
Chapter 1 
Introduction 

With the rapid development of electronic computers, numerical computation has 
become an important paradigm of scientific discovery as well as a powerful tool for 
engineering research. Solving complex problems in a computational fashion is more 
than applying theories, equations, and formulas. Computational methods, also called 
algorithms or schemes, have strong influences on the outcomes of computations. 

The space–time conservation element and solution element (CESE) method is 
aimed to numerically solve equations of conservation laws in various physical 
systems. The major concern herein will be the computational fluid dynamics (CFD), 
which is a hot area in scientific and engineering researches. Nevertheless, it may help 
at the outset to recognize that the conservation laws in CFD problems have a lot in 
common with conservation laws in other fields, such as acoustics, solid dynamics, 
electromagnetics, and magnetohydrodynamics. The physics may be different, but 
the mathematics are similar. For instance, physics involving dynamical evolution 
of waves and discontinuities are usually modelled by time-dependent nonlinear 
hyperbolic partial differential equations (PDEs). Some CFD problems happen to 
be representative of such physical problems in a wider context. 

1.1 Background 

Most of the key achievements in conventional CFD have been incorporated into the 
computational procedure of the finite volume method (FVM). Indeed, the FVM is 
well established and widely used, and therefore it is sometimes regarded as a mature 
technique. There are two important steps in the FVM, namely the reconstruction and 
the evolution [1, 2]. In the reconstruction step, one needs to locally approximate the 
flow field with simple functions such as polynomials, and then interpolate the values 
of flow quantities at the cell interfaces by utilizing the cell-average values. In the 
evolution step, the numerical flux at each cell interface is determined by some kind
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of flux technique, and then the time integration of the conservation equations can be 
performed. 

A major category of CFD problems face the challenges brought by (1) the coexis-
tence of smooth regions and discontinuities in the flow (e.g., shock waves and material 
interfaces) and (2) the wide spectrum of wave numbers/frequencies in the flow (e.g., 
acoustic waves and turbulence). Due to these physical phenomena, the CFD solver is 
required to well handle the numerical dissipation, which leads to an endless debate in 
the CFD community. First, for the robustness in capturing shock waves, there must 
be a certain amount of numerical dissipation to suppress the spurious oscillations. 
However, a low numerical dissipation is very favourable for the accuracy and reso-
lution of the viscous layers, contact surfaces, and small-scale structures in the flow, 
which would be smeared out by excessive dissipation. 

To achieve the low but controllable numerical dissipation, the research works 
on FVM are mostly dedicated to two approaches: (1) developing high-order recon-
struction techniques in conjunction with nonlinear limiters and (2) improving the 
flux solvers (e.g., approximate Riemann solvers). In both ways, numerous important 
advances have been obtained. 

In spite of these successes in the FVM development, several shortcomings may 
arise. (1) A conventional FVM implementation highly relies on the selections of 
special techniques, such as the limiter and the Riemann solver. Actually, each special 
technique has its own pros and cons. There are many alternatives for each option, 
but none of them can be proven to be optimal and general. (2) The coupling of space 
and time is usually overlooked and may not be guaranteed in the numerical solution. 
(3) The multi-dimensionality can be questionable because most flux solvers are only 
based on one-dimensional physics. (4) The popular high-order FVM schemes are 
usually not compact, i.e., large stencils are used. Under this background, the CESE 
method was proposed to overcome the difficulties in the conventional FVM to some 
extent, and it became a new member in the family of FVM. 

1.2 History of the CESE Method 

The space–time conservation element and solution element method was initiated 
by Sin-Chung Chang of NASA Glenn Research Centre and his collaborators for 
aerodynamic computation in early 1990s [3, 4]. There were several motivations to 
propose the CESE method. First, they wanted to construct multidimensional and 
space–time unified CFD schemes, without using dimensional splitting or separated 
treatments of space discretization and time discretization. Second, they believed a 
CESE solver should be built from a non-dissipative core scheme so that numerical 
dissipation can be controlled effectively, dynamically, and even actively. Third, they 
attempted to avoid using the Riemann solver in the CESE method. 

Around 1994, the CESE project was approved and supported by NASA Glenn 
Research Centre. The work of the research group showed that this time-accurate 
scheme possesses low numerical dissipation, which is valuable in CFD simulation.
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For the first time, the transonic resonance in a convergent-divergent nozzle with 
frequency-staging effect was successfully simulated by the CESE scheme [5, 6]. In 
this case, the blind prediction by the CESE scheme matched the experimental data. 
Therefore, the CESE method is proved to be capable of simultaneously simulating 
multidimensional unsteady shock waves and acoustic waves with high accuracy. 

Owing to its accuracy and robustness, the CESE method is employed in the 
CFD module of the simulation software LS-DYNA [7]. The Jacobs Technology Inc. 
(designer of the NASA’s hypersonic flow test facilities) developed its own in-house 
CESE code called JUSTUS (Jacobs Unified Space–Time Unstructured Solver) for 
hypersonic flow simulations. Another in-house CESE code, called “ez4d” software, 
was developed by the NASA Langley Research Centre. This is a time-accurate 3D 
Navier–Stokes flow solver on unstructured meshes [8, 8]. 

1.3 Main Features of the CESE Method 

The CESE method is a special finite-volume-type numerical method, with the aim 
of solving the governing equations of fluid dynamics and other conservation laws in 
various physical systems. The CESE method possesses many features such as the 
unified treatment for space and time, the fully discrete one-step explicit scheme, and 
the highly compact stencil. Without enlarging the stencil or adding stages of time 
integration, the CESE method can achieve arbitrary high-order accuracy for both 
space and time. 

The essential ingredients in the CESE method include: (1) the spatial deriva-
tives of physical variables are stored as independent unknowns, in addition to the 
physical variables themselves. In every time step, these derivatives are updated by a 
specially designed procedure. (2) a staggered mesh and a staggered time-marching 
strategy are employed. (3) the interior structure within each solution element is 
built with the Taylor expansion. (4) the time-marching approach is based on the 
Cauchy–Kowalewski procedure. 

Through a combination of the above techniques, the CESE method has low dissi-
pation and high compactness. When applied to the simulations of complex physical 
processes, the CESE method can catch shock waves, contact discontinuities, fine 
structures, and small disturbances, with high resolution and strong robustness. There-
fore, the CESE method demonstrates good performances in the numerical simula-
tions of wave-propagation problems (e.g., shock waves, acoustic waves, detonation 
waves, stress waves in solid, and the electromagnetic waves), interfacial instabil-
ities, as well as the interactions of gaseous and liquid phases. In many research 
areas including high-speed aerodynamics, shock dynamics, detonation, aeroacous-
tics, and solid dynamics, the CESE method proves to be suitable and shows a good 
development prospect.
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1.4 Outline of the Book 

The remainder of this book is organized as follows. First of all, the non-dissipative 
core scheme of the CESE method is introduced in Chap. 2, with detailed descrip-
tions of the basic concepts. Then, the practical shock-capturing CESE schemes with 
numerical dissipation including the classical a–α scheme, the Courant number insen-
sitive scheme, and the recently proposed upwind CESE schemes are presented in 
Chap. 3. Furthermore, Chaps. 4 and 5 extend the CESE method to multidimensional 
and high-order versions. In Chap. 6, numerical properties of various CESE schemes 
are analysed, along with comparisons to other numerical schemes. Chapters 7–9 
provide an overview of the applications of the CESE method, most of which are 
quite relevant to the aerospace engineering. Finally, a summary and an outlook of 
the CESE method are given in Chap. 10. 
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