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Abstract— Cascading correlation learning (CasCor) is a 

constructive algorithm which determines its own network 

size and typology by adding hidden unit one at a time based 

on covariance with output error. Its generalization 

performance and computational time depends on cascade 

architecture and iteratively tuning of connection weights. 

CasCor was developed to address the slowness of 

backpropagation (BP), however, recent studies have 

concluded that in many applications, CasCor generalization 

performance does not guarantee to be optimal. Apart from 

BP, CasCor learning speed can be considered slow because 

of iterative tuning of connection weights by numerical 

optimization techniques. Therefore, this paper addresses 

CasCor bottlenecks and aims to introduce a new algorithm 

with improved cascade architecture and tuning free 

learning method to achieve objectives of better 

generalization performance and fast learning ability. The 

proposed algorithm determines network input connection 

weights by orthogonally transforming a set of correlated 

input units into uncorrelated hidden units and output 

connection weights by considering hidden layer and the 

output units in a linear relationship. This research work is 

unique and innovative than previous because it does not 

need any prior random generation and repeatedly tuning of 

connection weights. Comparative study on complex 

nonlinear regression approximation function and 

classification tasks proof that proposed algorithm has 

achieved better generalization performance and learn 

twenty-five times faster than CasCor. 

Keywords- cascading correlation learning; connection 

weights; network topology; principle component analysis; 

ordinary least square; cascade principal component least 

square 

I. INTRODUCTION (HEADING 1)

Feedforward neural networks (FNNs) are supervised 
universal approximator learning algorithms and have been 
extensively applied in many areas such as classification 
and regression. Selection of FNNs depend upon 
application area with purpose to achieve better 
generalization performance without overfitting and 
underfitting in shortest possible time. Too many 
hyperparameters and its adjustment by iterative learning 
algorithms make FNNs complex and generalization 
performance become inconsistent. The most popular 
learning algorithm for FNNs is backpropagation (BP) 
stochastic gradient descent, but it encounters low 
computational speed, adoption to local minima and 
convergence learning rate issues [1]. Researchers are 
extensively focused on two major areas for improvement 

of FNNs. The first area is to formulate methodologies that 
can improve generalization performance and, another area 
is to reduce the computational speed of algorithms to gain 
faster estimation. 

Recently, the methodologies formulated to improve 
FNNs generalization performance are based on a trade-off 
between bias and variance. Srivastava et al. [2] proposed 
dropout technique to deal with overfitting by randomly 
dropping hidden units from the layers to reduce 
coadoption between hidden units and connection weights. 
The incorporation of ad hoc weight decays regularization 
shrink variance by penalizing connection weights towards 
zero to less likely fit training noise data. The suitable 
network size is always not obvious, too large and small 
size will not be able to learn, therefore, pruning involves 
training a network of large size than necessary and 
removing the parts from the final network that are 
unnecessary [3]. Krogh [4] suggested that overall 
accuracy and generalization performance of networks 
improves by neural networks ensembles. In uniform 
weights, the generalization error of ensembles is always 
less than individual neural network errors. Furthermore, 
the learning speed of FNNs has been improved by the 
development of second-order derivative numerical 
optimization learning algorithms such as conjugate 
gradient method [5], Marquardt-Levenberg [6] and quick 
prop [7]. The implementation of numerical optimization 
techniques in constructive learning algorithm has provided 
a promising faster learning speed as compared to BP fixed 
network topology. 

The most popular constructive Cascade Correlation 
learning algorithm (CasCor) which determines its own 
network topology and size was first proposed by S.E. 
Fahlman and C. Lebiere [8]. It works by adding new 
hidden unit one at a time and maximize the covariance 
magnitude among hidden unit and output error. In most 
cases, second order quick prop iterative learning algorithm 
is used in CasCor to reach faster towards error function by 
taking much larger steps rather than infinitesimal small 
steps. CasCor constructive algorithm has several 
advantages over fixed networks and pruning methods that 
it can solve complex tasks, learn more quickly, determine 
its own network typology, more economical and no 
underfitting. All these advantages lead CasCor to attain 
training results much faster, however, it does not assure 
optimal generalization performance. Huang [9] explained 
that generalization performance of CasCor decreases with 
increasing network size. The input connection weights are 

Identify applicable sponsor/s here. (sponsors) 

Proceedings of the 24th International Conference on 
Automation & Computing, Newcastle University, 
Newcastle upon Tyne, UK, 6-7 September 2018 

This is the Pre-Published Version.

The following publication W. A. Khan, S. -H. Chung and C. Y. Chan, "Cascade Principal Component Least Squares Neural Network 
Learning Algorithm," 2018 24th International Conference on Automation and Computing (ICAC), Newcastle Upon Tyne, UK, 2018, pp. 1-6 is 
available at https://doi.org/10.23919/IConAC.2018.8748964.

© 2018 IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for all other uses, in any current or future 
media, including reprinting/republishing this material for advertising or promotional purposes, creating new collective works, for resale or 
redistribution to servers or lists, or reuse of any copyrighted component of this work in other works.



trained to maximize the covariance magnitude of existing 
hidden units and output error which cannot guarantee 
maximum error reduction when a new hidden unit is 
added. Increasing the hidden units causes learning 
complicated and convergence becomes slow. The 
iteratively tuning of input and output connection weights 
before and after hidden unit generation is more time-
consuming. The learning speed of CasCor is obvious over 
backpropagation neural network (BPNN) but 
generalization performance of CasCor depend upon the 
type of data structure and task. It has been observed that 
CasCor perform better in classification tasks as compared 
to regression tasks [10] and this makes it unsuitable for 
many application areas. Moreover, Kovalishyn et al. [11] 
experimental work on quantitative structure relationships 
data did not find any dramatically better performance 
compared to BPNN. The possible reasons are lack of 
criteria which need to stop the addition of hidden units 
when learning converges and improper handling of hidden 
units with too many parameters adjustments which cause 
poor generalization performance [12].  Different from 
comparison with BPNN, CasCor learning speed can be 
considered slow because of iterative numerical 
optimization learning algorithms.   

This paper proposes new unique algorithm that 
addresses and improves CasCor generalization 
performance and learning ability bottlenecks by 
modifying its cascade architecture and introducing new 
tuning free learning method. The proposed algorithm 
named as Cascade Principal Component Least Square 
Neural Network Learning Algorithm (CPCLS) determine 
its own cascade architecture and connection weights at 
each layer of learning. The CPCLS is free from the 
implementation of any kind of numerical optimization 
learning algorithms which makes learning easy and 
efficient with no need of iteratively tuning parameters. 
CPCLS determines input connection weights by 
orthogonal transforming set of correlated input units into 
uncorrelated hidden units. The output connection weights 
are determined by linear transformation of uncorrelated 
hidden units into output units. The proposed algorithm 
converts nonlinearity of continuous function into linearity 
by optimally calculating weight parameters. This results in 
the selection of most appropriate hidden units that create a 
linear relationship to output. Previously, little attempt has 
been made to analytically calculate connection weights on 
both sides. Experimental results on popular extreme 
nonlinear benchmark problems of two spiral classification 
[13] task and SinC approximation function regression task 
reveals that CPCLS has obtained better generalization 
ability and learn twenty-five times faster than traditional 
CasCor. 

The paper is organized as follows. Section II briefly 
explains learning methodology behind CasCor and its 
drawbacks, Orthogonal Linear Transformation and 
Ordinary Least Squares linear regression (OLS). Section 
III introduces newly proposed algorithm CPCLS. Section 
IV is about performance evaluation by comparing Casor 
with CPCLS on two spiral classification tasks and SinC 
approximation function regression task. Section V is 
related to discussion and conclusion. 

II. LEARNING METHADOLOGIES 

A. CasCor and its drawbacks 

The main issue associated with FNNs applicability is 
their slow learning ability because of BP learning 
algorithm. The CasCor was proposed by S.E. Fahlman 
and C. Lebiere to address the slowness of FNNs [8]. They 
argue that FNNs faces constantly changing environment 
by changing connection weights at once which make it 
slow to move towards overall solution. Unlike traditional 
FNNs, CasCor combines two main concepts: Cascade 
architecture and learning algorithm. It architecture begins 
with a minimum network by adding hidden unit one at a 
time and learning connection weights to maximizes the 
covariance between added hidden unit and network output 
error.  

The CasCor is illustrated in Fig. 1 which begins 
initially with no hidden units in the network. All the input 
units are directly connected to output units with randomly 
generated connection weights. The connection weights are 
tuned by Fahlman “quick prop” learning algorithm due to 
its property of taking larger steps to converge more 
quickly towards minimal error rather than 
backpropagation infinitesimal small steps. When training 
approaches an asymptote and there is no further error 
reduction, a hidden unit is added. For hidden unit with 
characteristics of maximum error reduction, candidate 
units are initially added which receives incoming 
connections from all input units and any pre-existing 
hidden units. The objective is to maximise covariance S 
between candidate units and output error prior connecting 
to output units: 
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The S magnitude is maximized by computing 
derivative of S with respect to each incoming connection 
weights to a candidate unit: 

 𝜕𝑆
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(2) 

The quick prop gradient ascent is adopted to tune the 
incoming connection weights (which are also known as 
input connection weights) to achieve highest S. When S 
stop improving, the candidate unit with highest S is 
selected as hidden unit and is connected to the output units 
by output connection weights while incoming connections 
are kept frozen. Again, quick prop learning algorithm is 
adopted to train the network output connection weights. 
This process continues, and hidden units are added one by 
one until error converges. 

The major drawbacks of CasCor is it complex cascade 
architecture and tuning based learning algorithm to find 
best connection weights. It determines its own network 
topology by adding hidden units one at a time based on 
the maximum covariance between the hidden unit and 
output error, whereas, the output error is reduced by 
connecting input and hidden units to output units. This 
iteratively tuning connection weights separately on the 



input side to maximize covariance and output side to 
reduce error decreases the generalization ability of 
network on new testing data. Although quick prop CasCor 
is much faster than traditional BPNN but still the learning 
speed can be considered slow because of iteration steps to 
find optimal parameters. The main issue associated with 
CasCor is their isolation learning in each hidden layer. 
When a new hidden unit is added, the previously added 
hidden units become less significant for error 
minimization objective function because of fact that they 
had already performed utmost error minimization in their 
specific hidden layers. The output error changes after 
every hidden unit addition and newly added hidden unit 
becomes more important and correlated to error as 
compared to previously added hidden units. This results in 
complex network to handle additional information in the 
form of testing data which reduce the generalization 
performance.  

Therefore, this paper proposes improved cascade 
architecture and new tuning free learning algorithm for 
CasCor to improve its generalization performance and 
learning ability. The proposed algorithm CPCLS works by 
adding multiple uncorrelated hidden units one at time 
based on orthogonal linear transformation of input units. 
Furthermore, the output connection weights are calculated 
by ordinary least square (OLS) by considering hidden 
units and output units in linear relationship. CPCLS 
improve cascade architecture by connecting only newly 
added multiple hidden units of final hidden layer to output 
units and eliminate previously added output connection 
weights, whereas, learning improves by analytically 
calculating both input and output connections weight 
without any need of iterative tuning. 

B. Orthogonal Linear Transformation and OLS 

Suppose a training data samples with  (𝑿 , 𝒀), where X 
be input units matrix mxn and Y be output units matrix 
mxq with hidden units H of matrix mxp. The input 
connection weights are represented by W of matrix nxp, 
whereas, output connection weights are represented by β 
of matrix pxq. 

The n-features X are orthogonally linear transform into 
new p-features space of uncorrelated H by Principal 
Component Analysis (PCA) algorithm [14]. It takes only 
input units into consideration for dimensionality reduction 
by calculating unknown parameter W. Each principal 
component is coordinate describing the amount of 
variance in the data. The components are selected with 
first component describing largest possible variance and 
so on. It calculates eigenvalue λ and its corresponding 
eigenvector on the covariance matrix S, which is equal 
dimensional dxd matrix with each quantity representing 
covariance between n-features with diagonal quantities 
representing covariance for the same feature. For n-
features variable, let 𝑿 be mxn matrix with m representing 
observations and n gives a data features. The S can be 
calculated as: 

 𝑺 =
1

𝑚−1
𝑿𝑇𝑿   (3) 

Where 𝑿 = 𝑥𝑖 − �̅� , such that �̅� =
1

𝑚
∑ 𝑥𝑖

𝑚
𝑖=1  with each 

value represents the mean of n features in the dataset. 

The eigenvector describes the coordinate system for 
new p features by reducing its dimensions equal to or less 
than n features. However, eigenvector selection depends 
on the highest value of λ. The λ with smaller value can be 
omitted as it contains least variance information. The λ is 
calculated from S matrix: 

 |𝑺 − 𝜆𝑰| = 0 (4) 

The corresponding eigenvector based on λ can be 
found by calculating for the component W in the equation: 

 𝑺𝑊 = 𝜆𝑊  (5) 

The matrix W linearly transform n features X into new 
uncorrelated p features space H: 

 𝑯 = 𝑿𝑊 
 

(6) 

OLS [15] reduces the sum of square (SSE) error 
between observed and predicted variables by estimating 
unknown parameter β based on hidden units H and actual 
output Y: 

 𝒀 = 𝑯𝛽 +  𝜀 
 

(7) 

According to ordinary least square theories, β can be 
calculated by: 

 𝛽 = (𝑯𝑻𝑯)−𝟏𝑯𝑻𝒀 
(8) 

Where (𝑯𝑻𝑯)−𝟏𝑯𝑻 is Moore Penrose pseudo-inverse 
of matrix H. For optimal estimation, the assumption exists 
that there should be no multicollinearity among hidden 
units H. 

Knowing the value of β, the predicted output �̂�  can be 
calculated from the inner product of H and β: 

 �̂� = 𝑯𝛽  
(9) 

The model fitness objective function SSE can be 
accomplished by optimally calculating input and output 
connection weights in forward step. Equation (5) and (8) 
plays a significant role in determining weight connections 
for newly proposed CPCLS. 

III. CPCLS LEARNING ALGORITHM 

The objective of CasCor is to improve the slowness of 
backpropagation learning algorithm which does not assure 
it superior generalization performance. This paper 
introduced an efficient algorithm CPCLS with better 
generalization and fast learning speed than popular quick 
prop CasCor. CPCLS improves the existing CasCor by 
modifying its cascade architecture and introduces new 
method of tuning free learning. Unlike traditional CasCor 
which only determine its own network topology, CPCLS 
determine its own network typology and optimal weight 
connections by only forward steps to error reduction. 
CPCLS does not need to create a direct linkage between 
the input-output units and to add hidden unit one at a time, 
the number of hidden units addition depends upon the task 
and to move more quickly towards estimation. CPCLS 
basic idea is to convert nonlinear data structure into linear 
for fast and efficient computation. 

Like CasCor, CPCLS also combine the two idea of 
cascade architecture and learning. CPCLS architecture is 
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represented in Fig. 2. The architecture of CPCLS is 
improved form of CasCor. Firstly, different from CasCor, 
it does not need to create initially linear combination of 
input and output units. All the input units are connected to 
output units by adding hidden units. Secondly, multiple 
hidden units can be added to converge faster to estimation. 
Thirdly, the last hidden layer is only connected to output 
units and previous connections are eliminated to make 
network simpler. In terms of learning, CasCor depends 
upon numerical optimization learning algorithms to 
repeatedly tune weight connection parameters which is 
more time consuming and difficult to handle it 
convergence. CPCLS is tuning free method which 
zimproves the learning by analytically calculating weight 
connections in forward step without any need of delta 
method. CPCLS different from CasCor by having better 
improved cascade architecture and analytically calculate 
input and output connections weight rather than tuning by 
numerical optimization algorithms. 

CPCLS initialize with training data input units X, 
output units Y, and hidden units H such that p ≤ n. For 
input connection weights determination, it orthogonally 
linearly transforms set of correlated X n-features into new 
space of uncorrelated H p-features by eigen 
decomposition of its covariance square matrix (3) such 
that p ≤ n. The corresponding eigenvectors (5) with 
highest λ (4) value that explains maximum variance in 
data are selected as input connection weights W. H are 
computed (6) by performing activation function on the 
inner product of X and W. The advantage of this process is 
that it generates H explaining maximum variance in data 
with no multicollinearity to reduce target error more fast 
and efficient due to less complicated calculations. Next 
step is to determine output connection weights by 
considering the hidden unit in linear relationship to output 
units. The unknown output connection weights parameters 
β are determined (8) by the inner product of Moore 
Penrose pseudo-inverse of H and Y. Knowing the value of 

β, output �̂�   is estimated   by linear conversion of hidden 
unit H through β such as Hβ. The objective is to minimize 
error function at fast learning speed with better 
generalization performance: 
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1
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𝑚
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(10) 

If E is less than defined target error e, the CPCLS will 
stop, else, hidden layers will be added until the desired 
performance is not achieved. In proceeding hidden layers, 
the newly added H receives all incoming connections 
from input units and any existing hidden units, whereas, 
output unit receives connections from only newly added 
hidden layer and diminish its previous connections. 
Connecting previously added hidden layers to output units 
plays no significant role in the network. It only adds 
burden on the network and reduces the generalization 
performance as well as learning speed. The amount of 
hidden units addition in each layer is not restricted to one 
at a time, but it depends upon the task to converge faster 
to target error. Hidden units are generated from orthogonal 
liner transformation of input units, therefore, the hidden  

 

Figure 1.   CasCor architecture 

Figure 2.   CPCLS architecture 

units feature generation will be always less than or equal 
to input units features such that p ≤ n. 

The proposed CPCLS algorithm has serval advantages 
over traditional quick prop Cascor that it learns faster, no 
need of iterations to optimized parameters, better 
generalization performance, determine its own network 
typology and parameters, work directly with both 
differentiable and non- differentiable activation function, 
no need of ad hoc learning rate methods for faster 
convergences, no candidate unit’s generation to avoid 
overfitting and free from complex learning algorithms 
calculations. 

Algorithm CPCLS  

Suppose a training set  (𝑿 , 𝒀) with input units matrix 
X mxn, output units matrix Y mxq, hidden units matrix H 
mxp, and target error e: 

+1 
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Step 1) Initialization: Let initial number of H=N such 
that p ≤ n and target error = e 

Step 2) Learning Step: 

While 𝐸 > 𝑒 

a) Calculate input connection weights W matrix nxp: 

1. Determine covariance S matrix dxd among input 
n features: 

𝑺 =
1

𝑚 − 1
𝑿𝑇𝑿 

𝑿 = 𝑥𝑖 − �̅� 

�̅� =
1

𝑚
∑ 𝑥𝑖

𝑚

𝑖=1

 

2. Generate eigenvalue λ and corresponding 
eigenvector from S: 

|𝑺 − 𝜆𝑰| = 0 

𝑺𝑾 = 𝜆𝑾 

Where selected eigenvector W are the input 
connection weights for H 

b) Calculate H by taking activation of inner product of 
X and W: 

𝑯 = 𝑿𝑊 

c) Calculate the output connection weights β pxq by 
taking inner product of Moore Penrose pseudo-inverse 
of H and Y: 

𝛽 = (𝑯𝑻𝑯)−𝟏𝑯𝑻𝒀   

d) Calculate the output matrix �̂� by linearly 
transferring H through β:  

�̂� = 𝑯𝛽  

e) Estimate error 𝐸  by subtracting the actual output 𝒀 

from predicted output �̂�  :  

𝐸 =
1

𝑚
∑(�̂� − 𝒀)

2
𝑚

𝑖=1

 

f) Stack the calculated H with X: 

𝑿 = (𝑿, 𝑯) 

g) Increase the number of H by 𝑛′ such that p ≤ n: 

  𝑁 = 𝑁 + 𝑛′ 

endwhile 

IV. PERFORMANCE EVALUATION 

The generalization performance and learning speed of 
proposed algorithm CPCLS is compared with quick prop 
CasCor on popular highly nonlinear benchmarking 
problems of two spiral classification and function 
approximation of SinC regression task. The simulation 
work is performed in Anaconda Spyder Python v3.2.6 and 

Netmaker v0.9.5.2. Netmaker is a simulation software 
designed in C programming for building neural networks 
and has build-in quick prop CasCor programming code. 
CPCLS simulation is carried out in python, whereas, 
CasCor simulation is carried out in Netmaker. Simulation 
in different programming code will not affect the 
comparison because C programming execution is faster 
than Python. The activation function used is sigmoid for 
CPCLS and CasCor. 

A. Classification Benchmark: Two Spiral Problem 

The generalization performance and learning speed of 
CPCLs and CasCor are evaluated on well-known extreme 
nonlinear benchmarking task of two spiral classification. 
The task consists of 194 training points twisted in two 
spirals with three turns for each spiral. It consists of two 
inputs units and one output unit with two classes as 0’s 
and 1’s. The algorithms must classify all data points as 0’s 
and 1’s as shown in Fig. 3 in black and white dots 
respectively. The generalization performance of 
algorithms is evaluated on newly generated dense spiral of 
770 testing data points other than training points [13]. All 
the data points of input and output are normalized in the 
range [0,1]. 

Table I shows the generalization performance and 
learning ability simulation results of both algorithms 
average over 25 trials. For better simulation results, 
number of candidate units in CasCor are set to 8 Nos. As 
shown in Table I, CPCLS spend 5.07 s to train a network 
with generalization performance of 95.61%, whereas, 
CasCor spend 135.84 s to train a network with 
generalization performance of 91.00%. The results 
indicate that CPCLS has obtain better generalization 
performance and faster learning speed than CasCor. 

B. Regression Benchmark: SinC Function 

Approximation 

In regression, nonlinear SinC function task is 
approximated by CPCLS and CasCor to check its 
generalization performance and learning ability. To make 
task more complex and nonlinear, data points of 4000 
observations are generated from below SinC function in 
the range (-20,20): 

 

𝑦(𝑥) = {
sin(𝑥)

𝑥
, 𝑥 ≠ 0

1,           𝑥 = 0
 

 

(11) 

Table II shows the generalization performance and 
learning ability simulation results of CPCLS and CasCor 
average over 25 trials by randomly splitting data points in 
to training and testing dataset at a 50:50 ratio during each 
trial. All the data points of input and output are 
normalized in the range [0,1]. As observed from Table II, 
CPCLS spend 10.07 s to train a network with 
generalization performance of 0.00080 RMSE, whereas, 
CasCor spend 318.82 s to train a network with 
generalization performance of 0.02425 RMSE. CPCLS 
can truly approximate all data points of SinC as illustrate 
in Fig. 4, whereas, CasCor loss its generalization ability as 
illustrated in Fig 5. 



 

Figure 3.  Two Spiral Classification Task 

TABLE I.  GENERALIZATION PERFORMANCE AND LEARNING 

SPEED OF TWO SPIRAL CLASSIFICATION TASK 

Algorithm Testing 

Accuracy (%) 

Training Time 

(Sec) 

Hidden Units 

(nos.) 

Mean Stdev Mean Stdev Mean Stdev 

CPCLS 95.61 0.47 5.07 0.51 142 4.47 

CasCor 91.00 2.25 135.84 39.72 20.5 2.06 

V. DISCUSSIONS AND CONCLUSIONS 

In this paper, simulation work demonstrates that new 
proposed algorithm known as Cascade Principal 
Component Least Squares Neural Network (CPCLS) has 
achieved better generalization performance and learning 
speed with improved cascade architecture and tuning free 
learning method as compared to traditional Cascading 
Correlation learning (CasCor) algorithm. CPCLS 
algorithm analytically calculate weight connections on 
improved cascade architecture to convert nonlinear 
complex tasks to linear for quick and efficient reduction of 
sum of squares error (SSE). CPCLS has several 
noteworthy features as compared to CasCor: 

 The generalization performance of proposed 
algorithm is better than CasCor. Simulation results 
shows that improvement in cascade architecture 
create less burden on network and converges more 
quickly towards target error. The proposed 
algorithm works more analytically by determining 
optimal weight connections rather than CasCor 
which need numerical optimization techniques, ad 
hoc adjustments such as weight decay, and 
candidate unit’s generation to improve 
generalization performance and prevent issues like 
underfitting and overfitting.  

 The learning speed is fast due to no adoption of 
numerical optimization technique such as quick 
prop. Unlike CasCor that is involved in both 
forward and backward delta rule tuning of weight 
connections, CPCLS take only forward steps to 
calculate target error by analytically calculating 
weight connections. Furthermore, CPCLS can 
work with all type of non-differentiable activation 
function (such as threshold) directly to move more 
faster towards results. 

The superior generalization performance and learning 
ability of CPCLS on nonlinear benchmark problems 
validate that that it can be efficiently applied in many real 
application tasks. 

TABLE II.  GENERALIZATION PERFORMANCE AND LEARNING 

SPEED OF SINC REGRESSION TASK 

Algorithm Testing RMSE Training 

Time (Sec) 

Hidden 

Units (nos.) 

Mean Stdev Mean Stdev Mean Stdev 

CPCLS 0.00080 0.00013 10.07 2.64 105.5 7.66 

CasCor 0.02425 0.00086 318.82 67.09 17.3 1.89 

Figure 4.  CPCLS generlization of SinC Function 

 

Figure 5.  CasCor generlization of SinC Function 
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