
Chapter 3 
CESE Schemes with Numerical 
Dissipation 

As depicted in Chap. 2, the interface between the two sub-CEs (CD in Fig. 2.7), 
belongs to the SE of (j, n). The flux FC needs to be calculated through the Taylor 
expansion at point (j, n) toward the inverse time direction. As a result, the a scheme is 
reversible. This violates the second law of thermodynamics. Thus, the non-dissipative 
core suffers from the unphysical oscillations for practical applications. This chapter 
will present the improvements based on the non-dissipative core by introducing 
necessary numerical dissipation. The resulting dissipative CESE schemes can be 
categorized into the central CESE schemes and the upwind CESE schemes. It is 
convenient to begin with the most widely spread CESE scheme, the a–α scheme. 

3.1 a–α Scheme 

Similar to the a scheme described in Chap. 2, the  a–α scheme is also a central scheme 
because of the fact that techniques to calculate upwind numerical fluxes are not used. 
Again, we consider the 1D scalar conservation law of the form 

∂u 

∂t 
+ 

∂ f (u) 
∂x 

= 0 (3.1) 

To solve Eq. (3.1) with the a–α scheme, the discretization and the definitions of 
CE and SE keep the same as those for the a scheme, which can be found in Sect. 2.2. 
Basically, the solution algorithm follows that of the a scheme (see Sect. 2.3), except 
for Eq. (2.35) for the flux FC . It is worth noting that abandoning the calculation of FC 

does not affect the correctness of Eq. (2.33) for updating un 
j . Actually, Eq. (2.33) is  

purely a result of conservation in the entire conservation element (CE)n 
j , irrespective 

of the flux FC . Therefore, the formula for updating the node value of the unknown u 
remains unchanged, which is written as
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un 
j = 

1 

2 
(UL + UR) + Δt 

2Δx 
(FL − FR) (3.2) 

The calculation of UL, FL, UR, and FR are explicit and has been presented in 
Sect. 2.3, and then un 

j can be evaluated using Eq. (3.2). 
The remaining part of the a–α scheme is to update the spatial derivative (ux )

n 
j 

in a different way from the procedure of the a scheme. It is in this step where the 
necessary numerical dissipation is added into the a–α scheme. First, two different 
estimations for (ux )

n 
j can be obtained:

(
u− 

x

)n 

j = 
un 

j −
|
un−1/2 

j−1/2 + (Δt/2)(ut )
n−1/2 
j−1/2

|

Δx/2 
, (3.3)

(
u+ 

x

)n 

j 
=

|
un−1/2 

j+1/2 + (Δt/2)(ut )
n−1/2 
j+1/2

|
− un 

j

Δx/2 
(3.4) 

In these equations, the temporal derivatives ut at time level n−1/2 can be readily 
obtained using Eqs. (2.27) and (2.26). Next, (ux )

n 
j is taken as a weighted average of 

(u−
x )

n 
j and (u

+
x )

n 
j : 

(ux )
n 
j = W

(
(u− 

x )
n 
j , (u+ 

x )
n 
j , α

)
(3.5) 

where W is a weighted average function with an adjustable parameter α (α ≥ 0, the 
commonly used values are α = 0, 1 and 2), expressed as 

W
(
x−, x+, α

) =
||x+||α 

x− + ||x−||α 
x+ 

|x+|α + |x−|α , (3.6) 

The role of this weighted average function is similar to the slope limiter func-
tions in upwind schemes, and it proves to be effective in suppressing the spurious 
oscillations near a discontinuity. 

The above a–α scheme has a clear and simple logic. However, the dissipation 
of the a–α scheme increases dramatically as the Courant–Friedrichs–Lewy (CFL) 
number (the parameter defined by Eq. (2.40), ν = aΔt/Δx) approaches zero. In 
practice, for small values of ν, the discontinuities in the solution can be smeared 
out. Therefore, the accuracy of the a–α scheme is considered to be CFL-number 
sensitive. 

To demonstrate this shortcoming, we consider f = au (a is a constant) in Eq. (3.1), 
and take α = 0 in Eq.  (3.6). In this case, the weighted average function is reduced to 
a simple arithmetic averaging, and Eq. (3.5) can be written as 

(ux )
n 
j =

|
un−1/2 

j+1/2 + (Δt/2)(ut )
n−1/2 
j+1/2

|
−

|
un−1/2 

j−1/2 + (Δt/2)(ut )
n−1/2 
j−1/2

|

Δx 
, (3.7)
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which means a central difference approximation at time level n is used to update the 
spatial derivative (ux )

n 
j . Recall that in Sect. 2.3 we have shown that a CESE scheme 

applied to the linear scalar convection equation can be written in a matrix form 

qn 
j = QLq

n−1/2 
j−1/2 + QRq

n−1/2 
j+1/2 (3.8) 

for a half step or 

qn 
j = (QL )

2 qn−1 
j−1 + (QLQR + QRQL )qn−1 

j + (QR)2 qn−1 
j+1 (3.9) 

for a complete step. Here, the solution vector q is defined by Eq. (2.36) and the 
matrices QL and QR are functions of the CFL number ν = aΔt/Δx. By combining 
Eqs. (3.2) and (3.7), the a–α scheme with α = 0 can also be cast into the form of 
Eq. (3.9) with QL and QR as follows: 

QL = 
1 

2

|
1 + ν 
−1/2 

1 − v2 

ν

|
, QR = 

1 

2

|
1 − ν 
1/2 

−1 + v2 

−ν

|
(3.10) 

Now, consider a limiting case of Δt = 0 (but Δx > 0), which leads to ν = 0. It 
can be shown that Eq. (3.9) leads to 

qn 
j = 

1 

4

|
1/2 

−1/2 
1 

−1/2

|
qn−1 

j−1 + 
1 

4

|
3 
0 
0 
1

|
qn−1 

j + 
1 

4

|
1/2 
1/2 

−1 
−1/2

|
qn−1 

j+1 (3.11) 

However, a reasonable time-marching scheme should guarantee that qn 
j = qn−1 

j 
whenΔt vanishes, which indicates that the a–α scheme suffers from numerical error 
when the CFL number is very small. Further numerical experiments show that, in 
practice, when the CFL number ν becomes smaller than 0.1, the excessive numerical 
dissipation of the a–α scheme can be remarkable. 

3.2 Courant–Number–Insensitive Scheme 

To overcome the shortcoming of the a–α scheme, a Courant–Number–Insensitive 
(CNI) scheme was constructed [1]. This improvement is based on two requirements: 
(1) the CNI scheme should reduce to the non-dissipative a scheme when the CFL 
number ν = 0 and (2) the CNI scheme should resemble the a–α scheme when 
|ν| = 1. In this section, the construction of the CNI scheme will be present, and then 
the relationship between the CNI scheme, the a scheme, and the a–α scheme will be 
shown. 

First, the formula for updating the node value of the unknown u remains the same 
as Eq. (3.2), which has been used in a scheme and the a–α scheme. By substituting 
formulas for UL, FL, UR, and FR (Eqs. (2.21)–(2.28)) into Eq. (3.2), the explicit time
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marching formula for un 
j can be written as 

un 
j = 

1 + ν 
2 

un−1/2 
j−1/2 + 

1 − ν2 

8
Δx(ux )

n−1/2 
j−1/2 + 

1 − ν 
2 

un−1/2 
j+1/2 + 

ν2 − 1 
8

Δx(ux )
n−1/2 
j+1/2 

(3.12) 

Then, an algorithm for updating (ux )
n 
j is devised. As shown in Fig. 3.1, the points 

(j − 1/2, n) and (j + 1/2, n) are denoted by V− and V+, respectively. The point M− 
is the midpoint between (j − 1/2, n) and (j, n), and M+ is the midpoint between (j 
+ 1/2, n) and (j, n). We define two important points P− and P+, which are on the 
line segments V−M− and V+M+, respectively. The distances between P± and node 
(j, n) are marked in Fig. 3.1. It is clear that P± coincides with V± when ν = 1, and 
they approach M± as ν → 0. The values of u(x, t) at  P± are estimated by Taylor 
expansion at points ( j ± 1/2, n − 1/2): 

u(P±) = un−1/2 
j±1/2 +

Δt 

2 
(ut )

n−1/2 
j±1/2 ∓ 

(1 − |ν|)Δx 

4 
(ux )

n−1/2 
j±1/2 (3.13) 

where un−1/2 
j±1/2 and (ux )

n−1/2 
j±1/2 are known, while (ut )

n−1/2 
j±1/2 can be obtained using Eqs. 

(2.27) and (2.26). 
Next, u(P−) and u(P+) are used to construct two different approximations of (ux )

n 
j

(
û− 

x

)n 

j = 
un 

j − u(P−) 
(1 + |ν|)Δx/4 

(3.14) 

and

(
û+ 

x

)n 

j = 
u(P+) − un 

j 

(1 + |ν|)Δx/4 
(3.15)

Fig. 3.1 Definition of points in CNI scheme 
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Finally, the CNI scheme use a weighted average of ( ̂u−
x )

n 
j and ( ̂u+

x )
n 
j as the updated 

value of (ux )
n 
j , in a way similar to the a–α scheme. However, the weighted average 

function in the a–α scheme, i.e. Eq. (3.6), is replaced with a more sophisticated one 
as 

(ux )
n 
j =

|
1 + f (|ν|)(s−)n 

j

|
( ̂u+

x )
n 
j +

|
1 + f (|ν|)(s+)n 

j

|
( ̂u−

x )
n 
j 

2 + f (|ν|)
|
(s−)n 

j + (s+)n 
j

| , (3.16) 

where 

(s±)n 
j =

|||( ̂u±
x )

n 
j

|||

min
(|||( ̂u−

x )
n 
j

|||,
|||( ̂u+

x )
n 
j

|||
) − 1 (3.17) 

and 

f (|ν|) = 0.5
/ |ν|. (3.18) 

Hence, the overshoot phenomenon near discontinuities can be suppressed by the 
artificial dissipation, just like the a–α scheme. Moreover, the dissipation brought by 
Eq. (3.16) can be adjusted dynamically according to the CFL number ν. 

When ν = 0, we can show that the CNI scheme will reduce to the non-dissipative 
a scheme. Substituting ν = 0 (which also means Δt = 0) into Eqs. (3.12) and (3.13) 
yields 

un 
j = 

1 

2 
un−1/2 

j−1/2 + 
1 

8
Δx(ux )

n−1/2 
j−1/2 + 

1 

2 
un−1/2 

j+1/2 − 
1 

8
Δx(ux )

n−1/2 
j+1/2 (3.19) 

and 

u(P±) = un−1/2 
j±1/2 ∓

Δx 

4 
(ux )

n−1/2 
j±1/2 (3.20) 

From Eqs. (3.19) and (3.20), we can get 

un 
j = 

u(P−) + u(P+) 
2 

(3.21) 

By using ν = 0 and Eq. (3.21), it is readily shown that

(
û+ 

x

)n 

j = 
u(P+) − u(P−)

Δx/2
= (

û− 
x

)n 

j (3.22) 

Thus, the weighted average of ( ̂u−
x )

n 
j and ( ̂u+

x )
n 
j is equal to [u(P+) − u(P−)]/(Δx/2), 

which gives
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(ux )
n 
j =

1

Δx/2

{|
un−1/2 

j+1/2 −
Δx 

4 
(ux )

n−1/2 
j+1/2

|
−

|
un−1/2 

j−1/2 +
Δx 

4 
(ux )

n−1/2 
j−1/2

|}
(3.23) 

Recall the expression of the a scheme (see Eqs. (2.38) and (2.39) in Chap. 2) and 
let ν = 0, we can reproduce Eqs. (3.19) and (3.23). Therefore, in the limiting case 
of ν = 0, the CNI scheme and the a scheme are identical. 

As for the other limiting case |ν| = 1, Eqs. (3.13)–(3.15) lead to

(
û− 

x

)n 

j = 
un 

j −
|
un−1/2 

j−1/2 + (Δt/2)(ut )
n−1/2 
j−1/2

|

Δx/2 
, (3.24) 

and

(
û+ 

x

)n 

j 
=

|
un−1/2 

j+1/2 + (Δt/2)(ut )
n−1/2 
j+1/2

|
− un 

j

Δx/2 
(3.25) 

There is no difference between ( ̂u±
x )

n 
j in the CNI scheme and (u±

x )
n 
j in the a–α 

scheme. Hence, the algorithms for updating (ux )
n 
j in the CNI and the a–α schemes 

are basically the same when |ν| = 1, except for the specific forms of the weighted 
average function. 

Both the a–α scheme in Sect. 3.1 and the CNI scheme in this section belong to 
the central CESE schemes. Extensions of these schemes to 2-D and 3-D cases for 
various systems of conservation equations (e.g. Euler equations for compressible gas 
dynamics) are straightforward and have been well implemented. 

3.3 Upwind CESE Scheme 

The aforementioned central CESE schemes are used to solve nonlinear hyperbolic 
systems of conservation laws. However, they did not explicitly resort to the knowl-
edge of characteristics or eigenvalues of the systems. As an alternative approach, 
the characteristic-based upwind CESE scheme proposed by Shen et al. [2], elegantly 
combines the basic ideas of the CESE method and the upwind numerical flux tech-
nique in the Godunov-type FVM method. The upwind CESE scheme is naturally 
CFL-number-insensitive, which means it does not suffer from the drawback of the 
a–α scheme presented in Sect. 3.1. For some challenging CFD problems such as the 
simulations of detonations and multiphase flows, the upwind CESE scheme captures 
discontinuities in flow fields with improved accuracy and robustness, especially for 
contact discontinuities (e.g., material interfaces).
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3.3.1 Construction of Upwind CESE Scheme 

For illustrative purposes, the 1D scalar conservation law (Eq. (3.1)) is considered 
again. Before introducing the upwind CESE algorithm, some elementary concepts 
about the space–time discretization need to be clarified. The same computational 
mesh and solution points as shown in Figs. 2.3 and 2.4 are adopted. The definition of 
CEs is also retained (see Fig. 2.5). Nevertheless, some modification is made to define 
the SEs, as sketched in Fig. 3.2. In comparison to the (SE)n 

j in Fig. 2.6, the newly 
designed (SE)n 

j no longer contains any part that allows for t < tn. Apparently, the SEs 
pave the whole space–time domain without overlap. It is assuemed that u(x, t) and 
f (x, t) are piecewise linear. For instance, inside (SE)n 

j , they can be approximated 
by the first-order Taylor expansion at point (j, n). The boundaries of conservation 
element (CE)n 

j belong to three solution elements: DE and DF belong to (SE)n 
j , AC and 

AE belong to (SE)
n−1/2 
j−1/2, and BC and BF belong to (SE)

n−1/2 
j+1/2. The interface between 

(SE)
n−1/2 
j−1/2 and (SE)

n−1/2 
j+1/2, i.e. line segment CD, splits the conservation element (CE)n 

j 

into two sub-CEs: (CE−)n 
j and (CE

+)n 
j . 

The construction of the upwind CESE scheme closely follows the framework 
of the non-dissipative core scheme (i.e., the a scheme in Sect. 2.3). Indeed, Eqs. 
(2.16)–(2.34) still hold for the upwind CESE scheme, and they can be derived by 
the same procedures as presented in Sect. 2.3. Therefore, just like the a scheme, the 
a–α scheme, and the CNI scheme, the formula to update un 

j in the upwind CESE 
scheme remains the same as Eq. (3.2). However, for the purpose of updating (ux )

n 
j , 

the Eq. (2.34) will be utilized, which is the direct result of the space–time integral 
form of conservation law. For convenience, here we recall this equation:

Δx 

4 
(ux )

n 
j = 

1 

2 
(UR − UL ) + Δt 

2Δx 
(2FC − FL − FR) (3.26) 

Note that this equation is actually discarded in the a–α and the CNI schemes, but 
both the a scheme and the upwind CESE scheme make full use of it. Furthermore,

Fig. 3.2 Definitions of CE and SE for upwind CESE schemes 
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the key difference between the a scheme and the upwind CESE scheme lies in the 
treatment of FC in Eq. (3.26), which denotes the average flux through the interface 
CD between (CE−)n 

j and (CE
+)n 

j (see Fig. 3.2). 
As can be inferred from the new definition of solution elements in Fig. 3.2, the  

operation used in the a scheme to linkFC with (ux )
n 
j is forbidden in the upwind CESE 

scheme. Instead, we intend to obtain FC from the known data at time level n − 1/2, 
and then insert FC into Eq. (3.26) to get (ux )

n 
j . Toward this end, a local Riemann 

problem can be built at the midpoint of CD (denoted by (j, n − 1/4)), because CD is 
the interface between (SE)

n−1/2 
j−1/2 and (SE)

n−1/2 
j+1/2. To be specific, by Taylor expansion 

in (SE)
n−1/2 
j−1/2, the left state at point (j, n − 1/4) is evaluated as 

(uL )
n−1/4 
j = UL + Δx 

4 
(ux )

n−1/2 
j−1/2 +

Δt 

4 
(ut )

n−1/2 
j−1/2 (3.27) 

Meanwhile, Taylor expansion in (SE)
n−1/2 
j+1/2 provides the right state at point 

(j, n − 1/4): 

(u R)
n−1/4 
j = UR − Δx 

4 
(ux )

n−1/2 
j+1/2 +

Δt 

4 
(ut )

n−1/2 
j+1/2 (3.28) 

Recall that UL and UR are given by Eqs. (2.21) and (2.23). According to the defi-
nition of solution elements, the values of (uL )

n−1/4 
j and (u R)

n−1/4 
j are not necessarily 

equal to each other, and in general (uL )
n−1/4 
j and (u R)

n−1/4 
j form the discontinuous 

initial data on the left and right sides of the “diaphragm” CD. 
Next, the average flux FC through CD can be evaluated based on the local Riemann 

problem with initial data (3.27) and (3.28) as  

FC = F̂
(
(uL )

n−1/4 
j , (u R)

n−1/4 
j

)
(3.29) 

where F̂ stands for any upwind numerical flux solver, or loosely referred to as 
Riemann solver. Consequently, the special derivative (ux )

n 
j can be updated explicitly 

by Eq. (3.26). It is worth noting that, in the upwind CESE scheme, the time marching 
formula Eq. (3.2) for  un 

j has no concern with the upwind procedure above, since flux 
FC never appears in Eq. (3.2). 

In case of strong discontinuities, using proper limiters for the derivatives in Eqs. 
(3.27) and (3.28) bocomes crucial to suppress spurious oscilations. When limiters 
are used, the reconstruction of (uL )

n−1/4 
j and (u R)

n−1/4 
j is written as 

(uL )
n−1/4 
j = UL + Δx 

4 
uL 

x +
Δt 

4 
uL 

t , (3.30) 

(u R)
n−1/4 
j = UR − Δx 

4 
u R 

x + Δt 

4 
u R 

t , (3.31)



3.3 Upwind CESE Scheme 29

where uL 
x , u

R 
x , u

L 
t , and u

R 
t are the limited derivatives. In this book, the weighted 

biased averaging procedure limiter (WBAP-L2) [3] is adopted. The limited slopes 
(spatial derivatives) are 

uL 
x = (ux )

n−1/2 
j−1/2W (1, θ  L 

1 , θ  L 
2 ), θ L 

1 = 
(UR − UL )/(Δx/2) 

(ux )
n−1/2 
j−1/2 

, θ L 
2 = 

(ux )
n−1/2 
j+1/2 

(ux )
n−1/2 
j−1/2 

, 

(3.32) 

u R 
x = (ux )

n−1/2 
j+1/2W (1, θ  R 

1 , θ  R 
2 ), θ R 

1 = 
(UR − UL )/(Δx/2) 

(ux )
n−1/2 
j+1/2 

, θ R 
2 = 

(ux )
n−1/2 
j−1/2 

(ux )
n−1/2 
j+1/2 

, 

(3.33) 

where the limiter function is 

W (1, θ1, θ2) =
{

5+1/θ1+1/θ2 
5+1/θ 2 1 +1/θ 2 2 

, if θ1 and θ2 > 0 
0, else 

(3.34) 

Once the limited slopes are obtained, the limited temporal derivatives can be 
calculated by the chain rule and the conservation equation itself, i.e., 

uL 
t = −uL 

x 

∂ f 
∂u

||
||
u=UL 

,u R 
t = −u R 

x 

∂ f 
∂u

||
||
u=UR 

(3.35) 

3.3.2 Scheme for Linear Scalar Convection Equation 

Let f = au, then  Eq. (3.1) becomes the linear scalar convection equation. Without 
loss of generality, a is assumed to be a positive constant. For this simple situation, the 
exact solution of the local Riemann problem with initial data (uL )

n−1/4 
j and (u R)

n−1/4 
j 

can be readily obtained. If the limiter is not used, the interface flux FC (Eq. (3.29)) 
is 

FC = a
|

UL + Δx 

4 
(ux )

n−1/2 
j−1/2 +

Δt 

4 
(ut )

n−1/2 
j−1/2

|
, (a > 0) (3.36) 

With this FC , the upwind CESE scheme, which is a combination of Eqs. (3.2) 
and (3.26), can be written in a matrix form as Eqs. (3.8) and (3.9), in which q = 
[u, (Δx/4)ux]T and the matrices QL and QR are functions of the CFL number ν = 
aΔt/Δx: 

QL = 
1 

2

|
1 + ν 

−1 + ν 
1 − v2 

−1 + 4ν − ν2

|
, QR = 

1 

2

|
1 − ν 
1 − ν 

−1 + v2 

−1 + v2

|
(3.37)
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If the initial data (uL )
n−1/4 
j and (u R)

n−1/4 
j are reconstructed using the limiter, the 

matrix form shown as Eqs. (3.8) and (3.9) still holds, but the matrices QL and QR 

should be 

QL = 
1 

2

|
1 + ν 

−1 + ν 
1 − v2 

−1 + 2(1 + φL )ν + (1 − 2φL )ν
2

|
, QR = 

1 

2

|
1 − ν 
1 − ν 

−1 + v2 

−1 + v2

|

(3.38) 

where 

φL = W (1, θ  L 
1 , θ  L 

2 ), θ L 
1 = 

(UR − UL )/(Δx/2) 
(ux )

n−1/2 
j−1/2 

, θ L 
2 = 

(ux )
n−1/2 
j+1/2 

(ux )
n−1/2 
j−1/2 

(3.39) 

The scheme without limiter Eq. (3.37) can be regarded as the special case of 
Eq. (3.38) with the limiter function φL = 1. 

Based on matrices QL and QR in Eq. (3.38), we can examine the property of the 
upwind CESE scheme at the limiting case of ν = 0. Recall that the a–α scheme 
becomes very diffusive when ν → 0 and cannot guarantee that qn 

j → qn−1 
j as

Δt → 0 (but Δx is a finite constant). However, the upwind CESE scheme does not 
suffer from such a deficiency. A direct evaluation of matrices QL and QR in Eq. (3.38) 
as ν → 0 shows  

Q2 
L → 

1 

4

|
1 1  

−1 −1

|2 

= 0, Q2 
R → 

1 

4

|
1 
1 

−1 
−1

|2 

= 0, 

QLQR + QRQL → 
1 

4

|
1 1  

−1 −1

||
1 
1 

−1 
−1

|
+ 

1 

4

|
1 
1 

−1 
−1

||
1 1  

−1 −1

|
= I 

(3.40) 

Consequently, the time marching scheme for a complete time step (Eq. (3.9)) can 
always ensure that qn 

j → qn−1 
j as Δt → 0, regardless of the form of the limiter 

function. Unlike the a–α scheme, the upwind CESE scheme is inherently CFL-
number insensitive. 

3.3.3 Scheme for Euler Equations 

The 1D unsteady Euler equations for a perfect gas are written as 

∂U 
∂t 

+ 
∂F 
∂x 

= 0, (3.41) 

where U = [ρ,  ρu, E]T , F = |
ρu, ρu2 + p, (E + p)u

|T 
are the vectors of the 

conserved variables and the inviscid flux. Here, ρ, u, and p represent the density,
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velocity, and pressure, respectively. The total energy per unit volume is denoted by 
E, which is E = p/(γ − 1) + ρu2/2 with constant ratio of specific heat γ = 1.4. 

The upwind CESE scheme for a scalar equation can be directly applied to solve 
each component of U. However, the upwind procedure to calculate the flux through 
the interface between (CE−)n 

j and (CE
+)n 

j needs a substantial extension, because of 
the complexity of the eigen-structure of Eq. (3.41). Still, the flux vector FC can be 
expressed as 

FC = F̂
(
(UL )

n−1/4 
j , (UR)

n−1/4 
j

)
, (3.42) 

where F̂ stands for any appropriate upwind numerical flux solver, e.g., approximate 
Rimann solvers and other upwind flux functions. Moreover, (UL )

n−1/4 
j and (UR)

n−1/4 
j 

are the data on the two sides of line segment CD in Fig. 3.2, which are reconstructed 
with an appropriate limiter and serve as the discontinuous initial data of the local 
Riemann problem. Fortunately, any efficient and robust upwind flux solver [4, 5] 
exsiting in the FVM literature can be employed to calculate FC . 

3.3.4 Remarks on Upwind CESE Method 

For the purpose of capturing discontinuities, the upwind CESE method introduces 
necessary numerical dissipation by the upwind procedure to calculate FC (see Eqs. 
(3.29)–(3.35)). This fact might lead to confusion between the classical upwind FVM 
[4, 5] and the present upwind CESE method. In the former, the upwind flux technique 
to tackle local Riemann problems is viewed as the building block of the whole method. 
In the latter, the upwind flux technique plays a different role. 

To shed light on this issue, the interval [j − 1/2, j + 1/2] is taken as a repre-
sentative control volume to analyse, which is called “cell” in the FVM, and marked 
as line segment AB in Fig. 3.2. In this section, three fluxes are related with [j − 
1/2, j + 1/2], denoted by FL, FR, and FC . Apparently, these fluxes can be classi-
fied as the flux through the boundary of the control volume (FL and FR) and the 
flux through the diaphragm inside the control volume (FC). For the upwind CESE 
scheme, the upwind procedure is performed only to calculateFC , while fluxes through 
the boundaries are not linked to any local Riemann problems. Owing to the time-
marching strategy on the staggered mesh, information at points xj−1/2 and xj+1/2 are 
ready before evaluating FL and FR. Thus, the procedure to calculate FL and FR only 
involves Taylor expansion inside the SE, the definition of physical flux function f (u), 
and the Cauchy-Kowalewski procedure (steps to derive ut and f t from ux as shown 
in Eqs. (2.26)–(2.28)). On the contrary, the non-staggered FVM employs the upwind 
flux solver to get all fluxes through boundaries of control volumes, because each FL 

or FR should be treated as the result of a local Riemann problem. Usually, FC is not 
considered in the FVM.
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Recall that FC is absent in Eq. (3.2). Therefore, the upwind procedure in the CESE 
scheme never affects the time-marching algorithm for the average value of u(x, t) on  
[j − 1/2, j + 1/2], but solely redistributes u(x, t) on [j − 1/2, j + 1/2] through the 
calculation of ux using Eq. (3.26). However, the upwind FVM relies on two upwind 
numerical fluxes f̂ j−1/2 and f̂ j+1/2 to update the average value of u(x, t) on [j − 1/2, 
j + 1/2]. This is the reason why we claim that the upwind CESE method utilizes the 
upwind technique in a different way from the traditional upwind FVM. 

3.4 Comparison of Different CESE Schemes 

So far, four CESE schemes, namely the a scheme, the a–α scheme, the CNI scheme, 
and the upwind CESE scheme, have been introduced. To make a comparison, their 
main formulas and properties are listed in the following tables. Table 3.1 indicates that 
the CNI and upwind CESE schemes are more favourable for the practical simulations, 
since they can capture discontinuities with reasonable numerical dissipation and 
they are free of the sensitivity issue which is encountered by the a–α scheme. The 
key formulas in each scheme are shown in Table 3.2. It is notable that all CESE 
schemes share a common approach to updating un 

j . Only the a scheme and the 
upwind CESE scheme update (ux )

n 
j are based on the conservation law for sub-CEs. In 

contrast, the a–α and the CNI schemes construct (ux )
n 
j using the finite-difference-like 

approximation followed by some kind of weighted averaging technique. 

Table 3.1 Properties of four different CESE schemes 

Central or upwind Dissipative or 
non-dissipative 

CFL-number sensitive or 
insensitive 

a scheme Central Non-dissipative Insensitive 

a–α scheme Central Dissipative Sensitive 

CNI scheme Central Dissipative Insensitive 

Upwind CESE Upwind Dissipative Insensitive 

Table 3.2 The formulas to update un 
j and (ux )

n 
j in each CESE scheme 

Formula for un 
j Formula for (ux )

n 
j 

a scheme 

un 
j = 

1 

2 
(UL + UR ) 

+ Δt 

2Δx 
(FL − FR )

Δx 
4 (ux )

n 
j = 1 2 (UR − UL ) + Δt 

2Δx (2FC − FL − FR ) 

a–α scheme (ux )
n 
j = W

(
(u−

x )
n 
j , (u+

x )
n 
j , α

)

CNI scheme (ux )
n 
j = Ŵ

(
( ̂u−

x )
n 
j , (  ̂u+

x )
n 
j , ν

)

Upwind CESE Δx 
4 (ux )

n 
j = 1 2 (UR − UL ) + Δt 

2Δx (2FC − FL − FR )
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Table 3.3 The matrices QL and QR in Eq. (3.8), which is the matrix form of the CESE method 
applied to the linear scalar convection equation (Eq. (3.1) with  f = au, a > 0)  

QL QR 

a scheme 1 
2

|
1 + ν 
−1 

1 − v2 

−1 + ν

|
1 
2

|
1 − ν 
1 

−1 + v2 

−1 − ν

|

a–α scheme (α = 0) 1 
2

|
1 + ν 
−1/2 

1 − v2 

ν

|
1 
2

|
1 − ν 
1/2 

−1 + v2 

−ν

|

Upwind (without limiter) 1 
2

|
1 + ν 

−1 + ν 
1 − v2 

−1 + 4ν − ν2

|
1 
2

|
1 − ν 
1 − ν 

−1 + v2 

−1 + v2

|

When applied to the linear scalar convection equation (Eq. (3.1) with f = au and 
a is a positive constant), it is possible to rewrite the CESE scheme in a very compact 
matrix form. In Table 3.3, the coefficient matrices for different CESE schemes are 
listed. The matrices for the CNI scheme are not tabulated due to their lengthiness. 
Such QL and QR, together with Eqs. (3.8) and (3.9) are useful for revealing the 
instrinct properties of different CESE schemes, e.g., the stability of each scheme. 

3.5 Numerical Examples 

Here, the 1D scalar convection problem and Sod’s shock-tube problem with uniform 
grid size of 0.01 are computed using different CESE schemes. The corresponding 
C + +  source codes implementing the a−α CESE scheme are presented in the 
Appendix. For Eq. (3.1) with f = u, a square wave propagates in a computational 
domain [−1, 1] till t = 2.0 with the initial condition described as 

u(x, 0) =
{
1, i f  − 0.5 ≤ x ≤ 0.5 
0. else 

(3.43) 

The periodic boundary condition is imposed on both ends. The results are plotted 
in Fig. 3.3. For  CFL  = 1, all three schemes provide a virtually exact result. When 
CFL = 0.8, both the a-α and the CNI schemes suffer from strong oscillations on 
the upwind sides of the discontinuities, while the upwind scheme provides a result 
with satisfactory accuracy. If CFL is further decreased to an extremely small value, 
the CNI and upwind scheme can capture the discontinuities very well, but the large 
dissipation in the a−α scheme abnormally smears out the discontinuities. This case 
proves the CFL insensitivity of the CNI and upwind CESE schemes.

In the Sod’s shock-tube problem [6], the gas is initially separated at x = 1 with 
left and right states (ρ, u, p)L = (1.0, 0.0, 1.0) and (ρ, u, p)R = (0.125, 0.0, 0.1). 
In Fig. 3.4, the computed density profiles at t = 0.4 are shown. For CFL = 0.8, all
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(a) a-a CESE (b) CNI CESE 

(c) Upwind CESE 

Fig. 3.3 Solutions for scalar convection equation: square wave problem at t = 2

the schemes can capture the wave structures precisely. For an extremely small CFL 
number, the CNI and upwind schemes maintain great accuracy, but the a-α scheme 
seriously smeared out the rarefaction, contact, and shock waves.
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(a) a-α CESE (b) CNI CESE 

(c) upwind CESE 

Fig. 3.4 Density profile of Sod’s shock-tube problem at t = 0.4 
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