
Chapter 2 
Non-dissipative Core Scheme of CESE 
Method 

This chapter is devoted to demonstrating the basic ideas in the CESE method. These 
ideas include the adoption of a space–time integral form of governing equations as 
the starting point of scheme construction, as well as the introduction of conservation 
element (CE) and solution element (SE) in the discretization of space–time domain. 
Then, the non-dissipative core scheme of the CESE method will be presented in 
detail. 

2.1 Space–Time Integral Form of Governing Equations 

Governing equations for a specific physical problem can be expressed in both differ-
ential and integral forms. Usually, a differential equation or a set of differential 
equations can clearly describe the evolution of a physical system. The differential 
forms of governing equations are prevalent in textbooks and theoretical research 
works, due to their compactness in writing and the maturity in the mathematical 
analysis on differential equations. 

In the area of numerical simulation, the finite difference method is directly applied 
to the differential equations, while the finite volume method and finite element 
method require the governing equations to be cast into integral forms before numer-
ical treatments. In fact, the performance of a numerical method will be influenced 
by the form of equations that is used in the numerical method, even though different 
forms of governing equations can be mathematically equivalent. As will be shown 
in this book, a major feature of the CESE method is the adoption of a space–time 
integral form of the governing equations, in which time and space are treated on the 
same footing. 

For illustrative purposes, we consider the compressible Euler equations for 2D 
planar flows, which can be written in a differential form as
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∂U 
∂t 

+ 
∂F 
∂ x 

+ 
∂G 
∂y 

= 0, (2.1) 

where U denotes the vector of conserved variables such that 

U = 

⎛ 

⎜⎜⎜⎝ 

ρ 
ρu 

ρv 
E 

⎞ 

⎟⎟⎟⎠, (2.2) 

where F and G are the inviscid fluxes of the form 

F = 

⎛ 

⎜⎜⎜⎝ 

ρu 

ρu2 + p 
ρuv 

(E + p)u 

⎞ 

⎟⎟⎟⎠, G = 

⎛ 

⎜⎜⎜⎝ 

ρv 
ρuv 

ρv2 + p 
(E + p)v 

⎞ 

⎟⎟⎟⎠ (2.3) 

In Eqs. (2.2) and (2.3), ρ is the density of the fluid, u and v are the x-component 
and y-component of the flow velocity, respectively, p is the static pressure, and E is 
the total energy per unit volume of the fluid. Note that once the equation of state 
(EOS) is provided, Eq. (2.1) becomes a closed set of equations. Here, flux vectors 
F and G are regarded as functions of conserved vector U. A set of equations in the 
form of Eq. (2.1) is called a system of conservation laws. 

By using the gradient operator in 2D physical space 

∇ ≡
(

∂ 
∂x 

, 
∂ 
∂y

)
, (2.4) 

Equation (2.1) can also be written in a divergence form 

∂U 
∂t 

+ ∇  ·  H = 0, (2.5) 

where H is a matrix composed of spatial flux vectors F and G: 

H = (F, G) (2.6) 

Therefore, the divergence form of Euler equation states that at time t and point 
(x, y), the temporal rate of change of conserved quantities plus the divergence of the 
spatial flux of these quantities must be zero. 

Consider a control volume denoted by V in 2D physical space, as shown in Fig. 2.1, 
with the surface S(V ) and the unit outward normal vector n on the surface. Integrating 
Eq. (2.5) over the control volume V and applying the Gauss’s theorem, one obtains
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Fig. 2.1 Schematic of a 
control volume in 
two-dimensional physical 
space 

∂ 
∂t

(}
V 

U dV
)

+
{
S(V ) 

H · n dS = 0, (2.7) 

which can be interpreted as follows: the temporal rate of change of conserved quan-
tities within the volume V must equal to the net inward flow rate of these quantities 
through the surface S(V ). This integral form of Euler Eq. (2.7) is the starting point 
of the well-known finite volume method (FVM) in computational fluid dynamics. 

With a unified treatment of time and physical space, we can define x, y, and t as 
coordinates in a three-dimensional Euclidean space, called the space–time domain. 
On this basis, the definition of gradient operator can be extended as 

∇ ≡
(

∂ 
∂x 

, 
∂ 
∂ y 

, 
∂ 
∂t

)
(2.8) 

and Eq. (2.1) can be written in a divergence-free form as 

∇ ·  h = 0, (2.9) 

where the matrix h is composed of both flux vectors and the conserved vector U: 

h = (F, G, U) (2.10) 

By applying Gauss’s theorem to the integration of Eq. (2.9) over an arbitrary 
control volume V in the 3D space–time domain as shown in Fig. 2.2, the  Euler  
equation is eventually formulated as

{
S(V ) 

h · n dS = 0 (2.11)

which means the balancing of flux is enforced for a space–time control volume. 
Clearly, this equation gives a direct description of the space–time conservation of 
mass, momentum, and energy in fluid flows, which faithfully preserves the original 
physical laws.
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Fig. 2.2 Schematic of a 
control volume in 
three-dimensional 
space–time domain

Equation (2.11) provides an example of the space–time integral form of governing 
equations for physical problems. It is worth noting that the space–time integral form 
and the traditional integral form like Eq. (2.7) state the same physics and must be 
equivalent to each other in mathematics, but they can lead to different numerical 
schemes. In contrast to the finite volume method, the CESE method numerically 
implements the space–time integral form of governing equations, emphasizing on 
the conservative property in the unity of time and physical space. 

2.2 Definitions of Conservation Elements and Solution 
Elements 

The CESE method starts with discretizing the space–time domain which is relevant 
to the computation. The discretization procedure generates the mesh for the physical 
space and determines the time-step size for the time-marching algorithm, similar to 
most CFD methods. The features of the CESE discretization include the construction 
of control volumes for the space–time integral form of the governing equation, the 
arrangement of the solution points, and the selection of the unknown variables to be 
calculated and stored at each solution point. All these features can be demonstrated 
by introducing two special concepts: the conservation element (CE) and the solution 
element (SE), which coin the algorithm accordingly. 

To explain the CESE method in a simple way, we begin with the application of the 
CESE method to a 1D scalar conservation law of the form, without loss of generality 

∂u 

∂t 
+ 

∂ f (u) 
∂x 

= 0. (2.12) 

With a uniform division of the 1D physical space and a constant time step, the 
space–time mesh is constructed as a 2D x–t plane as shown in Fig. 2.3 (solid lines). 
The spatial coordinate of the j-th mesh node is denoted by xj, with the corresponding 
cell centre position at xj+1/2 = (xj + xj+1)/2, and the cell size ofΔx = xj+1 − xj. In this
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Fig. 2.3 Mesh and arrangement of solution points for 1D CESE scheme 

time-marching algorithm, each step between tn−1 and tn consists of two half steps: 
[tn−1, tn−1/2] and [tn−1/2, tn], with the time-step size of Δt = tn − tn−1. 

The unknown function u(x, t) is represented by the discrete values of u at a set 
of specific space–time points, called solution points which are shown as mesh nodes 
in Fig. 2.3—black circles for integer time levels {t0, t1, …,  tn, …} and red squares 
(cell centres) for half-integer time levels {t1/2, t3/2, …,  tn+1/2,…}. In other words, a 
staggered mesh is used at each intermediate time level. In the CESE scheme, both 
the unknown variable u and its spatial derivative ux will be calculated and stored at 
each solution point (e.g. point (j, n)): 

un j ≡ u(x j , tn), (ux )
n 
j ≡ 

∂u 

∂x

(
x j , tn

)
(2.13) 

The paths of information flow in a single CESE time step is illustrated in the 
schematic diagram in Fig. 2.4. As seen, a highly compact stencil in space and time 
is used in the CESE scheme. If a half time step it is treated as the basic iteration, the 
halfwidth of the symmetric stencil is then Δx/2 and unknowns at point (j, n) only 
depend on the data stored at (j − 1/2, n − 1/2) and (j + 1/2, n − 1/2).

Based on the space–time mesh shown in Fig. 2.3, a set of small space–time 
elements, named conservation elements (CE), can be constructed, as demonstrated 
in Fig. 2.5. A CE is assigned to each solution point. For example, (CE)n j is denoted 
as the CE for point ( j, n), which is the rectangle with four vertices at the points 
(j − 1/2, n − 1/2), ( j + 1/2, n − 1/2), (j + 1/2, n), and (j − 1/2, n). Apparently, 
the CEs cover the whole space–time domain without overlap. It is noteworthy that
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Fig. 2.4 The information flow in one CESE time step with time-marching variables

the arrangement of CEs is staggered in two successive half time steps. Accordingly, 
the space–time integral form of Eq. (2.12) is numerically implemented within each 
conservation element and discrete equations for unknowns are established. 

When performing the space–time integration of Eq. (2.12) over a CE, an important 
question arises: how to evaluate u and f along the boundary of the CE. This leads to the

Fig. 2.5 Schematic of conservation elements (CEs) arrangement 
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Fig. 2.6 Schematic of the 
solution element (SE) 
associated with solution 
point (j, n) 

introduction of a solution element (SE) for each solution point, as shown in Fig. 2.6. 
(SE)n j composed of two line segments bisecting each other at point (j, n), forming 
a cross with four endpoints (j + 1/2, n), (j, n + 1/2), (j − 1/2, n), and (j, n − 1/2). 
For half-integer points, SEs can be defined in the same way. Note that conservation 
element (CE)n j is bounded by line segments belonging to three solution elements: 

(SE)n j , (SE)
n−1/2 
j−1/2, and (SE)

n−1/2 
j+1/2. In the CESE scheme, the functions u(x, t) and f (x, 

t) are assumed to be linear along each line segment of a SE and are approximated by 
first-order Taylor expansions about the centre of the SE. Specifically, in the solution 
element (SE)n j , u and f are constructed as 

u(x, t) = un j + (ux )
n 
j (x − x j ) + (ut )n j (t − tn), (x, t) ∈ (SE)n j (2.14) 

f (x, t) = f n j + ( fx )n j (x − x j ) + ( ft )n j (t − tn), (x, t) ∈ (SE)n j (2.15) 

where ut and f t are the temporal derivatives of u and f , respectively. 

2.3 Non-dissipative Core Scheme: a Scheme 

In this section, we present a non-dissipative CESE scheme, named the a scheme, to 
solve the 1D scalar conservation law, Eq. (2.12). A space–time flux vector is defined 
as 

h = ( f, u) (2.16) 

where f and u can be regarded as the components of flux vector h in x-direction and 
t-direction, respectively. According to this definition, Eq. (2.12) can be converted into 
the space–time integral form of Eq. (2.11) by following the procedure in Sect. 2.1. 

Consider a half step marching from time level n−1/2 to time level  n. At the solution 
point (j, n), two independent unknowns un j and (ux )

n 
j , need to be calculated simul-

taneously. Therefore, two algebraic equations need to be formulated by discretizing
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Fig. 2.7 Definition of 
sub-CEs: CE− and CE+, and  
the associated SEs 

the integral conservation law. For this purpose, the conservation element (CE)n j is 
split into two sub-elements: (CE−)n j and (CE

+)n j . As shown in Fig. 2.7, (CE
−)n j and 

(CE+)n j are the rectangle ACDE and the rectangle CBFD, respectively. Each edge of 
these rectangles belongs to one of the three SEs associated with (CE)n j . 

Next, the space–time integral conservation law is implemented over each of the 
sub-CEs. Let the control volume V in Eq. (2.11) be  (CE−)n j and (CE

+)n j in turn, one 
can obtain

{
S(CE−); 

h · ndS = 0 (2.17) 

and
{
S(CE+)n j 

h · n dS = 0, (2.18) 

where h is the space–time flux vector expressed in Eq. (2.16) and n is the unit outward 
normal vector on the boundary of (CE−)n j or (CE

+)n j . 
As depicted in Fig. 2.8, the average values of u(x, t) on line segments DE, DF, 

AC, and BC are denoted by UL 
*, UR 

*, UL, and UR, respectively, while the average 
values of f (x, t) on line segments AE, BF, and CD are presented by FL, FR, and FC , 
respectively. Notably, CD is the interface between two sub-CEs. With this notation, 
integral Eqs. (2.17) and (2.18) can be expressed as 

U ∗ 
L

Δx 

2 
= UL

Δx 

2 
+ (FL − FC )

Δt 

2 
, (2.19) 

U ∗ 
R

Δx 

2 
= UR

Δx 

2 
+ (FC − FR)

Δt 

2 
, (2.20)

which explicitly state the balance of space–time flux in each sub-CE.
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Fig. 2.8 Space–time flux through the each boundary of sub-CEs

To proceed with the scheme construction, the time-marching variables (i.e. u and 
ux) at the solution points will be linked with UL 

*, UR 
*, UL, UR, FL, FR, and FC 

in Eqs. (2.19) and (2.20), using the concept of the solution element. Recall that u 
and f can be calculated by first-order Taylor expansions about the solution point, by 
assuming them to be linear functions of x and t inside each individual SE. Since line 
segments AC and AE belong to (SE)

n−1/2 
j−1/2, UL and FL can be obtained in terms of the 

known information stored at (j − 1/2, n − 1/2), i.e., point A in Fig. 2.8. Performing 
Taylor expansions in (SE)

n−1/2 
j−1/2 yields 

UL = un−1/2 
j−1/2 +

Δx 

4 
(ux )

n−1/2 
j−1/2, (2.21) 

FL = f n−1/2 
j−1/2 +

Δt 

4 
( ft )n−1/2 

j−1/2 (2.22) 

Similarly, because BC and BF belong to (SE)
n−1/2 
j+1/2, UR and FR can be obtained 

by the Taylor expansions about solution point (j + 1/2, n − 1/2): 

UR = un−1/2 
j+1/2 −

Δx 

4 
(ux )

n−1/2 
j+1/2 (2.23) 

FR = f n−1/2 
j+1/2 +

Δt 

4 
( ft )n−1/2 

j+1/2 (2.24) 

In Eqs. (2.21)–(2.24), u and ux at time level n − 1/2 are the known values. In 
addition, since f = f (u) is a prescribed function in the conservation law, 

f n−1/2 
j±1/2 = f (un−1/2 

j±1/2) (2.25) 

By applying the chain rule, the spatial derivative of f is described as
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( fx )n−1/2 
j±1/2 =

|(
∂ f

/
∂u

)
ux

|n−1/2 
j±1/2 (2.26) 

The temporal derivative of u can be obtained using Eq. (2.12), 

(ut )
n−1/2 
j±1/2 = −( fx )n−1/2 

j±1/2 (2.27) 

By applying the chain rule again, the temporal derivative of f is derived as 

( ft )n−1/2 
j±1/2 =

|(
∂ f

/
∂u

)
ut

|n−1/2 
j±1/2 (2.28) 

Accordingly, UL, FL, UR, and FR can be explicitly calculated using the above 
formulas. 

The first-order Taylor expansion in (SE)n j is used again to relate UL 
* and UR 

* to 
unknowns un j and (ux )

n 
j at time level n: 

U ∗ 
L = un j −

Δx 

4 
(ux )

n 
j (2.29) 

U ∗ 
R = un j +

Δx 

4 
(ux )

n 
j (2.30) 

Substituting Eqs. (2.29) and (2.30) into (2.19) and (2.20) yields 

un j −
Δx 

4 
(ux )

n 
j = UL + (FL − FC )

Δt

Δx 
, (2.31) 

un j +
Δx 

4 
(ux )

n 
j = UR + (FC − FR)

Δt

Δx 
(2.32) 

Adding Eqs. (2.31)–(2.32), one can derive 

un j = 
1 

2 
(UL + UR) + Δt 

2Δx 
(FL − FR) (2.33) 

and subtracting Eqs. (2.31) from (2.32), one has

Δx 

4 
(ux )

n 
j = 

1 

2 
(UR − UL ) + Δt 

2Δx 
(2FC − FL − FR) (2.34) 

Up to now, Eq. (2.33) is presented as an explicit time-marching formula for un j , 
but (ux )

n 
j still cannot be directly calculated by Eq. (2.34). The reason is because FC , 

which presents the average value of flux f through the interface CD, has not been 
addressed. In the original CESE scheme, FC is provided by the Taylor expansion in 
(SE)n j , i.e.,
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FC = f n j − Δt 

4 
( ft )n j (2.35) 

With a similar procedure to Eqs. (2.25)–(2.28), f n j and ( ft )n j can be expressed 
in terms of un j and (ux )

n 
j . Since u

n 
j is determined by Eq. (2.33), a time-marching 

formula for the only unknown in Eq. (2.34), (ux )
n 
j , can eventually be derived. 

Note that a complete CESE time step consists of two half steps: a half step 
marching from nodes to centres and another half step marching from centres to 
nodes. The marching schemes for both half steps are identical, except for the indexes 
of the solution points. Usually, the initial conditions of u and ux are specified at the 
initial time, t0 = 0 and the corresponding boundary conditions for u and ux need to 
be implemented at the boundaries of x. 

The above CESE scheme is referred to as the a scheme [1] in the literature. Define 
a solution vector 

qn 
j = 

⎡ 

⎣ 
un j

Δx 

4 
(ux )

n 
j 

⎤ 

⎦, (2.36) 

and let function f (u) be a linear one: 

f = au, a is a constant (2.37) 

The a scheme, which is mainly expressed by Eqs. (2.33) and (2.34), can then be 
rewritten in a matrix form: 

qn 
j = QLqn−1/2 

j−1/2 + QRqn−1/2 
j+1/2 (2.38) 

where the coefficient matrices are 

QL = 
1 

2

|
1 + ν 
−1 

1 − v2 

−1 + ν

|
, QR = 

1 

2

|
1 − ν 
1 

−1 + v2 

−1 − ν

|
(2.39) 

and ν is a constant, which is defined as 

ν ≡ a
Δt

Δx 
(2.40) 

Analogously, we apply Eq. (2.38) to the half-step marching from time level n−1 
to time level n−1/2, and obtain 

qn−1/2 
j−1/2 = QLqn−1 

j−1 + QRqn−1 
j , (2.41) 

qn−1/2 
j+1/2 = QLqn−1 

j + QRqn−1 
j+1, (2.42)
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After substituting Eqs. (2.41) and (2.42) into (2.38), a complete time step in the 
a scheme can be formulated as. 

qn 
j = (QL )

2 qn−1 
j−1 + (QLQR + QRQL )qn−1 

j + (QR)2 qn−1 
j+1. (2.43) 

In fact, the numerical dissipation, dispersion, and stability of different CESE 
schemes can be conveniently analysed using their matrix forms like Eq. (2.43). 

An unique feature of this a scheme is its use of Taylor expansion in the inverse time 
direction, to relate the interface flux FC to the marching variables (see Eq. (2.35)). 
Such a treatment makes the a scheme the space–time inversion invariant and renders 
this scheme non-dissipative [2]. From a historical perspective, the a scheme forms 
the non-dissipative core of subsequent CESE-family schemes. 

The a scheme described in this chapter is restricted to 1D scalar problems and 
uniform meshes. First-order Taylor expansions are used in each solution element in 
the present scheme. Since the a scheme is reversible in time, it cannot be used for prac-
tical applications, considering that real physical processes are irreversible in time to 
respect the second law of thermodynamics. Accordingly, substantial improvements 
have been made to develop this a scheme into a viable numerical method. In Chap. 3, 
we will describe different approaches to introducing necessary numerical dissipa-
tion into the CESE scheme, which result in two categories of CESE schemes: the 
central CESE schemes and the upwind CESE schemes. In Chap. 4, we will describe 
the extensions of CESE schemes to multi-dimensional Cartesian and unstructured 
computational meshes. In Chap. 5, high-order Taylor expansions in solution elements 
will be used to achieve high-order accuracy in both space and time, without enlarging 
the spatial stencil or adding time-integration stages. 
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