
Chapter 4 
Multi-dimensional CESE Schemes 

The previous chapter has shown that the necessary numerical dissipation can be 
introduced in 1D CESE schemes through either a central or upwind approach. 
In this chapter, we present the extensions of 2D CESE schemes based on carte-
sian meshes, followed by a detailed description of implementation on unstructured 
meshes. Both the central schemes and upwind schemes will be presented. Then, 
numerical examples will be provided to demonstrate the capabilities of the present 
schemes. 

4.1 CESE Schemes on Cartesian Meshes 

4.1.1 The Improved a-α CESE Scheme 

The marching scheme requires physical variables and their spatial derivatives at each 
mesh point. In the pioneer development of the 2D CESE solver [1], the domain is 
discretized by congruent triangles. Based on a similar technique, Zhang, Yu, and 
Chang [2] reported a further extension of the 2D CESE scheme on quadrilateral 
meshes. In the above versions of CESE schemes, the solution points are solely 
updated at the cell centers with a staggered stencil. As a result, a generalized flux 
technique was also proposed as a post-marching procedure to handle the “flux decou-
pling” problem when two mesh points cohost one sub-CE. Alternatively, an improved 
2D CESE scheme [3, 4] was proposed with a new definition of SE and CE. In this 
updated scheme, the entire space–time region is divided into non-overlapping CEs, 
making it convenient and simpler for calculation and straightforward for extension 
to 3D scheme. Figure 4.1 shows the space–time geometrical configuration of the 
improved 2D CESE scheme with a uniform rectangular mesh. The spatial projec-
tions of the solution points at (n −1/2)th and nth time levels are denoted as | and
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●, respectively. The solution is updated alternatively between the cell centers ● and 
cell vertices |. Here Δt/2 = tn − tn−1/2 and P, P’, and P” subsequently repre-
sent the points at three successive timesteps. The conservation element of point P’, 
denoted by CE(P’), is defined by the space–time hexahedron ABCDA’B’C’D’, i.e., 
the union of four sub-CEs: CELD(P’), CELU (P’), CERD(P’), and CERU (P’). In partic-
ular, CELD(P’) is defined as AFPEA’F’P’E’. Other sub-CEs are defined similarly. 
Next, consider the solution element of P’, SE(P’), which consists of three orthogonal 
planes, A’B’C’D’, EGG”E”, and FHH”F”. The physical flux vector is assumed to 
be smooth within each SE and can be approximated by Taylor expansions about the 
mesh point associated with the SE. In the following, we present the construction of 
the 2D CESE solver using similar techniques as described in the 1D scheme. 

(a) Mesh points on the x-y plane (b) CE(P') 

(c) SE(P') (d) Fluxes in the sub-CEs 

Fig. 4.1 Grid points in the spatial domain, definitions of CE and SE, and corresponding fluxes in 
a CE for the 2D CESE scheme on rectangular meshes
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In this section, we consider the 2D scalar hyperbolic conservation law 

∂u 

∂t 
+ 

∂ f 
∂ x 

+ 
∂g 

∂y 
= 0. (4.1) 

By using the Gauss’ divergence theorem, it is shown that Eq. (4.1) can be written 
in the form of

{
S(C E(P ')) 

h · n dS = 0, (4.2) 

where h = ( f, g, u) is the space–time flux vector, S
(
CE

(
P ')) is the boundary of 

CE
(
P '), n is the unit outward normal vector on the surface of the control volume. 

Note that the u, f , and g are approximated by first-order Taylor expansion about point 
P’. For any (x, y, t) ∈ SE

(
P '), let  
u(x, y, t) = u(δx, δy, δt )P ' , (4.3) 

f (x, y, t) = f (δx, δy, δt )P ' , (4.4) 

g(x, y, t) = g(δx, δy, δt)P ' , (4.5) 

where X (δx, δy, δt)N denotes the first-order Taylor expansion about point N as 

X (δx, δy, δt)N = X N + (Xx )N δx + (
X y

)
N δy + (Xt )N δt, (4.6) 

and 

δx = x − xN , δy = y − yN , δt = t − tN . (4.7) 

In addition, the spatial and temporal derivatives of f (u) and g(u) can be derived 
by the chain rule (Eqs. (2.26) and (2.28)) and ut = −  fx − gy . 

Meanwhile, one obtains local flux conservation of the four sub-CEs by integrating 
Eq. (4.2) over their surfaces, given by 

U '
L D

ΔxΔy 

4 
= UL D

ΔxΔy 

4 
+ (FL D  − FC D)

ΔyΔt 

4 
+ (G DL − GC L  )

ΔxΔt 

4 
, 
(4.8) 

U '
RD

ΔxΔy 

4 
= URD

ΔxΔy 

4 
+ (FC D  − FRD)

ΔyΔt 

4
+ (G DR − GC R)

ΔxΔt 

4 
, 
(4.9)
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U '
RU

ΔxΔy 

4
= URU

ΔxΔy 

4 
+ (FCU − FRU )

ΔyΔt 

4
+ (GC R  − GU R)

ΔxΔt 

4 
, 

(4.10) 

U '
LU

ΔxΔy 

4 
= ULU

ΔxΔy 

4 
+ (FLU − FCU )

ΔyΔt 

4 
+ (GC L  − GU L  )

ΔxΔt 

4 
, 

(4.11) 

where ULD, U’LD, FLD, FCD, GDL, and GCL are the average fluxes on the surfaces 
of CELD(P’), AFPE, A’F’P’E’, AEE’A’, FPP’F’, AFF’A’, and EPP’E’, respectively. 
Similar definitions are applied to the other sub-CEs. By definition, the fluxes ULD, 
FLD, and GDL can be determined via the Taylor expansion in SE(A). It is also important 
to emphasize that the fluxes FCD and GCL that denote the fluxes across the “inner” 
surface of two neighboring sub-CEs, however, are not trivially available due to the 
presence of discontinuities. In fact, it will be shown later that all the fluxes across the 
interfaces among sub-CEs vanish in the formulation of the time marching scheme of 
u. Apart from this, based on the assumption that the distribution within each SE is 
linear, the average fluxes on the exterior surfaces of CELD(P’) read 

UL D  = u
(

Δx 

4 
,
Δy 

4 
, 0

)
A 

(4.12) 

U '
L D  = u

(
−Δx 

4 
, −Δy 

4 
, 0

)
P '

(4.13) 

G DL = g
(

Δx 

4 
, 0,

Δt 

4

)
A 

(4.14) 

FL D  = g
(
0,

Δy 

4 
,
Δt 

4

)
A 

(4.15) 

Fluxes are expressed similarly for the other three sub-CEs. 
To proceed, by adding Eqs. (4.8)–(4.11), the fluxes through the interfaces between 

sub-CEs are well balanced. Consequently, the value of the solution point P’ can be 
derived as 

u(P ') = 
1 

4 
(UL D  + URD + URU + ULU ) + Δt 

4Δx 
(FL D  − FRD − FRU + FLU ) 

+ Δt 

4Δy 
(GL D  + G RD − G RU − GLU ) 

(4.16) 

Moreover, by replacing the average fluxes in Eq. (4.16) with the Taylor expansions 
about their corresponding SEs centers, we can obtain the explicit time marching 
scheme for u(P’) as
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u(P ') = 
1 

4 
u + Δt 

4Δx 
f + Δt 

4Δy 
g, (4.17) 

where 

u = u
(

Δx 

4 
,

Δy 

4 
, 0

)
A 

+ u
(

− Δx 

4 
,

Δy 

4 
, 0

)
B 

+ u
(

− Δx 

4 
, − Δy 

4 
, 0

)
C 

+ u
(

Δx 

4 
, − Δy 

4 
, 0

)
D 

, 

f = f

(
0,

Δy 

4 
,

Δt 

4

)
A 

+ f

(
0, − Δy 

4 
,

Δt 

4

)
D 

− f

(
0,

Δy 

4 
,

Δt 

4

)
B 

− f

(
0, − Δy 

4 
,

Δt 

4

)
C 

, 

g = g
(

Δx 

4 
, 0,

Δt 

4

)
A 

+ g
(

− Δx 

4 
, 0,

Δt 

4

)
B 

− g
(

− Δx 

4 
, 0,

Δt 

4

)
C 

− g
(

Δx 

4 
, 0,

Δt 

4

)
D 

. 

With respect to the spatial derivatives, by using the continuous assumptions at 
points A’, B’, C’, and D’, the following relations can be formulated 

u

(
−Δx 

2 
, −Δy 

2 
, 0

)
p'

= u
(
0, 0,

Δt 

2

)
A 

, (4.18) 

u

(
Δx 

2 
, −Δy 

2 
, 0

)
p'

= u
(
0, 0,

Δt 

2

)
B 

, (4.19) 

u

(
Δx 

2 
,
Δy 

2 
, 0

)
p'

= u
(
0, 0,

Δt 

2

)
C 

, (4.20) 

u

(
−Δx 

2 
,
Δy 

2 
, 0

)
p'

= u
(
0, 0,

Δt 

2

)
D 

. (4.21) 

After mathematical manipulation of Eqs. (4.19) and (4.20), (4.18) and (4.21), 
(4.20) and (4.21), (4.18) and (4.19), respectively, the spatial derivatives at solution 
point P’ can be explicitly calculated as 

u+ 
x (P ') = 

1

Δx

|
u

(
0, 0,

Δt 

2

)
B 

+ u
(
0, 0,

Δt 

2

)
C 

− 2u(P ')
|
, (4.22) 

u− 
x (P ') = −  

1

Δx

|
u

(
0, 0,

Δt 

2

)
A 

+ u
(
0, 0,

Δt 

2

)
D 

− 2u(P ')
|
, (4.23) 

u+ 
y (P ') = 

1

Δy

|
u

(
0, 0,

Δt 

2

)
C 

+ u
(
0, 0,

Δt 

2

)
D 

− 2u(P ')
|
, (4.24) 

u− 
y (P ') = −  

1

Δy

|
u

(
0, 0,

Δt 

2

)
A 

+ u
(
0, 0,

Δt 

2

)
B 

− 2u(P ')
|
. (4.25)
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One note that, two derivatives were estimated along both spatial directions 
(denoted by superscripts + and −). Recall that to a weighted averaged function 
Eq. (3.6) is again adopted to suppress numerical wiggles, such that 

ux (P ') = W
((

u− 
x

)
P ' ,

(
u+ 

x

)
P ' , α

)
, (4.26) 

uy(P ') = W
((

u− 
y

)
P ' ,

(
u+ 

y

)
P ' , α

)
. (4.27) 

The Eqs. (4.17) and (4.22)–(4.27) constitute the first half-step marching scheme 
from cell vertices to cell centers. The second half-step scheme that marches from 
centers to vertices follows a similar approach. As described above, constructing the 
improved 2D a–α CESE scheme based on rectangular grids is genuinely simple and 
could be straightforwardly extended to the 3D scheme. 

4.1.2 CNI CESE Scheme 

When applying the above 2D a–α schemes [1–4] for solving problems with highly 
non-uniform meshes, the local CFL number may vary significantly from its stability 
limit of 1 to approaching 0. Namely, the solutions tend to smear out by decreasing 
the CFL number. The Courant number insensitive (CNI) scheme was proposed to 
address this issue to alleviate the sensitivity problem by improving the strategy in 
updating the derivatives [5]. A new point, Im, is designated dynamically moving 
along the line segment connecting the vertices and the centers M’m of each sub-
CEs (Fig. 4.2). Analogous to the 1D CNI scheme (Sect. 3.2), if we define the local 
and global Courant numbers as ν and ν0, the interpolated points are designated to 
approach the centers when ν/ν0 → 0, and approach the cell vertices when ν/ν0 → 1.

For example, the coordinates of I '
1 are 

x(I '
1) = 

ν 
v0 

x(A') +
(
1 − 

ν 
v0

)
x(M '

1), (4.28) 

y(I '
1) = 

ν 
v0 

y(A') +
(
1 − 

ν 
v0

)
y(M '

1). (4.29) 

If we approximate u(I
'
1) at t = tn from the expansions about A at t = tn−1/2 and 

P’ at t = tn as 

u(δx+, δy+, 0)P ' = u(I '
1) = u

(
δx−, δy−,

Δt 

2

)
A 

(4.30) 

where δx+ = x(I
'
1) − x(P

'
), δy+ = y(I

'
1) − y(P

'
), δx− = x(I

'
1) − x(A), and δy− = 

y(I
'
1) − y(A). Similar relations can be derived for each I

'
m . Combining Eq. (4.30)
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Fig. 4.2 Definition of points 
in 2D CNI CESE scheme

for u(I
'
1) and that for u(I

'
4), one can explicitly formulate two independent conditions 

for calculating the spatial derivatives of u(P’). Repeating the same procedure for 
combinations of u(I

'
2) and u(I

'
3), u(I

'
1) and u(I

'
2), u(I

'
3) and u(I

'
4), we arrive at four 

sets of spatial derivatives. The weighted average function is then used to calculate 
the optimal derivatives for capturing the discontinuities. 

4.1.3 Upwind CESE Scheme 

In the 2D upwind CESE scheme that Shen et al. [6] proposed, the CE retains the 
same form as the central CESE scheme. The time marching scheme of u is the 
same as in the a-α scheme. The upwind procedure only affects the calculation of 
the spatial derivatives, and global space–time conservation is ensured. In analogue 
to the definition in the 1D upwind scheme, for example, SE(P’) is defined as cuboid 
A’B’C’D’A”B”C”D” (Fig. 4.3), where the physical flux vector is approximated by 
the Taylor expansion about point P’. The average values at the top surfaces of the 
four sub-CEs of CE(P’) read 

U '
L D  = u

(
−Δx 

4 
, −Δy 

4 
, 0

)
P '

, (4.31) 

U '
RD = u

(
Δx 

4 
, −Δy 

4 
, 0

)
P '

, (4.32) 

U '
RU = u

(
Δx 

4 
,
Δy 

4 
, 0

)
P '

, (4.33)
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Fig. 4.3 Definition of SE of the upwind CESE scheme 

U '
LU = u

(
−Δx 

4 
,
Δy 

4 
, 0

)
P '

. (4.34) 

Referring to Fig. 4.1d, by substituting Eqs. (4.31) in  (4.8), (4.32) in (4.9) and 
subtracting the two, one obtains 

u D 
x (P ') = 

2

Δx

|
(UR D  − UL D  ) + Δt

Δx

(
2FC D  − FL D  − FR D

) + Δt

Δy

(
G DR − GC R  − G DL + GC L

)|
. (4.35) 

Equation (4.35) represents the spatial derivative in the x direction based on the 
information of the lower pair of CEs. Note that in contrast to central schemes, the 
upwind scheme requires additional estimations of inner fluxes (e.g., FCD, GCR, and 
GCL in Eq. (4.35)) to compute spatial derivatives. Analogously, with the aid of Eqs. 
(4.31) and (4.34) and by combining with Eqs. (4.10) and (4.11), Eqs. (4.8) and (4.11), 
Eqs. (4.9) and (4.10), respectively. The following equations for spatial derivatives 
can be formulated 

uU 
x (P ') = 

2

Δx

|(
URU − ULU

) + Δt

Δx

(
2FCU − FLU − FRU

) + Δt

Δy

(
GC R  − GU R  − GC L  + GU L

)|
, (4.36) 

uL 
y (P ') = 

2

Δy

|(
ULU − UL D

) + Δt

Δx

(
FLU − FCU − FL D  + FC D

) + Δt

Δy

(
2GC L  − G DL − GU L

)|
, (4.37) 

u R 
y (P ') = 

2

Δy

|(
URU − UR D

) + Δt

Δx

(
FCU − FRU − FC D  + FR D

) + Δt

Δy

(
2GC R  − G DR − GU R

)|
. (4.38)
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The final spatial derivatives are calculated by using WBAP limiter to remove small 
noises near the strong discontinuities, e.g., 

ux (P ') = uC 
x (P ')W B AP L2(1, θ1, θ2) = 

1 

2

|
u D 

x (P ') + uU 
x (P ')

|
W B AP L2(1, θ1, θ2), (4.39) 

where 

θ1 = uD 
x (P ')/uC 

x (P '), 

θ2 = uU 
x (P ')/uC 

x (P '). 

In the expressions for spatial derivatives in Eqs. (4.35)–(4.38), the fluxes on CE(P’) 
surfaces can be easily approximated by the Taylor expansions of the values from t 
= tn−1/2. To complete Eqs. (4.35)–(4.38), the fluxes through the inner boundaries 
of CE(P’), FCD, FCU , GCL, and GCR, need to be solved. However, the points at the 
two sides of the interface between two sub-CEs belong to different SEs. In that case, 
the fluxes across these interfaces may be discontinuous. For this reason, they can be 
calculated by an upwind procedure. For example, 

FC D  = F
Λ(

u−
C D  , u+

C D

)
, (4.40) 

where F
Λ

refers to any efficient Riemann solver, u− 
C D  and u

+ 
C D  denote the values at 

the centroid of the interface FPP’F’, and they are respectively approximated by 

u−
C D  = UL D  +

(
u∗ 

x

)
L D

Δx 

4 
+ (

u∗ 
t

)
L D

Δt 

4 
(4.41) 

u+
C D  = URD −

(
u∗ 

x

)
RD

Δx 

4 
+ (

u∗ 
t

)
RD

Δt 

4 
(4.42) 

As an analogue to the 1D upwind CESE scheme, reconstructed slopes are 
employed in the calculation of the upwind fluxes to eliminate the spurious 
oscillations:

(
u∗ 

x

)
L D  = ux (A)W B AP L2(1, θ  1 L D, θ  2 L D

)
(4.43)

(
u∗ 

x

)
RD = ux (B)W B AP L2(1, θ  1 RD, θ  2 RD

)
(4.44) 

where the parameters in WBAP limiter are 

θ 1 L D  = 
(URD − UL D)/(Δx/2) 

ux (A) 
, θ  2 

L D  = 
ux (B) 
ux ( A) 

, 

θ 1 RD = 
(URD − UL D)/(Δx/2) 

ux (B) 
, θ  2 

RD = 
ux (A) 
ux (B) 

. 
(4.45)
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The temporal derivatives are hereafter calculated by the chain rule and Eq. (4.1),

(
u∗ 

t

)
L D  = −  fx

(
UL D,

(
u∗ 

x

)
L D

) − gy
(
UL D, uy( A)

)
(4.46)

(
u∗ 

t

)
RD = −  fx

(
URD,

(
u∗ 

x

)
RD

) − gy
(
URD, uy(B)

)
(4.47) 

4.2 CESE Schemes on Unstructured Meshes 

In order to extend the capability of the CESE scheme to solve problems with complex 
spatial geometries, CESE schemes on unstructured meshes have been proposed and 
developed. Notably, both central and upwind versions have been developed for hybrid 
meshes of triangular and quadrilateral elements. Hereafter, the second order CESE 
scheme on hybrid meshes [7] is presented here. 

4.2.1 a-α CESE Scheme 

Consider a 2D mesh consisting of quadrilateral and triangular elements as sketched 
in Fig. 4.4. The  V i denotes the vertices of the cells. Initially, the value of u, and 
its spatial derivatives, ux and uy, are provided at these vertices. For each cell, Cm 

represents its centroid, and Om is the mid-point of the cell edge. Meanwhile, Vi , V
'

i , 
and V

''
i denote points at time step tn−1/2, tn, tn+1/2, respectively. Other space–time 

points are defined similarly.
The staggered marching strategy is again adopted here. The scheme marches from 

vertices V
'

i to cell centroidsC
''
m from t = tn to t = tn+1/2. The corresponding CE forC ''

m 
is either a triangular prism or a hexahedron (Fig. 4.4c and d). SE

(
C

''
m

)
) is defined as 

four (e.g., SE
(
C

''
1

)
) or five  (e.g.,  SE(C

''
2)) planes intersecting at the centers. Similarly, 

in the other half marching step, from t = tn−1/2 to t = tn, Cm and Om form a polygonal 
element of which the centroid is denoted as Gi, and the scheme marches from Cm 

to the Gi. Note that Gi does not necessarily coincide with Vi. Thus, interpolation 
is required at each marching step. SE(V

'
i ) is defined as M vertical planes and one 

horizontal plane intersecting at V
'

i , where M denotes the number of Cm linked to 
CE(Vi). Each CE is composed of a group of hexahedral sub-CEs. As shown in 
Fig. 4.5, Om−1Cm Om Vi O

'
m−1C

'
m O

'
m V

'
i is the mth sub-CE belonging to CE(V

'
i ), G̃m 

and G̃
'
m are defined as the centroids of the bottom surface Om−1Cm Om Vi and top 

surface O
'
m−1C

'
m O

'
m V

'
i , respectively.
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(a) A hybrid mesh (b) CE(V1) and SE(V1) 

(c) CE(C1) (d) CE(C2) 

Fig. 4.4 Definition of conservation elements in CESE schemes based on a hybrid mesh

It should be noted that the marching scheme from t = tn to t = tn+1/2 is a particular 
case of that from t = tn−1/2 to t = tn. From  t = tn to t = tn+1/2, the projection of a 
CE on the spatial domain is either a quadrilateral or a triangle, while the projection 
in the other step is a polygon with an arbitrary shape. Without loss of generality, 
we present the marching scheme from t = tn−1/2 to t = tn. By applying the integral 
conservation law Eq. (4.1) to the  mth sub-CE, the flux-balancing relation is obtained 
as 

¨ 

O '
m−1C '

m O '
m V '

i 

u dσ = 
¨ 

Om−1Cm Om Vi 

u dσ − 
¨ 

Om−1Cm C '
m O '

m−1+Cm Om O '
m C '

m 
+Om−1Vi V '

i O
'
m−1+Om Vi V '

i O
'
m 

V · n dσ, (4.48)
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Fig. 4.5 The mth sub-CE of CE(Vi)

where V = ( f, g) is the vector of the fluxes, and n is the unit outward normal vector 
of the surface. In second-order schemes, the integration over a surface is equivalent 
to the average value at the centroid multiplied by the surface area. Therefore, the 
above equation can be rewritten as 

U '
m = Um − Δt 

2Sm 

2Σ
l=1

(
Δy(l) 

m F (l) 
m − Δx (l) 

m G(l) 
m

) + Δt 

2Sm

(
Lm−1F

Λ

m−1 − Lm F
Λ

m

)
, 

(4.49) 

where Sm denotes the area of the top surface, and Δt/2 = tn − tn−1/2. U
'
m , Um , 

(F (1) 
m , G(1) 

m ), and (F
(2) 
m , G(2) 

m ) represent the average values over O
'
m−1C

'
m O

'
m V

'
i , 

Om−1Cm Om Vi , Om−1CmC
'
m O

'
m−1, and Cm Om O

'
mC

'
m , respectively. They can be 

approximated by first-order Taylor expansion in the corresponding SEs. F
Λ

m−1 and 
F
Λ

m are the fluxes in the normal direction across the interfaces Om−1Vi V
'

i O
'
m−1 and 

Om Vi V
'

i O
'
m with the neighbouring sub-CEs. Lm-1 and Lm are the lengths of the line 

segments Om−1Vi and Om Vi , respectively. The summation of the flux-balancing 
equations of every sub-CEs is expressed as 

¨ 

C '
1O '

2C '
2...C

'
M 

u dσ = 
MΣ

m=1 

¨ 

O '
m−1C '

m O '
m V '

i 

u dσ (4.50) 

where O0 ≡ OM . By substituting Eqs. (4.48) and (4.49) into (4.50), the interface 
fluxes between sub-CEs are cancelled, the conservation law on the entire CE(V

'
i ) 

yields
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u(G '
i ) =

|
MΣ

m=1 

Um Sm − Δt 

2 

MΣ
m=1 

2Σ
l=1

(
Δy(l) 

m F (l) 
m − Δx (l) 

m G(l) 
m

)|/
MΣ

m=1 

Sm (4.51) 

Equation (4.51) is the explicit marching scheme for u(G
'
i ). In addition, the treat-

ment of spatial derivatives is similar to that in cartesian meshes. By using the 
continuous assumption at C

'
m , the following relation can be established 

u(Cm) + ut (Cm)
Δt 

2 
= u(C '

m) = u(G '
i ) + ux (G

'
i )δxm + uy(G

'
i )δym (4.52) 

for each m, where δxm = x(Cm) − x(Gi), and δym = y(Cm) − y(Gi). Apply the same 
relation at C

'
m+1, together with Eq. (4.52), the two spatial derivatives are ready to be 

solved using Cramer’s rule, 

ux (G
'
i ) =

|||| δum δym 

δum+1 δym+1

||||
|||| δxm δym 

δxm+1 δym+1

||||
, uy(G

'
i ) =

|||| δxm δum 

δxm+1 δum+1

||||
|||| δxm δym 

δxm+1 δym+1

||||
, (4.53) 

where 

δum = u(Cm) + ut (Cm)
Δt 

2 
− u(G '

i ). (4.54) 

Totally, M pairs of derivatives can be calculated in this approach. Shen et al. [7] 
suggested using the weighted average function to obtain the final derivatives as 

ux (G
'
i ) = 

MΣ
m=1 

W (m)u(m) 
x (G ') 

MΣ
m=1 

W (m) 
, uy(G

'
i ) = 

MΣ
m=1 

W (m)u(m) 
y (G ') 

MΣ
m=1 

W (m) 
, (4.55) 

where 

W (m) = 

⎛ 

⎝ 
MΠ

i=1, i /=m

/|
u(i) 

x (G ')i

|2 + |
u(i ) 

y (G ')i

|2 
⎞ 

⎠ 
α 

(4.56) 

Here, the adjustable variable α (α = 0 ∼ 2) controls the dissipation near the discon-
tinuities. Smaller α results in lower dissipation, and the function will reduce to an 
arithmetic average when α = 0. Finally, the value at V '

i is interpolated from G
'
i as 

u(V '
i ) = u(G '

i ) + ux (G
'
i )

|
x(V '

i ) − x(G '
i )

| + uy(G
'
i )

|
y(V '

i ) − y(G '
i )

|
. (4.57)
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The a–α CESE scheme on the hybrid mesh formulated by Eqs. (4.51) and (4.57), 
while robust, is nevertheless sensitive to the Courant number. The following section 
addresses the further improvements to make the scheme Courant number insensitive, 
including the CNI scheme and upwind scheme. These two updated schemes, being 
closely analogous to those presented in Sects. 4.1.2 and 4.1.3, possess the identical 
time-marching scheme for u as provided in the a-α CESE scheme on a hybrid mesh. 
Only the marching scheme for spatial derivatives is modified accordingly. 

4.2.2 CNI CESE Scheme 

As a straightforward extension of the 1D CNI scheme, Shen and Parsani [8] extended 
the CNI scheme to a hybrid mesh. Recall that the central idea of the CNI scheme is 
that when the local Courant number (ν) approaches the global Courant number (ν0), 
the scheme becomes the a-α scheme. When ν approaches 0, the scheme reduces to 
the non-dissipative counterpart. As depicted in Fig. 4.6, a new point I

'
m is defined 

such that 

x(I '
m) = 

ν 
v0 

x(C '
m) +

(
1 − 

ν 
v0

)
x( G̃ '

m), (4.58) 

y(I '
m) = 

ν 
v0 

y(C '
m) +

(
1 − 

ν 
v0

)
y( G̃ '

m). (4.59) 

The value of I
'
m can be obtained using the expansion from G

'
i as 

u(I '
m) = u

(
x(I '

m) − x(G '
i ), y(I '

m) − y(G '
i ), 0

)
G '

i 
, (4.60)

Fig. 4.6 Definition of points 
in instructed mesh for CNI 
scheme 
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where u(I
'
m) can be calculated as 

u(I '
m) = u

(
x(I '

m) − x(Cm), y(I '
m) − y(Cm),

Δt 

2

)
Cm 

. (4.61) 

With the aid of Eqs. (4.60) and (4.61) to each I
'
m . Every two neighboring I

'
m 

explicitly provide one set of ux (G
'
i ) and uy(G

'
i ). Then, the optimal derivatives can 

be weightedly averaged from these M sets of derivatives. 

4.2.3 Upwind CESE Scheme 

In the upwind CESE scheme, the definition of SE is modified and SE(Vi) is the  
polyhedron C

'
1O

'
1C

'
2...C

'
M O

'
MC

''
1 P

''O ''
1C

''
2...C

''
M O

''
M (Fig. 4.4b). The values of u, f , 

and g are continuous within each SE. However, the interface flux F
Λ

m between two 
neighboring sub-CEs may be discontinuous. The flux F

Λ

m can be evaluated in an 
upwind manner in the normal direction as 

F̂m = F̂(uL , u R) (4.62) 

where F̂ denotes the Riemann solver, and the values at the center of the interface, 
uL and uR, are reconstructed from SE(Cm) and SE(Cm+1) with a similar procedure as 
the 2D upwind CESE scheme on a uniform mesh. The WBAP limiter (Eq. (3.42)) 
is used to reconstruct the derivatives. Once the fluxes across inner interfaces are 
determined, the averaged value on the top surface of mth sub-CE U

'
m in Eq. (4.49) 

can be explicitly computed. We can therefore relate U
'
m to u(G

'
i ) using the Taylor 

expansion as 

U '
m = u(G '

i ) + ux (G
'
i )

|
x(G '

m) − x(G '
i )

| + uy(G
'
i )

|
y(G '

m) − y(G '
i )

|
(4.63) 

Two linear equations can be derived for each set of m and m + 1. Accordingly, a 
similar procedure for averaging the derivatives in the central scheme can be directly 
applied here.
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4.3 Numerical Examples 

Two canonical problems are selected to demonstrate the performance of the a–α, 
CNI, and upwind CESE schemes on either structured or unstructured meshes. For 
Euler equations, the above schemes can be directly applied to solve each component 
of the conserved variables. The interface fluxes in the upwind CESE scheme can be 
solved as a Riemann problem, where Riemann solvers including Harten, Lax and 
van Leer (HLL) Riemann solver, the contact discontinuity restoring HLLC Riemann 
solver, and the Roe Riemann solver, can be applied to solve the local Riemann 
problem. Since the upwind direction may not be perpendicular to the grid-aligned 
direction, here we use the rotated HLLC Riemann solver. The first example is the 
Mach 3 wind tunnel problem with step. The computational domain is [0, 3] × [0, 
1] with a step of height 0.2 placed at 0.6 from the entrance. The inflow boundary 
condition is imposed at the left boundary, and supersonic outflow is applied at the 
right boundary. The upper and lower boundaries are treated as reflective boundaries. 
Initially, the primitive variables (ρ,  u, v,  p) are set as (1.4, 3, 0, 1). Figure 4.7 
depicted the simulations using different CESE schemes with 1800 × 600 structured 
cartesian meshes. Both the CNI scheme and the upwind scheme can capture the shear 
layer instability that is missed in the result from a–α scheme.

The second example is the double Mach reflection problem. A Mach 10 shock 
propagates to the right and reflects over a solid wedge with an incline angle of 30
◦. A supersonic inflow boundary condition was implemented on the left boundary. 
Reflective and non-reflective boundary conditions were applied on the lower and 
upper boundary, respectively. The problem was solved using unstructured quadrilat-
eral meshes with a mesh size of 1/400. Figure 4.8 compares the results by applying 
different schemes at computation time t = 0.2. All the three schemes can accurately 
describe the structures while the upwind scheme surpasses with finer resolved feature 
near the wall-adjacent jet.
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(a) a-

(b) Rotated HLLC CESE 

(c) CNI CESE 

CESE 

Fig. 4.7 Mach 3 wind tunnel with a step simulated by different CESE schemes with 1800 × 600 
mesh grids: density contours at t = 4.0
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Fig. 4.8 Double Mach 
reflection problem computed 
by different CESE schemes 
with unstructured 
quadrilateral meshes: density 
contours at t = 0.2

(a) a-𝛼 

(b) Rotated HLLC CESE 

(c) CNI CESE 

CESE 



References 55

References 

1. Chang, S. C., Wang, X. Y., & Chow, C. Y. (1999). The space-time conservation element and 
solution element method: A new high-resolution and genuinely multidimensional paradigm for 
solving conservation laws. Journal of Computational Physics, 156(1), 89–136. 

2. Zhang, Z. C., Yu, S. J., & Chang, S. C. (2002). A space-time conservation element and solu-
tion element method for solving the two-and three-dimensional unsteady Euler equations using 
quadrilateral and hexahedral meshes. Journal of Computational Physics, 175(1), 168–199. 

3. Wang, J. T., Liu, K. X., & Zhang, D. L. (2009). An improved CE/SE scheme for multi-material 
elastic–plastic flows and its applications. Computers & fluids, 38(3), 544–551. 

4. Wang, G., Zhang, D. L., Liu, K. X., & Wang, J. T. (2010). An improved CE/SE scheme for 
numerical simulation of gaseous and two-phase detonations. Computers & fluids, 39(1), 168– 
177. 

5. Chang, S.C., & Wang, X.Y. (2003). Multi-dimensional Courant number insensitive Euler solvers 
for applications involving highly nonuniform meshes. In 39th AIAA/ASME/SAE/ASEE Joint 
Propulsion Conference and Exhibit. 

6. Shen, H., & Wen, C. Y. (2016). A characteristic space–time conservation element and solution 
element method for conservation laws II. Multidimensional extension. Journal of Computational 
Physics, 305, 775–792. 

7. Shen, H., Wen, C. Y., Liu, K. X., & Zhang, D. L. (2015). Robust high-order space–time conserva-
tive schemes for solving conservation laws on hybrid meshes. Journal of Computational Physics, 
281, 375–402. 

8. Shen, H., & Parsani, M. (2018). Positivity-preserving CE/SE schemes for solving the compress-
ible Euler and Navier-Stokes equations on hybrid unstructured meshes. Computer Physics 
Communications, 232, 165–176. 

Open Access This chapter is licensed under the terms of the Creative Commons Attribution 4.0 
International License (http://creativecommons.org/licenses/by/4.0/), which permits use, sharing, 
adaptation, distribution and reproduction in any medium or format, as long as you give appropriate 
credit to the original author(s) and the source, provide a link to the Creative Commons license and 
indicate if changes were made. 

The images or other third party material in this chapter are included in the chapter’s Creative 
Commons license, unless indicated otherwise in a credit line to the material. If material is not 
included in the chapter’s Creative Commons license and your intended use is not permitted by 
statutory regulation or exceeds the permitted use, you will need to obtain permission directly from 
the copyright holder.

http://creativecommons.org/licenses/by/4.0/

	4 Multi-dimensional CESE Schemes
	4.1 CESE Schemes on Cartesian Meshes
	4.1.1 The Improved a-α CESE Scheme
	4.1.2 CNI CESE Scheme
	4.1.3 Upwind CESE Scheme

	4.2 CESE Schemes on Unstructured Meshes
	4.2.1 a-α CESE Scheme
	4.2.2 CNI CESE Scheme
	4.2.3 Upwind CESE Scheme

	4.3 Numerical Examples
	References


