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Abstract— This paper proposes a new electric vehicle (EV) 

charging scheduling and control system for a parking lot (PL), 

which would minimize the PL’s electricity cost of recharging all 

the EVs. This system is to determine an optimal charging 

schedule for each incoming EV by allocating the electric 

quantities to the parking time slots of each EV considering the 

varied electricity price during the day. The schedule would 

satisfy the EV’s charging rate limit and the PL’s transformer 

limit. This paper proposes a heuristics & proportion-based 

assignment (HPBA) method to generate the initial population, 

and adapts the particle swarm optimization (PSO) algorithm to 

solve the optimization problem. The performance of the 

proposed system is compared with random search (RS), 

first-in-first-serve (FIFS) and earliest-deadline-first (EDF) 

mechanisms, and the results show that the new scheduling 

system would achieve the goal on minimizing the electricity cost 

and satisfying the charging demands and constraints.   

I. INTRODUCTION

The rapid growth of electric vehicle (EV) population in the 
past decade [1] has attract attention from the electric power 
sectors and transportation departments because of the limited 
public EV parking lots (PLs) and the high electric requirement 
of charging infrastructure. The main limitations of EV parking 
lot scheduling include long charging time, uncertain parking 
periods, varied charging demands and limit of transformer 
limit. Currently, most of the parking lots deal with the EVs’ 
charging requests using the first-come-first-serve (FIFS) or 
earliest-deadline-first (EDF) charging strategies.  

In this paper, an EV charging scheduling and control 
system is proposed due to the following reasons. First, a lot of 
people work in urban areas and live in apartments in Asian 
cities, and many of them cannot install private charging 
facilities at home. Hence, they have to choose an alternative 
way to recharge their vehicles during parking in a public PL 
with specialized EV charging facilities, and the charging 
process may take several hours. In this case, it is essential for a 
PL to have a scheduling and control system to manage the EV 
charging during parking. Secondly, due to the electrical power 
system and safety precaution of EVs, the transformer limit and 
the EVs’ charging rate limit are also important considerations 
of PL. Thirdly, the current FIFS or EDF scheduling 
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mechanisms are only rudimentary methods. With these 
methods, some of the late arrival requests cannot be fulfilled 
because the PL cannot allocate the proper resources for the 
EVs in advance. Lastly, the PL would buy a large quantity of 
electricity from the power company to recharge to the EVs. 
Because many power companies provide a time-of-use 
electricity price model by varying the electricity price at 
different time, the PL can make more revenue by recharging 
EVs at a low-price period on the condition that the parking 
times of the EVs cover the high and low price period. 

Some researches [2] – [4] have been working to optimize 
the charging strategy for the parking lot. Kuran et.al [2] 
proposed a PL management system for a centralized EVs 
recharging system. The object was to maximize the parking 
lots revenue or maximizing the total number of EVs fulfilling 
their requirements. An AIMNS system was used to determine 
the schedule for the regular EVs, and used the FIFS and EDF 
mechanisms were used to deal with the irregular EVs. Their 
results showed the system increased the performance of the 
FIFS and EDF mechanisms. However, this paper only solved 
the optimization model using a commercial software and the 
detailed algorithm is not given. Zhang and Li [3] developed an 
optimal scheduling of PL using game-theoretic approach 
considering the dynamic electricity price and a transformer 
capacity limit. Three cases with 3, 30 and 100 players are used 
to evaluate the method. However, the vehicle profiles they 
used overlapped for 30 time intervals and the charging 
demands were very low, so that the candidate solutions are 
easy to be found. Also, the electricity prices in the 30 and 100 
cases are not specified, then the results cannot be compared. 
Yao et.al. [4] developed a real time charging schedule for 
vehicle-to-grid (V2G) of a parking station using fuzzy logic. 
The aim was to satisfy the EV charging demand and minimize 
the charging cost. However, the batteries dis-charging damage 
was not considered when selling electricity to grid, so that 
V2G process is not considered in our paper.   

Some works [5] - [6] focus on the optimization of the PLs’ 
location and distribution. Mirzaei et. al. [5] proposed a 
probabilistic method to optimize the capacity and location of 
PLs considering the technical and economic aspects. The aim 
of their work was to maximize the distribution network’s 
benefit by deciding on the capacity and location of each PL in 
the network. V. Katic et.al. [6] proposed a procedure for 
determining the place of PLs and the number of chargers in 
each PL. They concerned the power quality and concluded 
that the parking lot with 2 to 6 chargers are most suitable at the 
city center. However, we will not build the EV parking lots 
network currently, but will develop an optimization 
scheduling and control system for a PL in this paper.  
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The contributions of this work are presented as follows. 
The PL scheduling and control system for EV charging has 
been developed. First, the EV charging problem is formulated 
with the use of proportions to represent the allocated charging 
electric quantities. Secondly, considering the transformer 
limit and the charging rate limit, a heuristics & 
proportion-based assignment (HBPA) method is proposed to 
improve the pass rate for generating the initial population of 
solutions. Thirdly, a particle swarm optimization (PSO) 
algorithm is implemented to solve the optimization problem. 
The proposed HPBA PSO algorithm is compared with the 
random search, FIFS and EDF, and the simulation results 
show our algorithm is significantly better than the other 
scheduling mechanisms. 

The remaining of this paper is organized as follows: the 
problem formulation is described in Section II. In Section III, 
the HPBA method and the PSO algorithm are presented. The 
simulation case studies are presented in Section IV, and 
conclusion and future work complete this paper in Section V.  

II. PROBLEM FORMULATION 

In this paper, the aim is to determine an optimized 
charging schedule for the EVs with the minimum electricity 
cost. Two types of EVs are used for computation: arrived EVs 
and EVs with appointments. Here, arrived EVs would give the 
expected departure times and charging demands, and the EVs 
with appointments would give the expected arrival times, 
departure times and charging demands. The EVs are 
encouraged to make advanced appointments to reserve a 
parking space for charging before arrival. At the beginning of 
each time slot, an optimized charging schedule is determined 
for the immediate time slot and the subsequent time slots with 
the minimum electricity cost. The notation of variables used in 
this model is shown in Table I.  

TABLE I.  NOTATION 

Variables Descriptions 

E Set of EVs with index i 

T Set of time slots with index t 

X Set of solution 

τ Time slot 

numE Number of EVs 

numT Number of time slots 

numV Number of variables in a solution 

arri Arrival time of EV i 

depi Departure time of EV i 

demi Charging demand capacity EV i 

Ai
t Availability of EV i at time t 

EPt Electricity price at time t 

xi
t Proportion of EV i's demand to time slot t 

Ci
t Allocated capacity of EV i to time t 

TCt Total capacity of parking lot in the time slot t 

limC Limit of charging rate in a time slot  

limTt Limit of transformer capacity in time slot t 

A.  EV profile 

The unit of time slot is defined as 30 minutes, and the 
arrival time arri, departure time depi and charging demand of 
electricity demi is known by the system. We assume the EV 
arrives right before arri and departure right after depi, which 
means that the EV charging process is between arri and depi. 

We also assume each EV will be fully recharged with the 
demand capacity when it departs the PL. Ai

t
 denotes the 

availability of EV i at time slot t in (1) 
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B.  Solution 

The solution of this model is to determine the electric 
quantities allocated to available time slots of each incoming 
EVs. Hence, the number of variables numV is derived by   
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, which is a set of allocated electricity proportions 
corresponding to the available time slots. In vector X, the 
number of variables is numV, and xi

t denotes the proportion of 
EV i’s demand assigned to the time slot t.  

C.  Objective function 

The objective of this model is to minimize the cost on 
buying electricity by a PL from a power company considering 
the varied electricity price at different time slots.  
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Here, the minimum cost on electricity can be achieved by 
allocating more charging demands to the time slots when the 
electricity price is low.  

D.  Constraints 

Constraint (4) shows the sum of the allocated proportions 
to any EV equals to 1, which means the charging demands by 
EVs are fully satisfied during its parking period. Equation (5) 
defines the electricity amount allocated to EV i in the time slot 
t, and (6) determines the required capacity of the parking lot at 
time slot t by summarizing the individual allocated capacities 
by each EV. Considering the EV’s charging rate limit, 
constraint (7) states that the allocated capacity to any EV at 
any time slot should be within the defined charging rated 
limC. Constraint (8) indicates that the total capacity in the time 
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slot t should not exceed the maximum transformer capacity 
limit limTt.  

III. METHODOLOGY 

In this paper, we have proposed an algorithm to solve the 
optimization problem, which is based on the particle swarm 
optimization algorithm and heuristics. The complexities for 
determining the optimal schedule are as follows. Firstly, the 
number of variables in a decision vector is NumV and the 
variables are all real numbers. Secondly, due to the 
transformer limit and charging rate limit in the time slots, the 
decision model needs to check the constraints (7) and (8) after 
obtaining the candidate schedules. Lastly, considering various 
electricity prices during the whole time period, it is essential to 
apply optimization operation to minimize the PL’s cost. The 
flow chart of the proposed algorithm is shown in Fig. 1.  

 

Figure 1.  Flow chart of the proposed algorithm. 

A.  Parameters setup 

The number of iterations is denoted by numI. The number 
of population in each iteration is denoted by numP, which is 
also number of initial population generated by the heuristics. 
The dimension of the solution is numV, which is derived by 
the set of EVs. We also denote numRep as the number of 
repeats for the algorithm to evaluate the performance. 

B. Heuristics & Proportion-Based Assignment  

As shown in Section II, the initial population contains the 
proportions of electric quantities of each EV. The use of 
proportion would make sure that the EVs’ demands are 
satisfied. In the progress of the evolutionary algorithm, the 
initial population is usually generated randomly. In this paper, 
a heuristics & proportion-based assignment (HPBA) method 
is proposed to improve the efficiency of generating the initial 
population by heuristics. The basic steps of HPBA method are 
as follows. First, the charging demand of each EV is assigned 

to its available time slots by an average quantity. Let Mi
t be the 

mean/average electricity amount of EV i assigned to time slot 
t, which is derived by 
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Then, TCt is denoted as the total electric quantity at time 
slot t, which is determined by 
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As the arrival time, charging demand and stay time are 
different for each EV, the electricity demand for each time 
slots could vary a lot. The following would calculate the 
proportion value Pi

t used for allocating EV’s charging demand 
at time slot t by 


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For each EV i, the proportions Pi
t are adjusted by some 

random variation, and then scaled to the solution xi
t. 

The pseudo-code for the proposed HPBA method is 
shown in Algorithm 1. In line 4 – 9, the aim is to allocate the 
electric quantities on average to all the available time slots of 
each EV. The total electric quantities of the time slots are 
calculated in line 10 – 12. A set of initial population with 
numP solutions is generated in the loop (line 13 – 31), and a 
candidate is determined in line 15 – 30. From the perspective 
of EV i, the proportion xi

t is calculated in line 17 – 24. After 
determining a candidate solution P’, it will be checked by the 
constraint check function. The solution would be saved to the 
population only if it passes the check. The population 
initialization process will finish when the number of 
candidates reaches numP.  

In Section IV.A, the proposed heuristic and 
proportion-based assignment method for generating initial 
population are compared with random search method. The 
results have shown that the computational time of the HPBA 
method is 42% shorter that the random method, and the pass 
rate of HPBA is 70% higher than the random method.   

C. Particle Swarm Optimization Algorithm  

In this model, we have adapted the particle swarm 
optimization (PSO) algorithm [7] – [9] to solve the proposed 
problem. The pseudo-code is given in Algorithm 2. At the 
beginning of the PSO algorithm, the solution with minimum 
objective value is assigned as the personal best particle Pbest 
and global best particle Gbest from the initial population in line 
3 – 12. In line 13 and 14, the initial population is assigned to 
particle set X, and the initial velocity V is randomly assigned 
within the range of [-vmin, vmin]. The PSO loop for determining 
the optimal solution is shown in line 15 – 33.  

Within each iteration, the particles in the population are 
updated in line 17 – 30. In line 17, the velocity is derived by 
the previous velocity V, the difference between the particle X 
and personal best solution Pbest, and the difference between the 
particle X and global best solution Gbest. Then, the particle X’ 
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is determined by adding up the previous particle and the 
current velocity in line 18. If the constraint check is passed, 
the particle X’ is assigned to particle X. When the updated 
particle X is determined, the objective value obj of X will be 
compared with the f_Pbest and f_Gbest in line 22 – 30. After the 
numIt-th iteration, the global best particle Gbest is returned as 
the optimal solution, and the objective value is f_Gbest.  

D. Random Search, First-In-First-Serve and Earliest- 

Deadline- First 

In this paper, we have used three basic scheduling 
mechanisms, random search (RS), first-in-first-serve (FIFS) 
and earliest-deadline-first (EDF), to compare with the 
proposed PSO algorithm. The RS mechanism is to assign the 
proportions to the available time slots of each EV randomly. 
With the use of the RS method, all of the EVs’ demands can be 
satisfied. The RS is to generate a large number of candidate 
solutions, then the solution with the minimum objective value 
is chosen as the final decision. The FIFS mechanism is to sort 
the EVs according to their arrival times, and then assign the 
sorted EVs to their available time slots. The assignment 
strictly follows the transformer limit and charging rate limit. If 
the constraints are not met, the mechanism will assign the 
remaining demand to the next time slot. The EDF mechanism 
is to sort the EVs according to their departure times, and then 
the assignment procedure is the same as FIFS mechanism. It is 
important to mention that the FIFS and EDF mechanisms may 
not satisfy all of the EVs’ charging demands. 

IV. SIMULATION STUDIES 

Simulation studies have been used to evaluate the 
performance of the proposed algorithm. Firstly, we present the 
result of the proposed heuristics & proportion-based 
assignment (HPBA) method and then compare with a random 
search method to generate some initial populations of 
candidate solutions. Secondly, we use the HPBA-PSO 
algorithm to determine the optimal charging schedule with 
different sets of EV profiles, and the performances are 
compared with random search (RS), first-in-first-serve 
(FIFS), earliest-deadline-first (EDF) scheduling mechanisms.  

In this paper, we consider the Nissan Leaf model 2017 
[10] as the type of electric vehicle, which equipped a 30 kWh 
lithium-ion battery with 107 mile traveling distance. We 
assume the parking lot uses SAE J1772 [11] as its standard 
EV connector, whose charging power can reach 19.20 kW 
with the use of AC Level 2 mode. The limited charging rate 

limC in a time slot is 9.60 kW. The time slot unit is defined as 
30 minutes, and the earliest arrival time is set to the time slot 1. 
Then, we have simulated a parking profile for 20 EVs in Table 
II. For example, the EV1 arrives at the parking lot at the first 
time slot and departure 1.5 hours later at the third time slot, 
and the charging demand of EV1 is 18 kWh. We define a 
dynamic electricity price pattern EPt in Table III. Here, the 
varied electricity price would affect the PL’s cost spend on 
buying electricity from energy company. 

Algorithm 2. Particle Swarm Optimization Algorithm 

1: Input: EVs list E,  initial population P; 

2: Output: An optimized solution for allocating electric quantity to 

EVs; 

3: Pbest = P; 

4: i_Gbest = 0; 

5: f_Gbest = obj ( P(1,:) ); 

6: for iP = 1 to numP do 

7: f_Pbest (iP) = obj ( P(iP,:) ); 

8: if f_Pbest (iP) < f_Gbest then 

9: f_Gbest = f_Pbest (iP) ; 

10: Gbest = P(iP,:); 

11: end if 

12: end for 

13: X = P; 

14: V = vmin – 2 × vmin × rand(1, numP); 

15: for it = 1 to numIt do 

16: for iP = 1 to numP do 

17: V(iP,:) = k × V(iP,:) + c1× rand(1,numV) × [Pbest(iP,:) – 

X(iP,:)] + c2 × rand(1,numV)× [Gbest – X(iP,:)]; 

18: X’ = X(iP,:) + V(iP,:); 

19: if check(X’) ≠ -1 then 

20: X(iP,:) = X’; 

21: end if 

22: obj = obj ( X(iP,:) ); 

23: if obj < f_Pbest (iP) then 

24: Pbest
 (iP,:) =  X(iP,:); 

25: f_Pbest (iP) = obj; 

26: end if 

27: if f_Pbest (iP) < f_Gbest then 

28: Gbest = Pbest
 (iP,:); 

29: f_Gbest  = f_Pbest (iP); 

30: end if 

31: end for 

32: perf(it) = f_Gbest; 

33: end for 

34: return Gbest 

 

Algorithm 1 Population Initialization with Heuristics 

1: Input: EVs list E, number of EVs numE; number of variables 

numV, number of population numP; 

2: Output: A set of populations/solutions P ; 

3: Calculate the maximum time slots in E as Tmax ; 

4: for i = 1 to numE do 

5: avei = demi / (depi – arri + 1) ; 

6: for t = arri to depi do 

7: alit = avei ; 

8: end for 

9: end for 

10: for t = 1 to Tmax do 

11: 





numE

i

t

it CTC
1

; 

12: end for 

13: while numP’ ≥ numP do 

14: P’ = null ; 

15: for i = 1 to numE do 

16: T = arri to depi; 

17: for t = arri to depi do 

18: 














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19: end for 

20: calculate the minimum value in Pi
T as Pmin

 ; 

21: for t = arri to depi do 

22: xi
t= Pi

t + Pmin - 2×Pmin×rand(1); 

23: end for 

24: scale xi
T to range [0,1]; 

25: insert xi
T to P’; 

26: end for 

27: if check(P’) ≠ -1 then 

28: insert P’ to P; 

29: end if 

30: calculate the size of P’ as numP’ ; 

31: end while 

32: return P 
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TABLE II.  EV PARKING PROFILE 

EV id i arri depi demi EV id i arri depi demi 

1 1 3 18 11 3 8 26 

2 3 5 15 12 2 6 17 

3 1 5 25 13 5 8 15 

4 2 4 18 14 1 10 28 

5 2 3 15 15 1 5 16 

6 6 10 22 16 5 8 12 

7 7 8 14 17 4 7 16 

8 8 10 16 18 5 9 19 

9 7 8 10 19 3 7 14 

10 6 9 20 20 4 8 16 

TABLE III.  ELECTRICITY PRICE AT TIME SLOT 

t 1 2 3 4 5 6 7 8 9 10 

EP  0.1 0.2 0.4 0.2 0.1 0.1 0.2 0.4 0.2 0.1 

A. Population Initialization  

As shown in Section III, Algorithm 1 introduces the 
HPBA method to generate initial population. In this part, the 
proposed method is compared with the random method by 
generating the same number of initial candidates. We have 
analyzed the performance of the population initialization 
methods, and found that the transformer limit limT has a grave 
effect on generating the candidate solutions.  

Here, we have compared the performance of HPBA and 
random search methods with different set of EVs and different 
limT. The results are listed in Table IV. The number of 
population is 100, and the initialization process will terminate 
when the number of solutions pass the constraint check 
reaches 100. In this table, three sets of parking pattern are used 
with five, ten and twenty arrival EVs. In each case, different 
transformer limits are set as a constraint, and then the 
computational time and pass rate using HPBA and random 
search are recorded. The pass rate is denoted as the ratio of the 
solutions that pass the constraint check.  

TABLE IV.  POPULATION INITIALIZATION PERFORMANCE 

EV 

Seta 

limT 
(kWh) 

HPBA Random 

Time (s) Pass Rate Time (s) Pass Rate 

I  35 0.0852 14.29% 0.1032 10.00% 

I 30 0.1114 11.11% 0.1508 5.88% 

I 25 0.4910 1.82% 1.2925 0.53% 

I 23 2.8842 0.28% 11.6742 0.05% 

II 40 0.3599 4.35% 0.4986 2.50% 

II 35 0.4816 3.57% 0.5469 2.05% 

II 30 0.6678 2.50% 1.2946 0.96% 

II 25 18.6495 0.084% 39.7943 0.030% 

III 60 1.0654 2.86% 1.1987 1.92% 

III 55 1.6310 1.85% 1.7852 1.27% 

III 50 6.4398 0.45% 8.3731 0.26% 

III 48 26.0275 0.11% 34.2564 0.064% 

a. Set I: EV 1 – 5 in Table II; Set II: EV 1 – 10 in Table II; Set III: EV 1 – 20 in Table II.   

 

We use the first 5 EVs in Table II as an example. It is clear 
that the computational time of HPBA is always shorter than 
the random search case, and the pass rate with HPBA is 
always higher than using random. If the transformer limit is 
35kWh, the HPBA is 17% faster than random. If the 
transformer limit is 23kWh, the HPBA is 75% faster than 
random. Hence, the proposed HPBA method performs 
notably better than random search when the constraint check 

is tighter. We also use the first 10 and 20 EVs in Table II as the 
parking pattern. When the transformer limit is high, the 
performances between HPBA and random methods are 
comparable. However, when the transformer limit drops, the 
HPBA performs better than the random considering the 
computational time and pass rate. The results in this part have 
shown the proposed HPBA method performs better than 
random method to generate initial populations. The advantage 
using heuristics is significant when the constraint gets tighter.  

B. Simple Case with 5 EVs 

The first five EVs in Table II are used as the parking 
pattern in this part. The number of time slots numT in this case 
is 5. The transformer limit in this case is set to 25 kWh. The 
electricity costs using the proposed PSO, RS, FIFS and EDF 
mechanisms are 15.72, 18.06, 25.06 and 20.74 respectively. It 
is clear that the PSO can get the minimum objective value than 
the other mechanisms. The PSO, RS and EDF can satisfy all of 
the charging demands, but FIFS mechanism cannot satisfy the 
EV 5’s demand (9.6 out of 15 kWh).  

Table V shows the schedule result determined by the PSO 
algorithm. The total electric quantities of the time slots are 
19.20, 25.00, 6.80, 20.80, 19.20. In this case, the time slot 2 is 
fully occupied, and the time slot 3 is the minimum quantity 
occupied because its electricity price is the most expensive 
among the five time slots.  The results in this simple case show 
that the proposed PSO algorithm can achieve the goal on 
minimizing the electricity cost, and the performance of PSO is 
better than the RS, FIFS and EDF methods.   

TABLE V.  PERFORMANCE WITH 5 EVS 

 T 1 T2 T3 T4 T5 

EV1 9.60 8.40 0 0 0 

EV2 0 0 0 5.40 9.60 

EV3 9.60 0 0 5.80 9.60 

EV4 0 8.40 0 9.60 0 

EV5 0 8.20 6.80 0 0 

C. Case with 20 EVs 

In this section, we use all of the 20 EVs in Table II as the 
parking pattern and the electricity price listed in Table III. The 
number of time slots is the same as the previous case, but the 
congestion in this case is seriously increased. Based on the 
evaluation in Table IV, we set 60 as the transformer limit in 
this case, and the charge rate limit is set to 9.6. The number of 
solutions in the initial population is set to 200, and number of 
iterations is set to 500. In order to avoid the fluctuation of the 
PSO’s performance, we repeat the program for four times and 
the best result is chosen as the optimal solution. Also, the RS 
method is repeated four times for choosing the best solution.  

The results show that the objective value determined by 
PSO, RS, FIFS and EDF are 61.69, 70.10, 73.52 and 73.69 
respectively. In this case, both the FIFS and EDF mechanism 
can satisfy all the EVs’ demands because the transformer limit 
is higher than the previous cases. Table VI shows the optimal 
solution determine by the proposed PSO algorithm with the 
total electricity cost of 61.69. The column and row refer the 
time slots and EVs respectively.  
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TABLE VI.  SECHDULE RESULT FOR 20 EVS 

T1 T2 T3 T4 T5 T6 T7 T8 T9 T10 
9.25 8.20 0.55 - - - - - - - 

- - 0 6.26 8.74 - - - - - 

9.60 5.35 0 6.15 3.90 - - - - - 

- 2.67 5.78 9.55 - - - - - - 

- 6.63 8.37 - - - - - - - 

- - - - - 9.60 1.38 0 1.47 9.55 

- - - - - - 6.00 8.00 - - 

- - - - - - - 0 6.97 9.03 

- - - - - - 4.02 5.98 - - 

- - - - - 7.90 1.40 1.35 9.35 - 

- - 0.55 0.06 5.53 9.60 9.60 0.66 - - 

- 7.90 0 2.01 2.75 4.34 - - - - 

- - - - 6.07 7.86 1.00 0.07 - - 

3.48 2.17 0 3.86 5.27 4.23 3.29 0 1.19 4.51 

1.70 4.17 0 3.83 6.30 - - - - - 

- - - - 1.99 6.40 0.94 2.67 - - 

- - - 5.51 4.32 0.60 5.57 - - - 

- - - - 8.85 4.45 2.74 0 2.96 - 

- - 5.80 1.78 2.84 1.33 2.25 - - - 

- - - 9.37 3.43 3.20 0 0 - - 

 

The sum of each row is the total electric quantity of the 
EV’s charging demand, and the sum of each column is the 
total electric quantity in the corresponding time slot. In this 
case, the total electric quantity in the ten time slots are 24.03, 
37.09, 21.05, 48.38, 59.99, 59.51, 38.19, 18.73, 21.94 and 
23.09. The most expensive electricity price is at time slot 3 
and 8, which is the reason why the total quantity in time slot 3 
and 8 are lower than the others. Also, the electric quantity 
assigned to time slots 5 and 6 are higher because the electricity 
price at that time is low. In this case, the results have shown 
that the proposed algorithm is viable for determining an 
optimal charging schedule for the parking lot, and the 
performance is better than the RS, FIFS and EDF 
mechanisms.  

D. Case with 100 EVs 

We also simulate a dataset with 100 EVs to evaluate the 
proposed system. The arrival and departure times are 
randomly assigned within ten time slots (5 hours), and the 
charging demand of each EV is set to an integer value between 
4 and 8 kWh randomly. In this case, the number of variables in 
this dataset is 480. The transformer limit is set to 400, and the 
charging rate limit is set to 9.6. The size of initial population is 
set to 53, and the number of iterations is set to 50. In order to 
avoid the fluctuation of the performances, we repeat the 
algorithms for 20 times, then the statistic results are illustrated 
for comparison. 

The minimum electricity cost determine by the proposed 
algorithm is 301.2, while the costs of RS, FIFS and EDF are 
369.88, 376.76 and 376.76 respectively. It is clear that the 
proposed system can significantly reduce the cost spend on 
buying the electricity from power company. The average 
computational time for determine a solution using the 
proposed algorithm is 4.04 seconds. Because the 
computational procedure is run at the beginning of each time 
slot, the time in seconds can be considered as an acceptable 
time for the PL.  

 

V. CONCLUSION 

In this paper, we propose a new EV charging scheduling 

and control system for a parking lot by determining an optimal 

schedule for each EV. Due to the variation of electricity price, 

the aim is to minimize the PL’s electricity cost by allocating 

optimal electric quantities to the parking time slots with 

different electricity price. In order to increase the efficiency 

for finding the initial population, we have developed a HPBA 

method to generate the candidates, and a PSO algorithm is 

used to solve the scheduling problem. In the population 

initialization case, the HPBA method performs better than a 

random method on generating initial populations even though 

the constraints are difficult to meet. The results in the case 

studies have shown that the proposed HPBA PSO algorithm 

can achieve the goal on minimizing the electricity cost and 

satisfying the charging demands and constraints, and the 

performance is significantly better than other mechanisms.  

In the future, we aim to extend this work by adapting the 

system to a dynamic PL scheduling system. Also, we will 

define a minimum charging demand of each EV, and then the 

scheduling system should also determine the total electric 

quantities for each EV. Lastly, we will implement and 

compare other algorithms to solve the optimization problem, 

and improve the performance of the algorithms.  
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