
Chapter 8 
Application: Detonations 

Detonation is a shock-induced combustion in which chemical reactions are closely 
coupled with shock waves. The shock wave compresses the reactant with an abrupt 
increase in temperature and pressure, initiating the reactants to be burnt into products. 
The intense heat release permits the high propagating speed of the shock wave to be 
sustained. It is fundamental research related to both the safety industry and propul-
sion systems. For most explosive mixtures, detonation wave speeds are formulated 
by Chapman–Jouguet (CJ) theory. Typical detonation velocities for gaseous mixtures 
generally range from 1400 to 3000 m/s. Behind the shock, the time scale for reactions 
is commonly on the order of microseconds or even less. Furthermore, the detona-
tion front is intrinsically unstable, forming transient multi-dimensional structures. 
Many studies revealed that high resolution is necessary to resolve the essential deto-
nation structures. Due to its complex nature and multiple time scales, detonation is 
thus a challenging problem for solvers on shock-capturing capability, robustness, 
and computational efficiency. This chapter will present several essential aspects of 
detonation research by applying the CESE schemes. 

8.1 Gaseous Detonations 

In detonation simulations, the requirement for the computational resources is usually 
very high because the satisfactory resolution is necessary to compute the coupling 
between flow and chemical reactions and to resolve the detonation structures. As 
a result, applying detailed chemistry is usually limited to problems with simple 
and small domains or particular situations. Otherwise, simulations with simplified 
models are preferred to gain insight into the physics without loss of credibility. For 
illustrative purposes, we consider a system for ideal gas and a simplified chemical 
model. The 2D inviscid reactive compressible flow equations can be expressed as
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∂U 
∂t 

+ 
∂ F 
∂x 

+ 
∂ G 
∂y 

= S (8.1) 

where the conserved variable vector U, the flux vectors F, G and source term vector 
S are defined as U = [ρ, ρu, ρv, E, ρλ]T , F = [ρu, ρu2 + p, ρuv, (E + p)u, ρλu]T , 
G = [ρv, ρuv, ρv2 + p, (E + p)v, ρλv]T , S = [0, 0, 0, 0, ω̇]T . The symbols ρ, 
u, v, p, E, and λ denote density, velocities in x and y directions, pressure, the total 
energy per unit volume, and mass fraction of the reactant, respectively. The perfect 
gas law was adopted here as p = ρRT, where R is the gas constant and T is the gas 
temperature. The total energy is 

E = p 

(γ − 1) 
+ 

1 

2 
ρ(u2 + v2 ) + ρλQ, (8.2) 

where γ and Q are the specific heat ratio and the specific heat release. The chemical 
reaction rate is formulated by the one-step Arrhenius model as 

ω̇ = −kρλe−Ea /RT , (8.3) 

where k is the pre-exponential factor, and Ea denotes the activation energy. 

8.1.1 Ignition of Detonations 

Ignition of detonation refers to the formation of a detonation wave through either an 
instantaneous onset or the transition from deflagration. Shen and Parsani [1] studied 
the direct ignition of spherical detonation by using the upwind CESE scheme to 
solve Eq. (8.1). The distance between the shock wave and the position where half 
of the reactant is consumed can be defined as the half-reaction length. A uniform 
resolution with 20 meshes per half-reaction length was adopted, and the number 
of mesh points is 1.6 billion. It is well-known that the dynamics of detonation are 
sensitive to the activation energy. Thus, three activation energies representing stable 
(Ea = 15), mildly unstable (Ea = 27), and highly unstable (Ea = 50) detonations 
were studied. For different Ea, k was adjusted to fix the half-reaction length in unit 
length. A hot spot with ps = (γ − 1)Es, Ts = 20.0, and a radius of 1 was used to 
form a blast wave to ignite the mixture. All variables above are nondimensionalized 
with respect to the state of the unburnt reactant. 

The peak pressure history behind the shock for 1D detonations are depicted in 
Fig. 8.1, and typical 2D contours are plotted in Fig. 8.2. For stable case (Fig. 8.1a), 
the subcritical, critical, and supercritical regimes are observed successively when 
Es increases from 1.8 × 104 to 1.0 × 105. In the critical regime, Es = 2.0 × 104 
(Fig. 8.1b), Psh first decays and then rapidly increases due to the formation and 
amplification of the pressure pulse behind the leading shock. The 2D result shows a
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Fig. 8.1 Peak pressure history at the shock front (Psh) as a function of position and source energy 
(Es), for a Ea = 15, b Ea = 15, Es = 2 × 104, c Ea = 27, d Ea = 50. Courtesy of H. Shen [1]

highly oscillatory pattern for Psh due to the development of multidimensional insta-
bilities, and the run-up distance deviates from 1D solution. Three critical energies 
were detected for the mildly unstable case (Fig. 8.1c), The authors further observed 
the fourth critical energy when refining the search using a minor incremental Es. 
However, there might be a unique critical energy in the 2D case. The inconsistency 
between 1 and 2D becomes more apparent for the highly unstable cases. For all the Es 

tested, 1D detonation eventually failed (Fig. 8.1d). The results suggest that, without 
large overdriven, the 1D detonation propagation through auto-ignition is impossible 
for the highly unstable cases. Contrarily, the critical energy is approximately 1.5 × 
105 for 2D cases (Fig. 8.2d). The key factors dominating the direct ignition of 2D 
detonation are the unsteadiness arising from the decay of the leading shock, heat 
release from the chemical reaction, and the inherent multidimensional instabilities. 
In 1D detonations, only the first two aforementioned factors exist. Detonation fails 
when the excessive unsteadiness overtakes the heat release. The transverse waves 
induced by the multidimensional instabilities create local over-driven detonations. 
On the one hand, these local over-driven detonations facilitate the propagation of the 
global detonation; on the other hand, induce stronger expansion waves to increase 
the risk of failure. The competition among these three factors should be considered 
to provide a comprehensive model of direct initiations. 
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Fig. 8.2 Maximum pressure history in two dimensions. a Ea = 15, Es = 2.5 × 104, b Ea = 27, 
Es = 4.5 × 104, c Ea = 50, Es = 1.0 × 104, d Ea = 50, Es = 1.5 × 104. Courtesy of H. Shen [1] 

Another situation of detonation ignition occurs when the gaseous reactant in the 
unconfined space is ignited through the detonation wave emerging from a small 
tube. When the detonation wave diffracts from a tube into the unconfined space, the 
substantial expansion will perturb the detonation front. If tube size is small enough, 
the detonation wave will quench (subcritical), otherwise, the detonation will continue 
to propagate (supercritical). Shi et al. [2] investigated the 2D detonation diffraction 
using the a–α CESE scheme. Two scenarios were considered. If the detonation wave 
inside the tube does not contain transverse waves, it is classified as the planar case. 
Otherwise, it is classified as the cellular case. In these simulations, Eqs. (8.1)–(8.3) 
were employed with Ea = 24 to assure that 1D detonation wave is stable (For Ea 

higher than 25.27, 1D detonation is intrinsically unstable). A resolution with 24 
meshes per half-reaction length was tested converged for current settings, and the 
total mesh points are around 410 million. A first glance at the results revealed that the 
critical channel width for cellular scenarios is smaller than that for the planar case 
(Table 8.1). Four cases, including supercritical and subcritical for planar and cellular
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Table 8.1 Critical channel 
width for Ea = 24 Lower limit Upper limit 

Planar 100 110 

Cellular 75 85 

scenarios, were carefully discussed by examining wave structures and Lagrangian 
particles that are initially scattered in the flow. 

For planar scenarios, the disturbance originates from the corner propagates 
towards the symmetric line. The diffracted shock wave decelerates and decouples 
with the flame front. In the shocked reactant, a compression wave is formed and 
amplified through the temperature gradient towards the leading shock. The compres-
sion wave is indicated by the successive abrupt change in temperature for particles 
E7–E9 (Fig. 8.3). When this compression wave merges with the leading shock, deto-
nation may be facilitated if the strengthened shock wave exceeds a critical value. 
On the other hand, the aforementioned disturbance reflects from the symmetric line, 
and the reflected rarefaction (Fig. 8.4) wave may simultaneously affect the shocked 
reactant and hinder the formation and amplification of the compression wave. For the 
sub-critical case, i.e., w = 100, re-initiation is reproduced if the boundary condition 
is modified such that the rarefaction wave does not reflect towards the leading shock. 
Therefore, for the planar cases, re-initiation is attributed to the competition between 
the coalescence of the amplified compression wave with the leading shock and the 
strength of the reflected rarefaction wave. 

For cellular scenarios, the re-initiation patterns are different from the planar cases. 
Despite the number of transverse waves decreases when the detonation wave expands 
into the unconfined space. It is interesting to note that from Fig. 8.5, a complete 
decoupling is not observed during the propagation of the supercritical case (w = 
85) (a complete decouple is observed before re-initiation in the planar w = 110

Fig. 8.3 Temperature traces of particles along the re-initiation direction for planar detonation 
diffraction: a w = 110 and b w = 100. Courtesy of L. S. Shi [2]
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Fig. 8.4 Numerical schlieren images for planar case with w = 100. Red dash lines indicated the 
head of rarefaction. Courtesy of L. S. Shi [2]

Fig. 8.5 Numerical soot foils for a planar detonation diffractions, w = 110, b cellular detonation 
diffractions, w = 85. The red dashed lines indicate the disturbance line predicted by Skews’ model. 
The blue dash-dot line is the re-initiation path along which particles Ei are initially located. Courtesy 
of L. S. Shi [2]

case). Detonation wave sustains through the continuous formation of local overdriven 
detonation when transverse waves collide. Previous experimental research revealed 
that the critical tube diameter for unstable mixtures is dc ≈ 13λ (λ: detonation 
cell size), but dc ≈ 30λ or even more were measured for stable mixtures highly 
diluted with argon. The distinct difference between the re-initiation mechanisms 
planar and cellular detonation diffractions elaborated in current simulation provides 
a plausible explanation of the discrepancy of the correlations on critical tube sizes. In 
unstable detonations, where the formation of local hot spots is essential to sustain the 
detonation, the correlation between the dc and λ is established. It is well-known that 
the cellular patterns in stable detonation are regular, with transverse wave velocity 
approximately being the sound velocity in the burned products. This corresponds to 
the planar scenarios. Detonation re-initiates if the influence of the reflected rarefaction 
wave is negligible. Thus the dc / λ correlation may not be necessary. 
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8.1.2 Dynamics of Detonations 

As discussed in Sect. 8.1, multi-dimensional instability is a fundamental phenomenon 
in detonation. In this section, we will elaborate more on the studies on detonation 
propagation in one, two, and three dimensions using CESE schemes. 

Wang et al. [3] have implemented 2D CESE on detonation reflection on a wedge 
using a detailed reaction model. Later, in the study on the propagation modes of 
stoichiometric H2/O2 3D cellular detonation in a square duct [4], two types of prop-
agation modes were verified, which depended on the configuration of the initial 
conditions. Unreacted pockets with complex structures were also captured by using 
the improved CESE scheme. 

Numerous numerical studies based on detailed chemical mechanisms have quanti-
tatively reproduced the key structures of multi-dimensional detonations. They expe-
rienced barriers to predict the cell size correctly. For example, for H2/O2 mixture 
highly diluted by argon, the regular cell sizes predicted from simulation using detailed 
chemical mechanisms were approximately half of those measured in experiments. 
One of the important physical phenomena in high-speed flow, the vibrational non-
equilibrium of molecules, was usually ignored in early numerical studies. Behind the 
detonation wave, the time scales for vibrational relaxation and chemical reaction are 
comparable. Shi et al. [5] re-examined this problem with the consideration of vibra-
tional relaxation and its coupling with reactions. The convection of vibrational energy 
was integrated into governing equations, and the translational-rotational energy and 
the vibrational energy were separated in the formulation of the total energy, which is 
composed of enthalpy of formation, translational-rotational energy, kinetic energy, 
and vibrational energy. The energy exchange rate was calculated by the Landau-Teller 
model. 

Four scenarios were compared in 1D and 2D simulations. (1) The mixture is 
assumed to be thermodynamically equilibrium. (2) Vibrational relaxation is incor-
porated, and the translational temperature is kept as the dominant temperature of 
the chemical reactions. (3) Vibrational relaxation is considered, and the geometric 
average temperature is used to compute the reaction rates. (4) The physically consis-
tent vibration-chemistry-vibration coupling model is adopted to account for the effect 
of vibrational non-equilibrium on chemical reaction rates. Examples of 1D detona-
tion structures are depicted in Fig. 8.6. Model (2) exhibits a temperature overshot 
behind the shock compared to the equilibrium case because the mixture remains 
vibrational cold. The vibrational temperature approaches the equilibrium state grad-
ually, and a noticeable disparity still exists when exothermic reactions are triggered. 
Since translational-rotational temperature controls reactions in model (2), the over-
shot in temperature results in a marginal decrease in the half-reaction length (δ). In 
model (3), the geometric averaged temperature is used to calculate the reaction rate. 
The onset of severe chemical reactions occurs only when the vibrational relaxation 
approaches equilibrium. The half-reaction length increases by 1.64 times that in the 
model (1). A similar trend is observed in the case using model (4). The detonation
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Fig. 8.6 Temperature and H2 distribution with initial condition of 0.1 atm and 300 K. Left: scenarios 
1 and 2. Right: scenarios 1 and 3. Courtesy of L. S. Shi [5] 

cell widths are predicted from 2D simulation using models (1) and (2) are approxi-
mately the same. The cell widths using models (3) and (4) are approximately 1.32 and 
1.34 times the value of that in the model (1). It reveals that the vibrational-chemical 
coupling effect may be one of the factors responsible for the failure to correctly 
predict the cell size. 

Later, Uy et al. [6] further examine the effect of vibrational non-equilibrium on 
the one-dimensional instabilities using the CESE scheme. In this study, 1D piston-
supported detonation case with fixed non-dimensional specific heat release Q = 
50, the ratio of specific heats γ = 1.2, and characteristic vibrational temperature 
θ = 20. The ratio between the chemical time scale τ c and the vibrational time 
scale τ V was selected as a control parameter. Park’s two-temperature model was 
used to evaluate the effect of vibrational non-equilibrium on the chemical reac-
tion rate. The neutral stability limit under the vibrational equilibrium assumption is 
approximately Ea = 26.47, above which the detonation is unstable with amplified 
oscillation. Numerical tests reveal Ea = 27 with the thermal equilibrium assump-
tion being longitudinally unstable. Nevertheless, for finite vibrational relaxation rate 
(i.e., the τ α ≡ τc/τV /= ∞), the amplitudes of pressure oscillations decay for smaller 
τ α = 3, 5, 7, and the oscillation decays much faster for as τ α decreases. The results 
imply that the propagation of detonation is stabilized because of the vibrational non-
equilibrium. Theoretical analysis using linear stability analysis (LSA) under different 
overdriven factors f = (D/DCJ)2 was also provided in Uy et al. [7]. The neutral stability 
limit predicted using the CESE scheme agrees very well with LSA (Table 8.2). The 
accuracy of CESE in solving detonation problems is further confirmed.
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Table 8.2 Comparison of the neutral stability limit (NSL) and the period of oscillation (PO) 
computed by LSA and numerical simulation. Case I: f = 1, thermal equilibrium (eq). Case II: 
f = 1, thermal nonequilibrium (neq), τ α = 5. Case III: f = 1, neq, τ α = 7. Case IV: f = 1, neq, τ α 

= 9. Case V: Ea = 50, eq. Case VI: Ea = 50, neq, τ α = 5. Case VII: Ea = 50, neq, τ α = 10. Case 
VIII: Ea = 50, neq, τ α = 20. Courtesy of C. K. Uy [7] 
Case Linear stability analysis Numerical simulation 

NSL PO NSL PO 

I Ea = 26.46 10.63 Ea = 26.47 10.64 

II Ea = 27.13 12.14 Ea = 27.14 12.15 

III Ea = 26.99 11.77 Ea = 27.02 11.74 

IV Ea = 26.90 11.54 Ea = 26.92 11.51 

V f = 1.62 8.02 f = 1.62 8.03 

VI f = 1.555 9.51 f = 1.554 9.52 

VII f = 1.582 8.80 f = 1.581 8.83 

VIII f = 1.60 8.46 f = 1.598 8.43 

8.1.3 Rotating Detonation Waves 

Because of the rapid compression of the mixture and the quasi-constant volume 
combustion, the high thermodynamic efficiency of detonation makes it favourable 
to be employed in developing potential detonation engines. The rotating detonation 
engine (RDE) is one of the promising candidates in which the detonation wave propa-
gates circumferentially, and the reactant is continuously injected into the combustion 
chamber. 

Figure 8.7 depicts the flow features of RDE simulated with the upwind CESE 
schemes. The 2D simulation is essentially the unwrapped RDE channel from a 3D 
geometry. The top is the RDE outlet described by a non-reflective boundary. The 
reactant is injected into the combustor from the bottom through micro-Laval nozzles. 
The ideal injection was assumed that all the bottom areas could inject fresh reactant. 
Typical flow features of RDE can be observed, characterized by a rotating detonation 
wave, triangular reactant layer, oblique shock, and slip line. Furthermore, Wang et al. 
[8] used an improved CNI 2D CESE scheme to study the kerosene/air RDE. The 
results suggested that decreasing the inlet/wall ratio would reduce the strength of the 
detonation wave, and the reaction zone would be elongated. With further decreasing 
the air ratio, the burned gas emerges in the triangular zone, and the detonation wave 
fails to be self-sustained.
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(a) 2D simulation (b) 3D simulation 

Fig. 8.7 Density contours of 2D and 3D RDE simulations using the upwind CESE scheme 

8.2 Two-Phase Detonations 

Liquid fuels and energetic powders are of advantages of high energy density and easy 
storage, which makes them common in practical propulsion systems. Detonation-
based propulsion systems using these non-gaseous fuels involve reactive multi-phase 
high-speed flows. Although gaseous, liquid and/or solid phases are involved in these 
detonation phenomena, it is always referred to as two-phase detonation from the view-
point of reactants, namely gas–liquid two-phase detonation and gas–solid two-phase 
detonation. Compared to gaseous detonations, two-phase detonations are character-
ized not only by shock waves and fast combustion, but also by multi-phase interac-
tion and multi-scales, leading to great difficulties in numerical simulations. With the 
successful applications of the CESE method in gaseous detonation simulations, it is 
imperative to extend the CESE method to two-phase detonation problems and test 
its capabilities of accuracy and robustness in two-phase detonation simulations. 

There are mainly two kinds of frameworks that are used to address the discrete 
phase in two-phase detonation simulations, namely the Eulerian–Eulerian framework 
and the Eulerian–Lagrangian framework. Between these two frameworks, the Eule-
rian–Eulerian framework, which is also referred to as the two-fluid model/method, 
is more common and easier in implementation and extension in two-phase deto-
nation simulations. The discrete phase (the liquid phase in gas–liquid two-phase 
detonations or the solid phase in gas–solid two-phase detonations) is considered as a 
special continuum, such that continuum mechanics can be employed to describe the 
bulk motion of the discrete phase. Then, the discrete phase becomes another “fluid”, 
and the gaseous-phase flow and the discrete-phase flow can be solved by similar 
approaches. As for the Eulerian–Lagrangian framework, the gaseous phase is solved 
as in the Eulerian–Eulerian framework, but every discrete liquid particle (droplet) or 
solid particle is tracked individually by Newton’s laws of motion. 

In two-phase detonation modelling, it is a general way to assume that the 
particle (liquid or solid) of the discrete phase is small, spherical in shape and
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uniformly suspended in the gas atmosphere. Additionally, the two-phase suspen-
sion is assumed to be diluted enough to neglect the volume fraction of discrete 
particles and particle–particle collisions. Two-phase detonation is a highly transient 
two-phase flow problem involving strong shock waves; hence, thermal and mechan-
ical non-equilibrium between the gas and particles should be considered. Further, 
uniform distribution of temperature is considered within particles due to their small 
particle sizes, and ideally, all reaction heat is absorbed by gas only. Based on the 
above assumptions, the two-dimensional governing equation of the gaseous phase in 
an Eulerian–Eulerian framework can be expressed as follows [9]: 

∂U 
∂t 

+ 
∂ F 
∂x 

+ 
∂ G 
∂y 

= S + W , (8.4) 

where U is the vector of conserved variables, F and G the conservation flux vectors 
in the x- and y-directions, S the vector of two-phase interaction source terms, and W 
the vector of chemical reaction source terms, respectively. They can be expressed as 

U = 

⎡ 

⎢⎢⎢⎢⎢⎢⎢⎣ 

ρ1 

· · ·  
ρns 

ρu 
ρv 
E 

⎤ 

⎥⎥⎥⎥⎥⎥⎥⎦ 

, F = 

⎡ 

⎢⎢⎢⎢⎢⎢⎢⎣ 

ρ1u 
· · ·  

ρnsu 
ρu2 + p 

ρuv 
(E + p)u 

⎤ 

⎥⎥⎥⎥⎥⎥⎥⎦ 

, G = 

⎡ 

⎢⎢⎢⎢⎢⎢⎢⎣ 

ρ1v 
· · ·  
ρnsv 
ρuv 

ρv2 + p 
(E + p)v 

⎤ 

⎥⎥⎥⎥⎥⎥⎥⎦ 

, W = 

⎡ 

⎢⎢⎢⎢⎢⎢⎢⎣ 

ω̇1 

· · ·  
ω̇ns 

0 
0 
0 

⎤ 

⎥⎥⎥⎥⎥⎥⎥⎦ 

, 

(8.5) 

and 

S = 

⎡ 

⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣ 

0 
... 

Jp 
... 
0 

− fx + u p Jp 

− fy + vp Jp 

−qp −
(
u p fx + vp fy

) + (
E p/ρp

)
Jp 

⎤ 

⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦ 

. (8.6) 

In the above equations, ρ i is the mass density of species i and i = 1, …, ns; ns is 
the number of species contained in the gas mixture; p, u, and v are the gas pressure 
and x- and y-components of gas velocity, respectively; ω̇i is the mass production rate 
of gaseous species i by chemical reactions; and ρ and E are the mass density and 
total energy per unit volume of the gas mixture, expressed as



106 8 Application: Detonations

ρ = 
nsE

i=1 

ρi , E = ρh − p + 
1 

2 
ρ
(
u2 + v2

)
, (8.7) 

where h is the specific enthalpy of the gas mixture, calculated by 

h = 
nsE

i=1 

ρi 

ρ 
hi , (8.8) 

with the specific enthalpy of each individual species hi as a function of gas tempera-
ture T, obtained from a species thermodynamic data base, such as the NASA Glenn 
data base [10]. By further assuming each species performs as a perfect gas, the 
equation of state of the gas mixture is then given by 

p = 
nsE

i=1 

ρi Ri T , Ri = 
R0 

Wi 
(8.9) 

where R0 = 8.314 J/(mol K) is the universal gas constant, and Wi is the molar mass of 
species i. Variables in Eq. (8.6) are related to the properties of the discrete phase and 
the interaction between two phases. Their definitions will be given in the following 
paragraphs. 

As for the discrete phase, the governing equation has a similar form as Eq. (8.4): 

∂U p 

∂t 
+ 

∂ F p 

∂x 
+ 

∂ G p 

∂y 
= Sp, (8.10) 

where Up, Fp and Gp are the vectors of conserved variables, conservation fluxes in 
the x- and y-directions of the discrete phase, which can be given by 

U p = 

⎡ 

⎢⎢⎢⎢⎢⎣ 

ρp 

ρpu p 

ρpvp 

E p 

Np 

⎤ 

⎥⎥⎥⎥⎥⎦ 
, F p = 

⎡ 

⎢⎢⎢⎢⎢⎣ 

ρpu p 

ρpu2 
p 

ρpu pvp 

E pu p 

Npu p 

⎤ 

⎥⎥⎥⎥⎥⎦ 
, G p = 

⎡ 

⎢⎢⎢⎢⎢⎣ 

ρpvp 

ρpu pvp 

ρpv2 p 

E pvp 

Npvp 

⎤ 

⎥⎥⎥⎥⎥⎦ 
, 

Sp = 

⎡ 

⎢⎢⎢⎢⎢⎣ 

−Jp 

fx − u p Jp 

fy − vp Jp 

qp +
(
u p fx + vp fy

) − (
E p/ρp

)
Jp 

0 

⎤ 

⎥⎥⎥⎥⎥⎦ 
(8.11) 

In Eqs. (8.6) and (8.11), Jp is the mass regression rate (the combustion rate) of the 
discrete phase and it is determined by the combustion model of the discrete phase. 
ρp is the density of the discrete phase in the suspension. up and vp are the x- and
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y-components of the velocity of the discrete phase, respectively. Ep and Np are the 
total energy per unit volume and the particle number density of the discrete phase, 
respectively. They can be calculated by 

E p = ρpep + 
1 

2 
ρp

(
u2 

p + v2 p
)
, Np = 6ρp 

πρmd3 
p 

, (8.12) 

where ep is the specific internal energy of the discrete phase and can also be obtained 
from a species thermodynamic data base as a function of discrete phase temperature 
Tp; dp is the diameter of the particle; and ρm is the material density of the discrete 
phase. 

Additionally, the x- and y-components of drag force acting on the discrete phase, 
f x and f y, can be modelled as follows: 

⎧⎪⎨ 

⎪⎩ 

fx = Np 
π 
8 

CDd2 
pρ

||V − Vp

||(u − u p
)

fy = Np 
π 
8 

CDd2 
pρ

||V − Vp

||(v − vp
) , (8.13) 

where CD is the drag coefficient, 

CD =
{

24 
Rep

(
1 + 1 6 Re

2/3 
p

)
, for Rep < 1000 

0.424, for Rep ≥ 1000 
. (8.14) 

In Eqs. (8.13) and (8.14), the relative velocity and the relative Reynolds number 
Rep between the gas and discrete phases can be calculated by

||V − Vp

|| =
|(

u − u p
)2 + (

v − vp
)2|1/2 

, (8.15) 

and 

Rep = 
ρdp

||V − Vp

||
μ 

, (8.16) 

where μ is the viscosity coefficient of gas. Accordingly, the convection heat transfer 
between the two phases is expressed as follows: 

qp = NpπdpλNup
(
T − Tp

)
, (8.17) 

with the two-phase Nusselt number expressed as functions of Rep and Prandtl number 
Pr: 

Nup = 2 + 0.459 Re0.55 p 

0.33 
Pr . (8.18)
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The CESE method has been proven to be of high accuracy and good stability in 
solving gaseous detonation problems in Sect. 8.1, and it is chosen to solve the two-
phase detonation problems as well. That is, Eqs. (8.4) and (8.10) in the Eulerian– 
Eulerian framework can be solved using a CESE method, such as the a-α scheme. 
Theoretically, the source terms in the governing equations can be addressed together 
with the space–time integration in the CESE method [11–15]. However, a separated 
treatment of source terms is always employed in solving two-phase detonations, 
because the Jacobian matrixes of the interphase interaction and chemical reaction 
source terms in coupling treatment are rather complicated to calculate. Notably, 
with the source terms treated separately, it has been proven that the good accuracy 
and stability of the CESE method are preserved in high-speed reactive flow simula-
tions [5, 16, 17]. On the other hand, the characteristic time scales of the interphase 
interaction and chemical reaction source terms are much smaller than that of flow 
dynamics, always leading to stiffness problems in two-phase detonation simulations. 
To overcome this problem, the operator-splitting technique with multiple sub-time 
steps [18] is always employed and then the source terms of interphase interactions 
and chemical reactions are explicitly integrated as ordinary differential equations. 
The detailed implementation process under the Eulerian–Eulerian framework can be 
illustrated as follows: 

⎧⎪⎨ 

⎪⎩ 

Un 
CESE−−−→

S=W=0
~Un+1 

Up 
CESE−−−→
Sp=0

~Up,n+1 

⇒ 

⎧⎪⎨ 

⎪⎩
Δt ' = Δt/N 
U(0) 

n+1 = ~Un+1 

U(0) 
p,n+1 = ~Up,n+1 

⇒ 

⎧⎪⎨ 

⎪⎩ 

U(m) 
n+1, U

(m) 
p,n+1 → S(m) , W(m) , S(m) 

p 

U(m + 1) 
n+1 = U(m) 

n+1 + Δt '[S(m) + W(m)] 
U(m+1) 

p,n+1 = U(m) 
p,n+1 + Δt ' · S(m) 

p 

⇒
{
Un+1 = U(N) 

n+1 

Up,n+1 = U(N) 
p,n+1 

, (8.19) 

where the subscripts n and m refer to the global time step (Δt) and the sub-time step 
(Δt'), respectively, and N is the total number of sub-time steps within one global 
convection time step of the CESE method. Depending on the degree of stiffness in 
the problem, N can be chosen to be 10−20. 

To test the accuracy and robustness of the CESE method in two-phase detonation 
simulations under the Eulerian–Eulerian framework, Wang et al. [15] applied the 
CESE method to simulate the detonation synthesis of titania (TiO2) nanoparticles. 
The corresponding chemical reaction can be described as follows: 

TiCl4(g) + O2(g) + 2H2(g) → TiO2(s) + 4HCl(g) (8.20) 

As seen, it involves TiO2 solid particles as well as TiCl4, O2, H2 and HCl gases, 
implying that it is a gas–solid two-phase detonation problem. Simulation results 
showed that the simulated detonation profiles of gas density, pressure and temperature
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Fig. 8.8 Profiles of gas density, velocity, pressure and temperature in the detonation synthesis of 
nanosized TiO2 particles. Courtesy of G. Wang [15] 

are similar to those in the gaseous detonation wave, but a sudden drop of gas density 
can be captured after the detonation front because of phase transition from gas to 
solid particles, as shown in Fig. 8.8. Additionally, it is also found that the simulated 
particle size of the produced TiO2 and the simulated peak pressure agreed well with 
other calculation and experiment data [19], respectively. 

As for gas–liquid two-phase detonation, Wang et al. [3] solved the two-phase 
planar detonations of liquid hydrocarbon fuels with the same CESE method under the 
Eulerian–Eulerian framework. It is also found that the detonation profiles are similar 
to those of gaseous detonations, but with higher gas density, pressure and temperature 
behind the detonation front due to higher energy density of liquid fuels. Additionally, 
the length of the reaction zone is found to be longer as well, which is relative to the 
slower combustion rate of the liquid particle. Table 8.3 shows the comparisons of 
simulated detonation speeds to the experimental values. It can be revealed that the 
relative errors are less than 10% for particle sizes small than about 145 µm. As for 
two cases with larger particle sizes, the cases with relative errors exceeding 10%, it 
may be caused by the neglect of deformation of large liquid particles in modelling, 
since the combustion rate of liquid particle is influenced by particle deformation. All 
the above numerical results showed that that the CESE method is of high accuracy 
and good robustness in two-phase detonation simulations under an Eulerian–Eulerian 
framework.

The Eulerian–Eulerian framework is a simple and effective way to deal with 
the discrete phase in two-phase detonations, but it has some inherent limitations in 
modelling realistic two-phase suspension in industries or experiments with a specific 
particle size distribution, where a relatively wide range of particle diameters are 
involved [20–22]. Under the Eulerian–Eulerian framework, all particles within one 
numerical mesh are assumed to be in the same states, such as the same particle size, 
temperature, velocity and so on. However, the number of particles within one mesh 
may be large, and their states may differ depending on their initial states and interac-
tion histories with gas phase. Moreover, the forces and the heat transfers between the 
gas and particles also differ by the particle size, resulting in different temperatures and
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Table 8.3 Comparisons of detonation speeds of liquid hydrocarbon fuels between simulations and 
experiments. Courtesy of G. Wang [3] 

Fuel Particle size 
(µm) 

Equivalence 
ratio 

Experiment 
(m/s) 

Simulation 
(m/s) 

Relative error 
(%) 

C6H14 20–30 0.41 1670 1544.83 −7.50 

C6H14 20–30 0.49 1720 1671.30 −2.83 

C6H14 20–30 0.56 1700 1773.92 4.35 

C6H14 20–30 0.68 1780 1935.89 8.76 

C10H20 145 1.0 2130 1946.93 −8.59 

C10H20 375 0.914 1810–1850 1996.72 7.93–10.32 

C10H20 1300 0.23 970–1250 1169.97 −6.40–20.62

velocities of particles within one computational mesh. Further, it had been demon-
strated that many two-phase detonation characteristics are significantly influenced 
by the particle size. Consequently, the Eulerian–Eulerian framework is insufficient to 
reflect the true physics of realistic two-phase detonations with particle size distribu-
tions and to simulate them accurately, which raises the demand of modelling realistic 
two-phase detonation under the Eulerian–Lagrangian framework where the discrete 
particles are tracked individually. 

Under the Eulerian–Lagrangian framework, Eq. (8.4) is still applied as the 
governing equation of the gas phase, and U, F, G and W have the same forms 
as Eq. (8.5). However, the two-phase interaction source term S is expressed in the 
following form instead, 

S = 
1 

dV 

npE
k=1 

⎡ 

⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣ 

0 
... 

Jpk 
... 
0 

− fxk + u pk Jpk 

− fyk + vpk Jpk 

−qpk −
(
u pk fxk + vpk fyk

) + 1 2
(

u2 
pk + v2 pk

)
· Jpk + epk · Jpk 

⎤ 

⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦ 

, 

(8.21) 

where subscript k represents all the quantities related to the kth particle (solid or 
liquid). To include all effects of particles into the source term S of the gaseous 
equation, the summation is done within the gaseous mesh element dV, and np is the 
number of particles in dV. 

The motion of every particle is then descripted using Newton’s laws of motion 
instead of the Eulerian form Eq. (8.10). For the kth particle, the corresponding 
governing equation can be written as
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dLpk 

dt 
= Spk , (8.22) 

where Lpk and Spk are the vectors of the Lagrangian variables of the kth particle and 
the corresponding source terms, respectively, and they are expressed as 

Lpk =
|
m pk, x pk , ypk , m pku pk, m pkvpk , E pk

|T 
, (8.23) 

and 

Spk =
|−Jpk , u pk , vpk , fxk , fyk , −epk Jpk + qpk

|T 
. (8.24) 

In Eq. (8.23), mpk and Epk are the mass and total internal energy of the kth particle, 
respectively, and Epk = mpk ·epk . 

Further, the Lagrangian forms of the drag force and the convection heat of the 
kth particle can be easily derived from the according Eulerian forms Eqs. (8.13) and 
(8.17), as follows: 

⎧⎪⎨ 

⎪⎩ 

fxk = 
π 
8 

CDkd2 
pk ρ

||V − Vpk

||(u − u pk
)

fyk = 
π 
8 

CDkd2 
pk ρ

||V − Vpk

||(v − vpk
) , (8.25) 

and 

qpk = πdpk λNupk
(
T − Tpk

)
. (8.26) 

Under the Eulerian–Lagrangian framework, the CESE method is again applied 
to solve the gas phase equation, while the source terms of interphase interactions 
and chemical reactions are treated separately and integrated explicitly as ordinary 
differential equations, along with the integration of particle Lagrangian equations, 
by using the operator-splitting technique as well, as depicted below, 

Un 
CESE−−−→

S=W=0
~Un+1 ⇒ 

⎧⎪⎨ 

⎪⎩
Δt ' = Δt/N 
U(0) 

n+1 = ~Un+1 

L(0) 
pk,n+1 = Lpk,n 

⇒ 

⎧⎪⎨ 

⎪⎩ 

U(m) 
n+1, L

(m) 
pk,n+1 → S(m) , W(m) , S(m) 

pk 

U(m + 1) 
n+1 = U(m) 

n+1 + Δt '[S(m) + W(m)] 
L(m+1) 

pk,n+1 = L(m) 
pk,n+1 + Δt ' · S(m) 

pk 

⇒
{
Un+1 = U(N) 

n+1 

Lpk,n+1 = L(N) 
pk,n+1 

. (8.27)
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Notably, the Eulerian–Lagrangian framework had rarely been developed to solve 
high-speed reactive two-phase flows, mainly because the number of fine particles 
has proven too large and simulations too expensive to achieve in the past. Nowa-
days, with the rapid development of computer technologies, parallel computation 
techniques such as the Message Passing Interface (MPI) technique may help to 
make simulations of two-phase detonations with fine particles under an Eulerian– 
Lagrangian framework possible. However, the application of MPI parallel compu-
tation technique to an Eulerian–Lagrangian framework is not as straightforward as 
that under a purely Eulerian framework. A large amount of information exchange 
from one computational core to another is needed for calculations of the interaction 
source terms between two phases, leading to formidable communication cost even 
exceeding the computational cost, especially when the Eulerian framework is stag-
gered with the Lagrangian framework due to the relative movement between these 
two phases. 

To solve the communication problem of parallel computing technique of high-
speed two-phase flows under an Eulerian–Lagrangian framework, the traditional 
static data structure, such as multi-dimensional array, should be avoided using to store 
the information of the discrete phase described under the Lagrangian framework. 
Notably, the order of particles presented under the Lagrangian framework is not 
important and does not need to be preserved as its initial order. The only operation 
required for coding is to traverse every particle one by one. Inspired by the above 
facts, dynamic data structures can be introduced to store particle information and 
solve the communication problem under the Eulerian–Lagrangian framework. For 
example, the structures and the corresponding operations of linked lists used to store 
particle information are schematically shown in Fig. 8.9. As seen, each CPU owns 
one linked list to store information of the particles that are at the corresponding 
locations to the gas phase. In each linked list, one node represents one particle and 
consists of two parts: the data part that stores particle information, and the pointer 
that points to the next node of the particle for traversing. The pointer of the last node 
always points to the “NULL”, implying that the linked list has ended.

Additionally, there are four basic operations for the linked list to adjust the 
particle’s storage location: allocate, free, delete and insert, as depicted in Fig. 8.9. 
The “allocate” operation is used to allocate new memory to store information about a 
“new” particle, the “free” operation to free the memory that stores information about 
an “old” particle, the “delete” operation to disconnect one particle from the linked 
list, and the “insert” operation to connect one particle at the end of the linked list. 
When the particle phase is staggered with the gas phase because of relative motion, 
the information of the particles, whose locations exceed the corresponding location 
ranges assigned to the present CPUs, will be transferred to and stored in the CPUs 
with the correct particle location ranges. For example, for CPU A in Fig. 8.9, where 
one particle is removed, the following sequence of operations is needed: 

(1) send the information of the specific particle to CPU B; 
(2) delete the particle node from the linked list; 
(3) free the memory of the separated node.
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Fig. 8.9 Linked lists and operation sequences. Courtesy of Z. J. Zhang [9]

Meanwhile, for CPU B in Fig. 8.9, where a new particle is received, the 
corresponding operation sequence is: 

(1) receive the information of the new particle from CPU A; 
(2) allocate a new node and store the information into the data field of the node; 
(3) insert the new particle node at the end of the linked list. 

With this dynamic data structure and the corresponding operation sequences, the 
information about Lagrangian particles is always stored in the CPUs of the correct 
Eulerian coordinates, and therefore excessive communication between CPUs when 
calculating gas-particle interactions is avoided, as shown in Fig. 8.10. Moreover, 
with the limitation of the global time step by the CFL condition, only “one” particle 
at most will cross the CPU boundary at every iteration; that is, the information of 
“one” particle at most will be transferred to the other CPU at one iteration step by the 
above operation sequence. As a result, the communication cost of the MPI parallel 
for the gas-particle interaction calculation will be reduced from O(N) to O(1) when 
using this data structure. Here, N is the number of particles stored in each CPU.

To demonstrate the MPI parallelization performance with the use of the above 
linked lists and the corresponding operation sequences, Fig. 8.11 depicts the speedup 
parameters of a 2D Al-air detonation propagation problem using the CESE method 
under an Eulerian–Lagrangian framework, which involves approximately 24 million 
Eulerian meshes and about 75 million Lagrangian particles in the computational 
domain. This test case is simulated on the Tianhe-2 supercomputer from China with 
core numbers of 1, 2, 3, 4, 6, 12, 24, 48, 96, 192 and 384. The use of one core means
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Fig. 8.10 Dynamic data structure using the linked list in the Eulerian–Lagrangian framework. 
Courtesy of Z. J. Zhang [9]

that the simulation is done serially. As depicted in Fig. 8.11, when 384 cores are used, 
the code using linked lists still has a reasonable parallel efficiency of about 50% for the 
tested problem, while MPI parallelization under the Eulerian–Lagrangian framework 
using multi-dimensional static arrays is impossible, even with only 2 cores, as the 
communication cost is shown to be unacceptably large. This means that the linked list 
dynamic data structure works well in the MPI implement when solving two-phase 
detonations under the Eulerian–Lagrangian framework. 

To test the performances of CESE method in simulations of two-phase detonation 
under the Eulerian–Lagrangian framework, Shen et al. [23] simulated the gas–liquid 
two-phase detonations in the C10H22–O2/air systems with different fuel droplet sizes 
and equivalence ratios. A deficit in the detonation speed compared to the corre-
sponding purely gaseous one was observed in the gas–liquid suspensions with lean 
fuel and larger droplet sizes, while an increase in the detonation speed was observed

Fig. 8.11 Speedups of the 
tested problem using linked 
lists. Courtesy of Z. J. Zhang 
[9] 
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Fig. 8.12 Distribution of particle size near the detonation front in gas–liquid two-phase detonations. 
Courtesy of H. Shen [23] 

with very rich fuel. This special two-phase detonation feature in rich fuel is due to the 
slow combustion rate of the droplet, leading to a large amount of fuel burnt behind 
the C–J point, as shown in Fig. 8.12. As a result, the efficient equivalence ratio is 
reduced and detonation speed shifts to the equivalence ratio direction. The accuracy 
and robustness of the CESE method applied to two-phase detonation simulations 
under an Eulerian–Lagrangian framework had been demonstrated. 

Notably, simulations of the monodisperse two-phase detonation problems (with 
single particle size) under the Eulerian–Lagrangian framework always present the 
same results as those performed under the Eulerian–Eulerian framework. The raising 
of modelling two-phase detonations under the Eulerian–Lagrangian framework is in 
fact to simulate the realistic polydisperse two-phase detonations, where a particle 
size distribution is involved and the particle diameters are in a relatively wide range. 
One of the frequently used particle size distribution models to describe the polydis-
perse suspension is the log-normal distribution function, expressed by the number 
frequency distribution function as follows [24]: 

fn
(
dp

) = 1 √
2πσ0 

exp

|
−1 

2

(
ln dp − ln dnM 

σ0

)2
|
1 

dp 
, (8.28) 

where dnM and σ 0 are the number median diameter and standard deviation of the 
distribution, respectively. In practice, the specific particle size distribution of a poly-
disperse suspension is always given by other two particle size parameters that can be
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easily measured, namely the volume-average diameter (d) and the mass-weighted-
average particle diameter (dm). For example, the measured polydisperse parameters 
of the Al powder tested in the experiment of Zhang et al. [20] are  d = 2 µm and dm 

= 3.3 µm. The relationships between (dnM , σ 0) and (d , dm) can be obtained through 
the integrations of Eq. (8.28), as follows 

⎧⎪⎪⎪⎨ 

⎪⎪⎪⎩ 

d =
|{ ∞ 

0 
s3 fn(s)ds

|1/3 

= dnM e 
3 
2 σ 2 0 

dm =
|{ ∞ 

0 
s4 fn(s)ds

|
/

|{ ∞ 

0 
s3 fn(s)ds

|
= dnM e 

7 
2 σ 2 0 

. (8.29) 

Consequently, the corresponding parameters of the above-mentioned Al powder 
are dnM = 1.37 µm and σ 0 = 0.5. However, it is a good way to use the parameter set 
of (d, σ0) to discuss the polydisperse suspensions in numerical simulations, because 
the effects of particle size distribution on polydisperse detonations can be easily 
discussed by varying σ 0. Some specific particle size distributions with fixed d = 
2 µm and different σ 0 values are depicted in Fig. 8.13. 

In the followings, the typical Al-Air detonation problems with different particle 
size distributions, taking as an example, are simulated by the above numerical algo-
rithm under the Eulerian–Lagrangian framework, to show the capacities of the CESE 
method in solving polydisperse two-phase detonation and show the differences 
between monodisperse and polydisperse two-phase detonations. The single-step 
global chemical reaction occurs in the Al-air suspension is 

2Al(s) + 3/2O2(g) → Al2O3(s) (8.30)

Fig. 8.13 Log-normal particle size distributions with d = 2 µm. Courtesy of Z. J. Zhang [25] 
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To model the combustion rate of every single Al particle, the surface-kinetic-
oxidation and diffusion hybrid combustion model (originally proposed by Zhang 
et al. [26]) can be employed. The Lagrangian form of the combustion rate of the kth 
Al particle is given as 

Jpk,Al = πd2 
pk,AlCO2 

νAlWAl 

νO2 WO2 

· kdkksk 

kdk + ksk 
. (8.31) 

where the reaction rates for the diffusion-controlled and kinetic-controlled combus-
tion regime are expressed by 

⎧⎪⎨ 

⎪⎩ 

kdk = 
νO2 WO2 

νAlWAl 

ρAldpk,Al 

2CtotalK d2 
pk0,Al

(
1 + 0.276Re1/2 pk 

1/3 
Pr

)

ksk = k0e−Ea /R0Tsk 

. (8.32) 

In Eqs. (8.31) and (8.32), νAl and νO2 are the stoichiometric coefficients for Al and 
O2, respectively; CO2 and Ctotal are the mole concentrations of O2 and gas mixture, 
respectively; Tsk is the particle surface temperature; and K, k0 and Ea are model 
constants. 

As depicted in Fig. 8.14. Some special two-phase detonation features corre-
sponding to multi-phase interaction can be clearly identified in the detonation front 
structures of monodisperse Al-air detonation. The first feature is known as “double 
peaks” in the gas pressure, density and velocity profiles (Fig. 8.14a, c), which is 
distinctly different from the single peak feature observed in gaseous detonations. 
It is demonstrated, from the one-dimensional flow theory in gas dynamics that the 
second peak in the detonation front structures of monodisperse Al suspension is 
caused by the dominant stage of heat transfer due to intense phase transition (Al 
evaporation) at a specific location after the shock front. The second feature, shown 
in Fig. 8.14b, is the plateau of particle temperature due to Al evaporation, which is 
equal to 2750 K and results in the observed “kink” in the gas temperature profile due 
to the intense heat transfer between the gas and particles. The third feature, shown 
in Fig. 8.14c, is the particle velocity lag in the velocity relaxation process, resulting 
in the alternative forces acting on particles and momentum transfers between the gas 
and particles. All these two-phase features for monodisperse Al-air detonation are 
similar with those obtained by Zhang et al. [26] and Teng and Jiang [27, 28].

However, as for the polydisperse detonation with a log-normal particle size distri-
bution of σ 0 = 0.5, most features of monodisperse Al detonation, including the 
double peaks in gas pressure, density, velocity profiles and the kink in gas tempera-
ture profile, disappear, and only single peaks of gas quantities exist in the detonation 
front, which are quite similar to the wave front structures in gaseous detonations. The 
double peaks in the detonation front is demonstrated theoretically to be attributed to 
the space-dispersed phase transition processes of particles of different sizes result in 
an overall moderate heat transfer intensity, which hinders the formation of the heat-
transfer-dominant stage. These differences between monodisperse and polydisperse
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Fig. 8.14 Comparison of front structures in gas phase of polydisperse and monodisperse Al-air 
detonations: a pressure, b temperature, c velocity, d density, e mass fraction of O2. Courtesy of Z. 
J. Zhang [25]

two-phase detonations are relative to the multiple timescales and length scales in 
polydisperse suspension with a continuous particle size distribution. 

As for the multi-dimensional two-phase detonation features, Fig. 8.15 shows the 
comparisons of cellular detonation flow fields between monodisperse and polydis-
perse detonations. As indicated in Fig. 8.15a, typical cellular detonation structures, 
including pairs of triple points, Mach stems, incident shock waves and pairs of trans-
verse waves, can be observed in both the monodisperse and polydisperse detonation 
fronts. Moreover, the gas temperature and the O2 species mass fraction distributions 
for both monodisperse and polydisperse cases are non-uniform behind the detona-
tion fronts, which are characterized by irregular local (high and low) temperature 
and O2 concentration zones, respectively, as shown in Fig. 8.15b, c. These irregular 
distributions of the flow field parameters in monodisperse and polydisperse detona-
tions are both caused by the periodical motions of triple points along the detonation 
fronts. All these features in two-phase detonations are similar to those observed in 
gaseous detonations, except for the transverse waves. The transverse waves in both 
the monodisperse and polydisperse detonation fronts are weak and degenerate fairly 
fast in the rear flows, which are different from the strong transverse waves observed 
in purely gaseous detonations. According to Zhang et al. [26], these weak transverse 
waves can be attributed to the slow diffusion-controlled combustion of the majority 
of Al particles after their kinetic-inductions and a considerable amount of condensed 
Al oxide formed in the detonation products without contributing to gas pressure.
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Fig. 8.15 Comparison of flow fields in Al-air detonation fronts. Left: monodisperse with dp = 
2 µm at  t = 0.6 ms. Right: polydisperse with d = 2 µm and  σ 0 = 0.5 at t = 1 ms. Courtesy of Z. 
J. Zhang [25] 

Further, larger detonation cell sizes are expected in polydisperse two-phase deto-
nation compared to monodisperse detonation, since the reaction zone is larger, as 
shown inFig.  8.16 by peak pressure contours. The estimated cell sizes of the monodis-
perse detonation and the polydisperse detonations (σ 0 = 0.5 and 0.8) are λmonodisperse 

= 10.5 ± 0.5 mm, λ0.5 = 13.3 ± 0.8 mm and λ0.8 = 20.0 ± 1.8 mm, respectively. 
λ0.5 is 27% larger than λmonodisperse, and λ0.8 is even 190% larger. Figure 8.17 plots 
these detonation cell sizes as a function of the square of standard deviation σ 2 0 by a 
logarithmic scatter diagram, together with those of other three polydisperse detona-
tions with different σ 0. An approximately linear relationship between ln λ and σ 2 0 
can be captured. Then, linear fitting is employed, and the fitting function appears to 
be ln λ = 0.9367σ 2 0 + 0.0655, implying that the detonation cell size λ of polydis-
perse suspensions is an exponent function of the square of standard deviation of the 
distribution σ 2 0 . This is an important quantitative relation of polydisperse two-phase
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Fig. 8.16 Comparison of cellular detonations (peak pressure contours) of Al-air mixtures: a 
monodisperse with dp = 2 µm, b polydisperse with d = 2 µm and  σ 0 = 0.5, and c polydisperse 
with d = 2 µm and  σ 0 = 0.8. Courtesy of Z. J. Zhang [25] 

Fig. 8.17 Detonation cell 
size λ of Al-air suspension as 
a function of square of 
standard deviation σ 2 0

detonation to evaluate the effect of particle size distribution on detonation cell size. 
From the above results, the capacities of the CESE method in polydisperse two-phase 
detonation simulations under the Eulerian–Lagrangian framework is demonstrated 
as well. 
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