes. The Sobel measure operator is used for focused points
detection, which separates the high-frequency signals with apparently high gradients for
focus detection. Although other filters such as Laplacian-based operators can also access
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similar results, the noise produced during refocusing from autostereoscopic data usually
introduces the incorrect detection of focused parts. For instance, a focused point detected
by measure operators could actually be high-frequency noise. A focus volume is obtained
after the focus measure process. The box filter is used for a preliminary aggregation to the
focus volume so that initial depth estimation can be acquired through the WTA strategy.
The initial estimation will be utilized in the unsupervised backpropagation process. After
applying guided filtering, a refined depth map based on the Sobel measure operator
is acquired.
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Figure 2. Adaptive focus volume aggregation using a convolutional neural network.

In terms of the adaptive aggregation process, a convolutional neural network is built
to achieve focus measurement and volume aggregation. The input of the network is the
refocused image stack recovered from digital refocusing. The focus measure of the network
is guided by the Sobel operator. The adaptive aggregation is automatically realised via a
series of 3D convolutional kernels. During training, the network adaptively optimizes its
weights via backpropagation under the constraint of the initial depth map. After iterative
learning, a well-trained CNN model is obtained and is capable of realizing accurate focus
volume aggregation adaptively for the measured sample. Similarly, depth estimation and
its corresponding all-in-focus image are acquired via the WTA strategy after obtaining the
adaptively aggregated focus volume.

2.2. Aggregation Network and Unsupervised Learning

The network framework is shown in Figure 3. To accelerate the learning speed, the
Sobel operator is used to produce guidance focus measurement from the refocused image
stack. A series of learnable filters are constructed using residual convolutional layers
to detect the focused contents of the input. Group convolution is used for the focus
measurement so that each feature map can be solely convolved by the filters in one group.
As a result, the filtering results of every convolutional group will not affect each other
during the forward process. The last layer of the learnable filters is 1 × 1 2D convolutional
kernels to integrate the filtering results of different convolution groups into one focus
measure. Another convolutional block composed of a series of 2D residual convolutional
layers is used to further enhance the detection results of the Sobel operator. In addition,
the block makes the output of the learnable filters and the Sobel filter have the same scalar.
Then, the focus measure acquired by the learnable filters is further pixel-wisely integrated
with the convolution results of the Sobel-based focus measure. As a result, a focus volume
guided by the Sobel operator is obtained.
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The focus measure operator always highlights high-frequency signals such as edges
and distinct patterns to detect focused parts. This may cause the focus measure to be
discontinuous. In the proposed method, multiple convolutional kernels with one dimension
are used to sweep the focus volume along the x-axis and the y-axis. The line-by-line
sweeping contributes to the refinement of the discontinuous detection so that smoother
estimation can be realised. During the sweeping, instead of considering points in a 2D grid,
only neighbouring points within a line are taken into consideration to refine discontinuity.
The large estimation bias of a point will be eliminated through weighting the neighbouring
points’ value. A large 1D kernel is prone to remove salient features to guarantee excessive
smoothness, which was also observed during experiments. Hence, only two-layer 1D
kernels with limited receptive fields are used for the sweeping. The output of the two-axis
sweeping is fused by fully connected layers to obtain a refined focus volume. A series of
3D convolutional kernels are used for subsequent volume aggregation since the 3D kernels
take the information within a 3D square domain of the focus volume into account. This
enables aggregation to take place not just between neighbouring points of a single focus
measure but also among neighbouring measures corresponding to different depth planes.
It is noted that different window sizes, i.e., the receptive fields of convolutional kernels,
focus on different information. A small kernel pays more attention to local information for
retaining more details of geometries, whereas a kernel with a large receptive field usually
focuses on global information and high-level features, contributing to the representation
of the continuity of the targets. To take advantage of the different receptive fields, two
aggregation sub-networks consisting of 3D convolutional layers are used parallelly to
process the refined focus volume. Taking the learning complexity into consideration,
dilated convolutional kernels are used to achieve large receptive fields, instead of applying
large kernels with more weights or deeper layers.

The output of the two aggregation sub-networks is concatenated and integrated by
1 × 1 convolutional kernels. As a result, an aggregated focus volume is obtained for
depth estimation. In addition, the winner-take-all strategy is replaced by Softmax as an
approximation so that the whole process is derivable during the backpropagation process.
To improve the learning stability of Softmax, the gumbel-Softmax method is used during
the training process and the temperature coefficient is set to 1. One-hot mapping, which is
not derivable, is used during the inference process to replace Softmax so as to output more
accurate results.

A problem in training the proposed network is the lack of ground truth for depth
estimation. Unsupervised learning, therefore, is used for the weight optimization of the
network, as shown in Figure 4. Assuming that the desired high-accuracy depth map X is
sampled from one ideal Gaussian distribution P(X) = N (µ, Σ) that can describe the depth
information of the current measured part, the depth map Xr generated using the adaptive
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aggregation network can be considered a sampling result of P(Xr). The coarse initial depth
map X0 estimated directly from the preliminary focus volume can be also sampled from
the ideal distribution, but with noise. It is assumed that the noise also follows a Gaussian
distribution ε ∼ N (0, I). The initial depth map can be re-parameterized as

X0 = µ(X) + Σ
1
2 (X)× ε (1)

where µ(X) and Σ(X) are the mean and covariance of P(X), respectively. The target of the
learning is to produce a distribution infinitely approaching the ideal distribution P(X), i.e.,
P(Xr) ≈ P(X). Hence, the identical distribution loss can be defined as

LID(α) = ∑
i

(
‖εi × α + Xr

i − X0‖
)

(2)

where α is the scalar of the noise. During training, in every epoch, the coarse preliminary
depth map X0 is resampled via interpolation to simulate coarse distribution.
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Another smoothness constraint is used to suppress the gradients of the final depth
map so that the regions representing surfaces are estimated more smoothly, which is
expressed as

Lsmooth = ∑
i

(
∇xXr

i +∇yXr
i
)

(3)

The total training loss is Equation (4), where β is the penalty factor of the smooth-
ness constraint. Under the constraints, the proposed model can be trained via backprop-
agation in an unsupervised fashion for each sample separately, without the need for
dataset construction.

L = LID(α) + βLsmooth (4)

3. Results and Discussion

The setup of the autostereoscopic measuring system is shown in Figure 5, where an
objective lens mounted on a zoom imaging system records the measured sample, and an
MLA is inserted in front of an image sensor to observe the target from different perspectives.
Ring-type illumination and coaxial illumination are used in the system to light the measured
microstructures. The specifications of the system are exhibited in Table 1.
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Table 1. Specifications of the autostereoscopic measuring system.

Item Specification

CCD Sensor
Pixel Size 3.45 µm

Sensor Size 2/3 inch
Resolution 2456 × 2058

MLA
Pitch 150 µm

Focal Length 5.6 mm
Scale 10 mm × 10 mm

Objective Lens System NA 0.28
Magnification 0.64–4.5

Preliminary experiments found that the learnable filters with deeper layers that con-
tribute to large receptive fields are more effective for focus measurements, whereas deeper
layers can increase learning complexity. Hence, the learnable filters are constructed with
five residual group convolutional layers, with 3 × 3-size kernels and eight groups. More-
over, the large receptive fields of the kernels for sweeping may sacrifice more details for
smoothness. As a result, two layers of 1D convolutional kernels with size 3 are used for
refinement. Two aggregation sub-networks both contain seven 3D convolutional layers,
where the first layer is used to increase dimension and the last layer works for suppressing
the dimension. The dilation size for the large receptive field aggregation sub-network is set
to 3. The Rectified Linear Unit (ReLU) is used as the activation function of the proposed
network. During training, α and β are set to 0.25 and 1.0, which are determined through
grid search. For faster learning, the channel number is set to 8 and only 100 epochs are
used for training. The running time for one inference process of the network is 0.827 s
on average using an Nvidia GeForce RTX 2080. The model is initialized under a Kaiming
normal distribution [17].

Analyses of focus measure and aggregation results based on different focus measure
operators are shown in Figure 6. Generally used operators, including the Sobel operator,
the Laplacian-based operator, a multi-scale focus (MSF) measure [18], and a guided-based
measure [19], were applied in the experiments for comparison and the proposed aggre-
gation results with a box filter are demonstrated for qualitative analysis. It was found
that traditional focus measures, such as the Sobel filter and the Laplacian-based filter, can
detect the focused key points in the images and retain distinct high-frequency information.
However, noise effects resulting from image artefacts during refocusing are severe in the
focus measure results and the aggregation results. In addition, discontinuous detection
also results in sparse aggregation results on the continuous surface, which generates un-
expected holes or protrusions on the surface in the final estimation (see Figure 7). The
guided-based filter generates more smooth detection results to guarantee the continuity of
the estimation whereas the edge patterns, i.e., the high-frequency information is sacrificed.
Since the MSF method is developed for macro-object images captured with traditional
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cameras, the measure fails to correctly score the focus parts of the autostereoscopic data.
The focus measuring result performed by the 1D kernels sweeping along the x- and y-axis
is shown in Figure 6, where the continuity of the detection is improved after sweeping so
that the proposed method can achieve continuous and smooth estimation. Additionally, the
focus measurement generated through the proposed method contains clear high-frequency
patterns as the Sobel operator does. Regarding the aggregation processes exhibited in
the lower part of Figure 6, conventional aggregation is more sensitive to the focus mea-
sure results. For instance, unexpected discontinuity and holes appear on the top after
aggregation, and protrusions are generated on the bottom. This also can be found in the
final 3D estimation results (shown in Figure 7). The edges and salient features cannot be
aggregated correctly via the conventional process, which can be observed in the results
produced via conventional aggregation and the proposed method. The two processes are
both based on the learning-based focus measuring filters. However, the edges aggregated
conventionally cannot retain the sharp features of the focus measurement results. This
could result from averagely weighting all the neighbouring points, some of which have a
negative contribution to correct profile reconstruction. The proposed adaptive aggregation
method can retain clear edges and patterns.
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Figure 7. Results of depth reconstruction based on various methods. The results are produced by
various methods, including Sobel, a Laplacian-based operator, a multi-scale focus (MSF) measure,
a guided-based measure, the proposed method with box filtering, and the proposed method using
adaptive aggregation. The initial estimation and refined results are displayed, accompanied by their
corresponding 3D profiles of the measured surface.

The depth estimation results are shown in Figure 7. The initial results are directly
estimated from the aggregated focus volume based on various methods, and the refined
results are acquired through applying guided filters to the initial results and the corre-
sponding all-in-focus images. A reference result obtained using a commercial measurement
product—Zygo Nexview Optical Profiler—is exhibited in the figure. However, there are
some missing points that cannot be measured using the product. The results based on Sobel
and Laplacian contain severe holes and protrusions caused by discontinuous estimation,
though they can be improved when the aggregation filter size increases. However, a large-
size filter during aggregation often causes inaccurate edge and geometry estimation, since
the large aggregation filter diminishes the contribution of the high-frequency signals, some
of which are important to the reconstruction of geometries. The results based on the guided
filter and the proposed filter with box filtering can retain smooth estimation. However, the
edge information is lossy compared with the results from the Sobel operator. It is obvious
that the result estimated using the proposed filters and the adaptive aggregation method is
more accurate with reasonable smoothness. The reconstructed geometrical structure of the
measured part is more accurate as well. It can be also found that the depth estimation of
the measured surface tends to have smooth gradients compared with other results.

Repeated measurements were performed to evaluate the uncertainty of the proposed
methods. For each measurement, the learning model was retrained without initializing
pre-trained weights to evaluate the reproductivity of the model. The standard deviation
of 10 repeated measurement results was acquired through the iterative closest point algo-
rithm and is shown in Figure 8, where different methods based on the Sobel operator, the
Laplacian operator, and the guided filter are compared. It was found that the Sobel filter
and the Laplacian-based filter are sensitive to noise in different measurement scenes, so the
standard deviation is larger when measuring the same objects. The guided-based method
and the proposed filter aggregated using the box filter are able to produce smooth surfaces
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to diminish noise. However, the estimation of the surface has a large deviation in the results
of the two methods. Although the proposed method uses a learning model, the results
have considerably small deviations. This reveals the capability of the proposed method
for repeatable precision measurements. Since the network is trained based on the coarse
depth estimation result, coarse estimation with errors could result in large bias points in
the final results. Hence, a dataset composed of more measurement data can eliminate the
bias during training. On the basis of the dataset, the proposed network can be pre-trained
to learn to represent more general features. The pre-trained network could be more robust
after transfer learning on different samples.
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4. Conclusions

Autostereoscopic 3D measuring methods acquire 3D information through retrieving
depth from measurement data. Disparity information that is determined by the depth
of the target parts can be recovered through shape from focus. The proposed adaptive
focus volume aggregation method is capable of performing focus measurement and adap-
tively aggregating the focus volume generated from digital refocusing, on the basis of
the guidance of traditional focus measure methods. A convolutional neural network and
an unsupervised learning method for every measured part were presented to adaptively
retrieve depth information from the refocused image stacks. A smoothness constraint and
an identical distribution constraint were presented for the backpropagation process of
the neural network to make the network learn to approach the ideal distribution of the
desired depth estimation. Experiments showed that more accurate depth and profiles can
be recovered after the adaptive aggregation compared with the direct depth retrieving
from the refocused image stack. The proposed method integrates traditional methods with
learning models effectively and shows its capability of effective volume aggregation for
autostereoscopic measurement data. It is also possible to train a pre-trained model for
adaptive focus measure and aggregation using a large amount of data to establish a more
robust learning network for measured samples with different features.
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