
 Cascade Principal Component Least Square

Neural Network Learning Algorithm

Waqar Ahmed Khan, Sai-Ho Chung, Ching Yuen Chan

Department of Industrial and Systems Engineering

The Hong Kong Polytechnic University

Hong Kong

waqarahmed.khan@connect.polyu.hk, nick.sh.chung@polyu.edu.hk, cy.chan@connect.edu.hk

Abstract— Cascading correlation learning (CasCor) is a

constructive algorithm which determines its own network

size and typology by adding hidden unit one at a time based

on covariance with output error. Its generalization

performance and computational time depends on cascade

architecture and iteratively tuning of connection weights.

CasCor was developed to address the slowness of

backpropagation (BP), however, recent studies have

concluded that in many applications, CasCor generalization

performance does not guarantee to be optimal. Apart from

BP, CasCor learning speed can be considered slow because

of iterative tuning of connection weights by numerical

optimization techniques. Therefore, this paper addresses

CasCor bottlenecks and aims to introduce a new algorithm

with improved cascade architecture and tuning free

learning method to achieve objectives of better

generalization performance and fast learning ability. The

proposed algorithm determines network input connection

weights by orthogonally transforming a set of correlated

input units into uncorrelated hidden units and output

connection weights by considering hidden layer and the

output units in a linear relationship. This research work is

unique and innovative than previous because it does not

need any prior random generation and repeatedly tuning of

connection weights. Comparative study on complex

nonlinear regression approximation function and

classification tasks proof that proposed algorithm has

achieved better generalization performance and learn

twenty-five times faster than CasCor.

Keywords- cascading correlation learning; connection

weights; network topology; principle component analysis;

ordinary least square; cascade principal component least

square

I. INTRODUCTION (HEADING 1)

Feedforward neural networks (FNNs) are supervised
universal approximator learning algorithms and have been
extensively applied in many areas such as classification
and regression. Selection of FNNs depend upon
application area with purpose to achieve better
generalization performance without overfitting and
underfitting in shortest possible time. Too many
hyperparameters and its adjustment by iterative learning
algorithms make FNNs complex and generalization
performance become inconsistent. The most popular
learning algorithm for FNNs is backpropagation (BP)
stochastic gradient descent, but it encounters low
computational speed, adoption to local minima and
convergence learning rate issues [1]. Researchers are
extensively focused on two major areas for improvement

of FNNs. The first area is to formulate methodologies that
can improve generalization performance and, another area
is to reduce the computational speed of algorithms to gain
faster estimation.

Recently, the methodologies formulated to improve
FNNs generalization performance are based on a trade-off
between bias and variance. Srivastava et al. [2] proposed
dropout technique to deal with overfitting by randomly
dropping hidden units from the layers to reduce
coadoption between hidden units and connection weights.
The incorporation of ad hoc weight decays regularization
shrink variance by penalizing connection weights towards
zero to less likely fit training noise data. The suitable
network size is always not obvious, too large and small
size will not be able to learn, therefore, pruning involves
training a network of large size than necessary and
removing the parts from the final network that are
unnecessary [3]. Krogh [4] suggested that overall
accuracy and generalization performance of networks
improves by neural networks ensembles. In uniform
weights, the generalization error of ensembles is always
less than individual neural network errors. Furthermore,
the learning speed of FNNs has been improved by the
development of second-order derivative numerical
optimization learning algorithms such as conjugate
gradient method [5], Marquardt-Levenberg [6] and quick
prop [7]. The implementation of numerical optimization
techniques in constructive learning algorithm has provided
a promising faster learning speed as compared to BP fixed
network topology.

The most popular constructive Cascade Correlation
learning algorithm (CasCor) which determines its own
network topology and size was first proposed by S.E.
Fahlman and C. Lebiere [8]. It works by adding new
hidden unit one at a time and maximize the covariance
magnitude among hidden unit and output error. In most
cases, second order quick prop iterative learning algorithm
is used in CasCor to reach faster towards error function by
taking much larger steps rather than infinitesimal small
steps. CasCor constructive algorithm has several
advantages over fixed networks and pruning methods that
it can solve complex tasks, learn more quickly, determine
its own network typology, more economical and no
underfitting. All these advantages lead CasCor to attain
training results much faster, however, it does not assure
optimal generalization performance. Huang [9] explained
that generalization performance of CasCor decreases with
increasing network size. The input connection weights are

Identify applicable sponsor/s here. (sponsors)

Proceedings of the 24th International Conference on
Automation & Computing, Newcastle University,
Newcastle upon Tyne, UK, 6-7 September 2018

This is the Pre-Published Version.

The following publication W. A. Khan, S. -H. Chung and C. Y. Chan, "Cascade Principal Component Least Squares Neural Network
Learning Algorithm," 2018 24th International Conference on Automation and Computing (ICAC), Newcastle Upon Tyne, UK, 2018, pp. 1-6 is
available at https://doi.org/10.23919/IConAC.2018.8748964.

© 2018 IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for all other uses, in any current or future
media, including reprinting/republishing this material for advertising or promotional purposes, creating new collective works, for resale or
redistribution to servers or lists, or reuse of any copyrighted component of this work in other works.

trained to maximize the covariance magnitude of existing
hidden units and output error which cannot guarantee
maximum error reduction when a new hidden unit is
added. Increasing the hidden units causes learning
complicated and convergence becomes slow. The
iteratively tuning of input and output connection weights
before and after hidden unit generation is more time-
consuming. The learning speed of CasCor is obvious over
backpropagation neural network (BPNN) but
generalization performance of CasCor depend upon the
type of data structure and task. It has been observed that
CasCor perform better in classification tasks as compared
to regression tasks [10] and this makes it unsuitable for
many application areas. Moreover, Kovalishyn et al. [11]
experimental work on quantitative structure relationships
data did not find any dramatically better performance
compared to BPNN. The possible reasons are lack of
criteria which need to stop the addition of hidden units
when learning converges and improper handling of hidden
units with too many parameters adjustments which cause
poor generalization performance [12]. Different from
comparison with BPNN, CasCor learning speed can be
considered slow because of iterative numerical
optimization learning algorithms.

This paper proposes new unique algorithm that
addresses and improves CasCor generalization
performance and learning ability bottlenecks by
modifying its cascade architecture and introducing new
tuning free learning method. The proposed algorithm
named as Cascade Principal Component Least Square
Neural Network Learning Algorithm (CPCLS) determine
its own cascade architecture and connection weights at
each layer of learning. The CPCLS is free from the
implementation of any kind of numerical optimization
learning algorithms which makes learning easy and
efficient with no need of iteratively tuning parameters.
CPCLS determines input connection weights by
orthogonal transforming set of correlated input units into
uncorrelated hidden units. The output connection weights
are determined by linear transformation of uncorrelated
hidden units into output units. The proposed algorithm
converts nonlinearity of continuous function into linearity
by optimally calculating weight parameters. This results in
the selection of most appropriate hidden units that create a
linear relationship to output. Previously, little attempt has
been made to analytically calculate connection weights on
both sides. Experimental results on popular extreme
nonlinear benchmark problems of two spiral classification
[13] task and SinC approximation function regression task
reveals that CPCLS has obtained better generalization
ability and learn twenty-five times faster than traditional
CasCor.

The paper is organized as follows. Section II briefly
explains learning methodology behind CasCor and its
drawbacks, Orthogonal Linear Transformation and
Ordinary Least Squares linear regression (OLS). Section
III introduces newly proposed algorithm CPCLS. Section
IV is about performance evaluation by comparing Casor
with CPCLS on two spiral classification tasks and SinC
approximation function regression task. Section V is
related to discussion and conclusion.

II. LEARNING METHADOLOGIES

A. CasCor and its drawbacks

The main issue associated with FNNs applicability is
their slow learning ability because of BP learning
algorithm. The CasCor was proposed by S.E. Fahlman
and C. Lebiere to address the slowness of FNNs [8]. They
argue that FNNs faces constantly changing environment
by changing connection weights at once which make it
slow to move towards overall solution. Unlike traditional
FNNs, CasCor combines two main concepts: Cascade
architecture and learning algorithm. It architecture begins
with a minimum network by adding hidden unit one at a
time and learning connection weights to maximizes the
covariance between added hidden unit and network output
error.

The CasCor is illustrated in Fig. 1 which begins
initially with no hidden units in the network. All the input
units are directly connected to output units with randomly
generated connection weights. The connection weights are
tuned by Fahlman “quick prop” learning algorithm due to
its property of taking larger steps to converge more
quickly towards minimal error rather than
backpropagation infinitesimal small steps. When training
approaches an asymptote and there is no further error
reduction, a hidden unit is added. For hidden unit with
characteristics of maximum error reduction, candidate
units are initially added which receives incoming
connections from all input units and any pre-existing
hidden units. The objective is to maximise covariance S
between candidate units and output error prior connecting
to output units:

𝑆 = ∑ |∑(𝑉𝑝 − �̅�)(𝐸𝑝,𝑜 − 𝐸𝑜
̅̅ ̅)

𝑝

|

𝑜

(1)

The S magnitude is maximized by computing
derivative of S with respect to each incoming connection
weights to a candidate unit:

 𝜕𝑆

𝜕𝑤𝑖

= ∑ 𝜎𝑜

𝑝,𝑜

(𝐸𝑝,𝑜 − 𝐸𝑜
̅̅̅)𝑓′

𝑝
𝐼𝑖,𝑝

(2)

The quick prop gradient ascent is adopted to tune the
incoming connection weights (which are also known as
input connection weights) to achieve highest S. When S
stop improving, the candidate unit with highest S is
selected as hidden unit and is connected to the output units
by output connection weights while incoming connections
are kept frozen. Again, quick prop learning algorithm is
adopted to train the network output connection weights.
This process continues, and hidden units are added one by
one until error converges.

The major drawbacks of CasCor is it complex cascade
architecture and tuning based learning algorithm to find
best connection weights. It determines its own network
topology by adding hidden units one at a time based on
the maximum covariance between the hidden unit and
output error, whereas, the output error is reduced by
connecting input and hidden units to output units. This
iteratively tuning connection weights separately on the

input side to maximize covariance and output side to
reduce error decreases the generalization ability of
network on new testing data. Although quick prop CasCor
is much faster than traditional BPNN but still the learning
speed can be considered slow because of iteration steps to
find optimal parameters. The main issue associated with
CasCor is their isolation learning in each hidden layer.
When a new hidden unit is added, the previously added
hidden units become less significant for error
minimization objective function because of fact that they
had already performed utmost error minimization in their
specific hidden layers. The output error changes after
every hidden unit addition and newly added hidden unit
becomes more important and correlated to error as
compared to previously added hidden units. This results in
complex network to handle additional information in the
form of testing data which reduce the generalization
performance.

Therefore, this paper proposes improved cascade
architecture and new tuning free learning algorithm for
CasCor to improve its generalization performance and
learning ability. The proposed algorithm CPCLS works by
adding multiple uncorrelated hidden units one at time
based on orthogonal linear transformation of input units.
Furthermore, the output connection weights are calculated
by ordinary least square (OLS) by considering hidden
units and output units in linear relationship. CPCLS
improve cascade architecture by connecting only newly
added multiple hidden units of final hidden layer to output
units and eliminate previously added output connection
weights, whereas, learning improves by analytically
calculating both input and output connections weight
without any need of iterative tuning.

B. Orthogonal Linear Transformation and OLS

Suppose a training data samples with (𝑿 , 𝒀), where X
be input units matrix mxn and Y be output units matrix
mxq with hidden units H of matrix mxp. The input
connection weights are represented by W of matrix nxp,
whereas, output connection weights are represented by β
of matrix pxq.

The n-features X are orthogonally linear transform into
new p-features space of uncorrelated H by Principal
Component Analysis (PCA) algorithm [14]. It takes only
input units into consideration for dimensionality reduction
by calculating unknown parameter W. Each principal
component is coordinate describing the amount of
variance in the data. The components are selected with
first component describing largest possible variance and
so on. It calculates eigenvalue λ and its corresponding
eigenvector on the covariance matrix S, which is equal
dimensional dxd matrix with each quantity representing
covariance between n-features with diagonal quantities
representing covariance for the same feature. For n-
features variable, let 𝑿 be mxn matrix with m representing
observations and n gives a data features. The S can be
calculated as:

 𝑺 =
1

𝑚−1
𝑿𝑇𝑿 (3)

Where 𝑿 = 𝑥𝑖 − �̅� , such that �̅� =
1

𝑚
∑ 𝑥𝑖

𝑚
𝑖=1 with each

value represents the mean of n features in the dataset.

The eigenvector describes the coordinate system for
new p features by reducing its dimensions equal to or less
than n features. However, eigenvector selection depends
on the highest value of λ. The λ with smaller value can be
omitted as it contains least variance information. The λ is
calculated from S matrix:

 |𝑺 − 𝜆𝑰| = 0 (4)

The corresponding eigenvector based on λ can be
found by calculating for the component W in the equation:

 𝑺𝑊 = 𝜆𝑊 (5)

The matrix W linearly transform n features X into new
uncorrelated p features space H:

 𝑯 = 𝑿𝑊

(6)

OLS [15] reduces the sum of square (SSE) error
between observed and predicted variables by estimating
unknown parameter β based on hidden units H and actual
output Y:

 𝒀 = 𝑯𝛽 + 𝜀

(7)

According to ordinary least square theories, β can be
calculated by:

 𝛽 = (𝑯𝑻𝑯)−𝟏𝑯𝑻𝒀
(8)

Where (𝑯𝑻𝑯)−𝟏𝑯𝑻 is Moore Penrose pseudo-inverse
of matrix H. For optimal estimation, the assumption exists
that there should be no multicollinearity among hidden
units H.

Knowing the value of β, the predicted output �̂� can be
calculated from the inner product of H and β:

 �̂� = 𝑯𝛽
(9)

The model fitness objective function SSE can be
accomplished by optimally calculating input and output
connection weights in forward step. Equation (5) and (8)
plays a significant role in determining weight connections
for newly proposed CPCLS.

III. CPCLS LEARNING ALGORITHM

The objective of CasCor is to improve the slowness of
backpropagation learning algorithm which does not assure
it superior generalization performance. This paper
introduced an efficient algorithm CPCLS with better
generalization and fast learning speed than popular quick
prop CasCor. CPCLS improves the existing CasCor by
modifying its cascade architecture and introduces new
method of tuning free learning. Unlike traditional CasCor
which only determine its own network topology, CPCLS
determine its own network typology and optimal weight
connections by only forward steps to error reduction.
CPCLS does not need to create a direct linkage between
the input-output units and to add hidden unit one at a time,
the number of hidden units addition depends upon the task
and to move more quickly towards estimation. CPCLS
basic idea is to convert nonlinear data structure into linear
for fast and efficient computation.

Like CasCor, CPCLS also combine the two idea of
cascade architecture and learning. CPCLS architecture is

 Input connection weights frozen after tuning

 Output connection weights repeatedly tuning

Input

Units

Hidden Layer 1 with

one hidden unit

Hidden Layer 2 with

one hidden unit

Output

Unit

+1

represented in Fig. 2. The architecture of CPCLS is
improved form of CasCor. Firstly, different from CasCor,
it does not need to create initially linear combination of
input and output units. All the input units are connected to
output units by adding hidden units. Secondly, multiple
hidden units can be added to converge faster to estimation.
Thirdly, the last hidden layer is only connected to output
units and previous connections are eliminated to make
network simpler. In terms of learning, CasCor depends
upon numerical optimization learning algorithms to
repeatedly tune weight connection parameters which is
more time consuming and difficult to handle it
convergence. CPCLS is tuning free method which
zimproves the learning by analytically calculating weight
connections in forward step without any need of delta
method. CPCLS different from CasCor by having better
improved cascade architecture and analytically calculate
input and output connections weight rather than tuning by
numerical optimization algorithms.

CPCLS initialize with training data input units X,
output units Y, and hidden units H such that p ≤ n. For
input connection weights determination, it orthogonally
linearly transforms set of correlated X n-features into new
space of uncorrelated H p-features by eigen
decomposition of its covariance square matrix (3) such
that p ≤ n. The corresponding eigenvectors (5) with
highest λ (4) value that explains maximum variance in
data are selected as input connection weights W. H are
computed (6) by performing activation function on the
inner product of X and W. The advantage of this process is
that it generates H explaining maximum variance in data
with no multicollinearity to reduce target error more fast
and efficient due to less complicated calculations. Next
step is to determine output connection weights by
considering the hidden unit in linear relationship to output
units. The unknown output connection weights parameters
β are determined (8) by the inner product of Moore
Penrose pseudo-inverse of H and Y. Knowing the value of

β, output �̂� is estimated by linear conversion of hidden
unit H through β such as Hβ. The objective is to minimize
error function at fast learning speed with better
generalization performance:

𝐸 =

1

𝑚
∑(�̂� − 𝒀)

2
𝑚

𝑖=1

(10)

If E is less than defined target error e, the CPCLS will
stop, else, hidden layers will be added until the desired
performance is not achieved. In proceeding hidden layers,
the newly added H receives all incoming connections
from input units and any existing hidden units, whereas,
output unit receives connections from only newly added
hidden layer and diminish its previous connections.
Connecting previously added hidden layers to output units
plays no significant role in the network. It only adds
burden on the network and reduces the generalization
performance as well as learning speed. The amount of
hidden units addition in each layer is not restricted to one
at a time, but it depends upon the task to converge faster
to target error. Hidden units are generated from orthogonal
liner transformation of input units, therefore, the hidden

Figure 1. CasCor architecture

Figure 2. CPCLS architecture

units feature generation will be always less than or equal
to input units features such that p ≤ n.

The proposed CPCLS algorithm has serval advantages
over traditional quick prop Cascor that it learns faster, no
need of iterations to optimized parameters, better
generalization performance, determine its own network
typology and parameters, work directly with both
differentiable and non- differentiable activation function,
no need of ad hoc learning rate methods for faster
convergences, no candidate unit’s generation to avoid
overfitting and free from complex learning algorithms
calculations.

Algorithm CPCLS

Suppose a training set (𝑿 , 𝒀) with input units matrix
X mxn, output units matrix Y mxq, hidden units matrix H
mxp, and target error e:

+1

 Input connection weights frozen after orthogonal

linear transformation

 Output connection weights determination by OLS

Input

Units

Hidden Layer 1 with

two hidden units

Hidden Layer 2 with

four hidden units

Output

Unit

Step 1) Initialization: Let initial number of H=N such
that p ≤ n and target error = e

Step 2) Learning Step:

While 𝐸 > 𝑒

a) Calculate input connection weights W matrix nxp:

1. Determine covariance S matrix dxd among input
n features:

𝑺 =
1

𝑚 − 1
𝑿𝑇𝑿

𝑿 = 𝑥𝑖 − �̅�

�̅� =
1

𝑚
∑ 𝑥𝑖

𝑚

𝑖=1

2. Generate eigenvalue λ and corresponding
eigenvector from S:

|𝑺 − 𝜆𝑰| = 0

𝑺𝑾 = 𝜆𝑾

Where selected eigenvector W are the input
connection weights for H

b) Calculate H by taking activation of inner product of
X and W:

𝑯 = 𝑿𝑊

c) Calculate the output connection weights β pxq by
taking inner product of Moore Penrose pseudo-inverse
of H and Y:

𝛽 = (𝑯𝑻𝑯)−𝟏𝑯𝑻𝒀

d) Calculate the output matrix �̂� by linearly
transferring H through β:

�̂� = 𝑯𝛽

e) Estimate error 𝐸 by subtracting the actual output 𝒀

from predicted output �̂� :

𝐸 =
1

𝑚
∑(�̂� − 𝒀)

2
𝑚

𝑖=1

f) Stack the calculated H with X:

𝑿 = (𝑿, 𝑯)

g) Increase the number of H by 𝑛′ such that p ≤ n:

 𝑁 = 𝑁 + 𝑛′

endwhile

IV. PERFORMANCE EVALUATION

The generalization performance and learning speed of
proposed algorithm CPCLS is compared with quick prop
CasCor on popular highly nonlinear benchmarking
problems of two spiral classification and function
approximation of SinC regression task. The simulation
work is performed in Anaconda Spyder Python v3.2.6 and

Netmaker v0.9.5.2. Netmaker is a simulation software
designed in C programming for building neural networks
and has build-in quick prop CasCor programming code.
CPCLS simulation is carried out in python, whereas,
CasCor simulation is carried out in Netmaker. Simulation
in different programming code will not affect the
comparison because C programming execution is faster
than Python. The activation function used is sigmoid for
CPCLS and CasCor.

A. Classification Benchmark: Two Spiral Problem

The generalization performance and learning speed of
CPCLs and CasCor are evaluated on well-known extreme
nonlinear benchmarking task of two spiral classification.
The task consists of 194 training points twisted in two
spirals with three turns for each spiral. It consists of two
inputs units and one output unit with two classes as 0’s
and 1’s. The algorithms must classify all data points as 0’s
and 1’s as shown in Fig. 3 in black and white dots
respectively. The generalization performance of
algorithms is evaluated on newly generated dense spiral of
770 testing data points other than training points [13]. All
the data points of input and output are normalized in the
range [0,1].

Table I shows the generalization performance and
learning ability simulation results of both algorithms
average over 25 trials. For better simulation results,
number of candidate units in CasCor are set to 8 Nos. As
shown in Table I, CPCLS spend 5.07 s to train a network
with generalization performance of 95.61%, whereas,
CasCor spend 135.84 s to train a network with
generalization performance of 91.00%. The results
indicate that CPCLS has obtain better generalization
performance and faster learning speed than CasCor.

B. Regression Benchmark: SinC Function

Approximation

In regression, nonlinear SinC function task is
approximated by CPCLS and CasCor to check its
generalization performance and learning ability. To make
task more complex and nonlinear, data points of 4000
observations are generated from below SinC function in
the range (-20,20):

𝑦(𝑥) = {
sin(𝑥)

𝑥
, 𝑥 ≠ 0

1, 𝑥 = 0

(11)

Table II shows the generalization performance and
learning ability simulation results of CPCLS and CasCor
average over 25 trials by randomly splitting data points in
to training and testing dataset at a 50:50 ratio during each
trial. All the data points of input and output are
normalized in the range [0,1]. As observed from Table II,
CPCLS spend 10.07 s to train a network with
generalization performance of 0.00080 RMSE, whereas,
CasCor spend 318.82 s to train a network with
generalization performance of 0.02425 RMSE. CPCLS
can truly approximate all data points of SinC as illustrate
in Fig. 4, whereas, CasCor loss its generalization ability as
illustrated in Fig 5.

Figure 3. Two Spiral Classification Task

TABLE I. GENERALIZATION PERFORMANCE AND LEARNING

SPEED OF TWO SPIRAL CLASSIFICATION TASK

Algorithm Testing

Accuracy (%)

Training Time

(Sec)

Hidden Units

(nos.)

Mean Stdev Mean Stdev Mean Stdev

CPCLS 95.61 0.47 5.07 0.51 142 4.47

CasCor 91.00 2.25 135.84 39.72 20.5 2.06

V. DISCUSSIONS AND CONCLUSIONS

In this paper, simulation work demonstrates that new
proposed algorithm known as Cascade Principal
Component Least Squares Neural Network (CPCLS) has
achieved better generalization performance and learning
speed with improved cascade architecture and tuning free
learning method as compared to traditional Cascading
Correlation learning (CasCor) algorithm. CPCLS
algorithm analytically calculate weight connections on
improved cascade architecture to convert nonlinear
complex tasks to linear for quick and efficient reduction of
sum of squares error (SSE). CPCLS has several
noteworthy features as compared to CasCor:

 The generalization performance of proposed
algorithm is better than CasCor. Simulation results
shows that improvement in cascade architecture
create less burden on network and converges more
quickly towards target error. The proposed
algorithm works more analytically by determining
optimal weight connections rather than CasCor
which need numerical optimization techniques, ad
hoc adjustments such as weight decay, and
candidate unit’s generation to improve
generalization performance and prevent issues like
underfitting and overfitting.

 The learning speed is fast due to no adoption of
numerical optimization technique such as quick
prop. Unlike CasCor that is involved in both
forward and backward delta rule tuning of weight
connections, CPCLS take only forward steps to
calculate target error by analytically calculating
weight connections. Furthermore, CPCLS can
work with all type of non-differentiable activation
function (such as threshold) directly to move more
faster towards results.

The superior generalization performance and learning
ability of CPCLS on nonlinear benchmark problems
validate that that it can be efficiently applied in many real
application tasks.

TABLE II. GENERALIZATION PERFORMANCE AND LEARNING

SPEED OF SINC REGRESSION TASK

Algorithm Testing RMSE Training

Time (Sec)

Hidden

Units (nos.)

Mean Stdev Mean Stdev Mean Stdev

CPCLS 0.00080 0.00013 10.07 2.64 105.5 7.66

CasCor 0.02425 0.00086 318.82 67.09 17.3 1.89

Figure 4. CPCLS generlization of SinC Function

Figure 5. CasCor generlization of SinC Function

REFERENCES

[1] R. Hecht-Nielsen, "Theory of the Backpropagation Neural
Network."

[2] N. Srivastava, G. Hinton, A. Krizhevsky, I. Sutskever, and
R. Salakhutdinov, "Dropout: A simple way to prevent
neural networks from overfitting," The Journal of Machine
Learning Research, vol. 15, no. 1, pp. 1929-1958, 2014.

[3] R. Reed, "Pruning algorithms-a survey," IEEE transactions
on Neural Networks, vol. 4, no. 5, pp. 740-747, 1993.

[4] A. Krogh and J. Vedelsby, "Neural network ensembles,
cross validation, and active learning," in Advances in
neural information processing systems, 1995, pp. 231-238.

[5] C. Charalambous, "Conjugate gradient algorithm for
efficient training of artificial neural networks," IEE
Proceedings G (Circuits, Devices and Systems), vol. 139,
no. 3, pp. 301-310, 1992.

[6] M. T. Hagan and M. B. Menhaj, "Training feedforward
networks with the Marquardt algorithm," IEEE
transactions on Neural Networks, vol. 5, no. 6, pp. 989-
993, 1994.

[7] S. E. Fahlman, "An empirical study of learning speed in
back-propagation networks," 1988.

[8] S. E. Fahlman and C. Lebiere, "The cascade-correlation
learning architecture," in Advances in neural information
processing systems, 1990, pp. 524-532.

[9] G. Huang, S. Song, and C. Wu, "Orthogonal least squares
algorithm for training cascade neural networks," IEEE
Transactions on Circuits and Systems I: Regular Papers,
vol. 59, no. 11, pp. 2629-2637, 2012.

[10] M. Lehtokangas, "Modified cascade-correlation learning
for classification," IEEE Transactions on Neural Networks,
vol. 11, no. 3, pp. 795-798, 2000.

[11] V. V. Kovalishyn, I. V. Tetko, A. I. Luik, V. V.
Kholodovych, A. E. Villa, and D. J. Livingstone, "Neural
network studies. 3. variable selection in the cascade-
correlation learning architecture," Journal of Chemical
Information and Computer Sciences, vol. 38, no. 4, pp.
651-659, 1998.

[12] T.-Y. Kwok and D.-Y. Yeung, "Constructive algorithms
for structure learning in feedforward neural networks for

regression problems," IEEE transactions on neural
networks, vol. 8, no. 3, pp. 630-645, 1997.

[13] K. J Lang and M. Witbrock, Learning to Tell Two Spirals
Apart. 1988.

[14] PCA

[15] OLS

