
Chapter 6 
Numerical Features of CESE Schemes 

In this chapter, some remarks are made on the numerical characteristics of the CESE 
schemes described in foregoing chapters. Due to the special formulation, rigorous 
analysis of the CESE schemes will take more efforts than that of traditional finite 
difference schemes. However, it is possible to extend the widely used modified equa-
tion analysis, modified wavenumber analysis, and von Neumann stability analysis 
to the CESE schemes. Here, a stability analysis for the second-order upwind CESE 
scheme applied to the linear scalar convection equation is presented. Additionally, a 
rough estimation of the algorithm complexity is presented to show the computational 
efficiency of the CESE method. In order to demonstrate the accuracy of the CESE 
method in comparison with established numerical approaches, simulation results of 
some canonical problems are shown. 

6.1 Stability 

All CESE schemes in this book are explicit time-stepping schemes. Similar to other 
explicit schemes, the numerical stability of CESE schemes is closely related to the 
Courant–Friedrichs–Lewy (CFL) condition. Only when the CFL condition is satis-
fied, the system can remain numerically stable. Consequently, the time-step size used 
by a CESE scheme has to be restricted according to the upper bound of the stable 
CFL number ν for that scheme. 

It has been proven in [1, 2] that the stability conditions for the second-order a 
scheme (Sect. 2.3) and the second-order a–α scheme (Sect. 3.1) are both ν ≤ 1. For 
the second-order upwind CESE scheme (Sect. 3.3), the stable upper bound of the 
CFL number is also unity. This stability analysis is first given by Jiang et al. [3] and 
introduced as follows. 

For illustrative purpose, we consider the simplest upwind CESE scheme applied 
to the 1D linear scalar convection equation
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where a is a positive constant. Without using any slope limiter, the upwind CESE 
scheme for Eq. (6.1) can be written in a matrix form as 
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with the vector of time-marching variables 
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and the coefficient matrices (recall Chap. 3) 
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where ν is the CFL number, which is defined as 

ν ≡ a
Δt

Δx 
. (6.5) 

Following the routine of von Neumann stability analysis, we assume the vector q 
to be a Fourier component with arbitrary wavenumber k such that 

qn 
j = An(θ )ei jθ , (  − π <  θ  ≤ π), (6.6) 

where θ = kΔx is the reduced wavenumber, and i is the imaginary unit. Substituting 
Eqs. (6.6) into (6.2) yields 
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|
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|
An−1/2(θ ). (6.7) 

Hence, the amplification matrix for each half step is 
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2

|
. (6.8) 

The spectral radius of matrix M, denoted as ρ(ν, θ ), is calculated numerically as 
a function of the CFL number (0 ≤ ν ≤ 1) and reduced wavenumber (−π ≤ θ ≤ π ). 
In Fig. 6.1, it can be seen that ρ(ν, θ ) ≤ 1 holds for all wavenumbers as long as 0 ≤ 
ν ≤ 1. Thus, this second-order upwind CESE scheme is numerically stable when ν
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Fig. 6.1 Spectral radius ρ(ν, θ ) of matrix  M in the von Neumann analysis of the upwind CESE 
scheme. Courtesy of Jiang [3] 

is less than or equal to 1. Also shown in Fig. 6.1, as the CFL number approaches 0 
or 1, the numerical dissipation in the second-order upwind CESE scheme vanishes. 

For high-order CESE schemes, the stability analysis is more complicate and the 
stable upper bound of the CFL number depends on the scheme’s construction. A 
novel approach to construct highly stable high-order CESE schemes was proposed 
by Chang [4], using the same space–time stencil as that in the second-order CESE 
scheme. The same CFL-number constraint for numerical stability (i.e., ν ≤ 1) is 
retained, which is favourable for explicit time-stepping computations. 

6.2 Efficiency 

The CESE method has a highly compact stencil in space and time, regardless of the 
order of the scheme. This compactness feature provides the CESE method a great 
advantage when parallel computation is performed.
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For a CESE scheme, the nominal order of accuracy and spatial dimensionality 
will determine the number of independent variables (denoted by K) to be stored  
and updated at each solution point. For a M-th-order accurate (M ≥ 2) and spatially 
D-dimensional (D = 1, 2, or 3) CESE scheme, K can be determined by a precise 
counting and 

K (D, M) = 

⎧⎨ 

⎩ 

M, D = 1 
M(M + 1)/2, D = 2 

M(M + 1)(M + 2)/6 D = 3 
. (6.9) 

Notably, the number K in the CESE scheme is the same as the number of degrees 
of freedom for each cell in the discontinuous Galerkin (DG) scheme. Therefore, if 
the CESE and DG schemes are of the same order and used to solve the same problem 
on the same mesh, the memory requirements for a CESE scheme and a DG scheme 
are comparable. 

The CESE method requires neither a reconstruction procedure based on a wide 
stencil nor a multi-stage time-integration technique. Besides, no upwind operation 
related to flux calculation is included in central CESE schemes. Nevertheless, the 
CESE method adopts the Cauchy–Kowalewski procedure to express the temporal 
derivatives in terms of spatial derivatives. It also takes time to update the spatial 
derivatives using the algorithms described in Chaps. 3, 4 and 5. The combined effect 
of all these factors determines the computational speed of the CESE method. 

6.3 Accuracy 

Generally, the accuracy of a CESE scheme depends on the order of the Taylor expan-
sions, i.e., the degree of the approximation polynomials that are used to approx-
imate unknowns and fluxes within each solution element. To achieve the theoret-
ical M-th order of accuracy of the scheme in space and time, the (M−1)-th-order 
Taylor expansions are needed. According to practical applications, the second-order 
CESE schemes, including the central and upwind schemes, can usually provide a 
satisfactory trade-off between accuracy and efficiency. 

The ability to capture shock waves and contact discontinuities with high resolu-
tion is one of the excellent features of the CESE scheme. Here, two canonical flow 
problems are used to demonstrate the accuracy of CESE schemes by comparing the 
numerical simulation results by CESE and other schemes. As the first example, Sod’s 
shock-tube problem [5] is solved by both the CESE method and the finite volume 
method (FVM). The CESE code is an implementation of the second order a–α scheme 
described in Chap. 3, while the FVM counterpart incorporates the second-order 
MUSCL (Monotonic Upstream-centered Scheme for Conservation Laws) recon-
struction, the van Leer limiter, and the HLLC Riemann solver. A uniform mesh with 
200 cells and a CFL number of 6.9 are employed in both the CESE and the FVM
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computations. Density and internal energy distributions from x = −  1 to  x = 1 at  
time t = 6.5 computed by CESE and FVM schemes are plotted in Fig. 6.2a and b, 
respectively, in comparison with the exact solution. As shown in Fig. 6.2, a narrower 
contact discontinuity is resolved by the CESE scheme than the FVM counterpart. 
Meanwhile the CESE results match the exact solution better than the FVM results 
at the tail of the rarefaction wave. 

Fig. 6.2 Comparison of 
numerical results of Sod’s 
shock-tube problem by 
CESE and FVM schemes at 
dimensionless time t = 0.5. 
Courtesy of Jiang [3]

(a) CESE result vs. FVM result: density 

(b) CESE result vs. FVM result: internal energy 
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(a) a–α CESE result vs. FVM result 

(b) Upwind CESE result vs. FVM result 

Fig. 6.3 Comparison of FVM and CESE results for Mach 3 step problem: density contours at time 
t = 4.6. Courtesy of Jiang [3]
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In the second example, the problem of a Mach-3 inviscid flow through a 2D 
tunnel with a forward-facing step inside is solved by three schemes (a–α CESE, 
upwind CESE, and upwind FVM) of second-order accuracy in space and time. The 
initial conditions, boundary conditions, and geometrical parameters are the same as 
that in [6]. The upwind FVM flow solver is provided by Hao et al. [7]. The same 
computational mesh and the same Courant–Friedrichs–Lewy (CFL) number of 6.95 
are employed for all the three schemes. Density fields at time t = 4.0 are shown in 
Fig. 6.3a and b. Compared with the upwind FVM scheme, both the a–α and upwind 
CESE schemes can accurately capture the structure of shock waves, but only the 
upwind CESE scheme can resolve the phenomenon of shear-layer instability (see 
the lower part of Fig. 6.3b), which is not observed in the present a-α CESE and FVM 
results.

To assess the accuracy of the high-order CESE schemes described in Chap. 5, 
the Shu–Osher problem and the double Mach-reflection problem were studied inten-
sively in Ref. [8], where the fourth-order CESE scheme provided a good resolution 
of fine structures in the flows. 
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