
Chapter 5 
High-Order CESE Schemes 

This chapter is dedicated to the description of high-order CESE schemes. In the 
second-order CESE schemes, the first-order Taylor expansion was employed to 
approximate the unknowns and fluxes within the solution elements. The accuracy of 
the scheme mainly depends on the approximations on the surfaces of the conser-
vation elements. Analogously, the high-order CESE schemes with Mth-order in 
space and time are generally derived from (M−1)th-order Taylor expansions in the 
solution elements. The high-order CESE schemes use a highly compact stencil. 
Furthermore, spatial and temporal high-order accuracy can be achieved simultane-
ously. We shall start with constructing a 1D high-order scheme and then extend it to 
multi-dimensional schemes. 

5.1 Construction of High-Order CESE Schemes 

Several attempts have been made to obtain higher-order accuracy for CESE schemes. 
One of the primary advantages of the high-order CESE schemes is the usage of the 
most compact stencil. High-order accuracy is achieved by the approximation with 
high-order Taylor expansions. For example, a(3) scheme [1] has 4th order of accuracy 
by applying second-order Taylor expansion, and it is stable for v < 0.5. Furthermore, 
a(4) scheme [2] with 4th to 5th order of accuracy was developed by defining more 
CEs at each grid point. The CFL number needs to be constrained below 1/3. The 
constructions of high-order schemes from the above two approaches were limited to 
only 1D scenarios. Alternatively, Chang [3] proposed a high-order scheme that can 
be extended to arbitrary order with CFL limited below 1. In this scheme, the even 
derivatives are advanced in the same manner as the conserved variables, whereas 
the odd derivatives are advanced through finite difference. This method has been 
extended to solve Euler equations [4]. In this section, we follow the approaches of Liu 
and Wang [5] in deriving the high-order 1D scheme, Wang et al. [6] for 2D high-order

© The Author(s) 2023 
C.-Y. Wen et al., Space–Time Conservation Element and Solution Element Method, 
Engineering Applications of Computational Methods 13, 
https://doi.org/10.1007/978-981-99-0876-9_5 

57

http://crossmark.crossref.org/dialog/?doi=10.1007/978-981-99-0876-9_5&domain=pdf
https://doi.org/10.1007/978-981-99-0876-9_5


58 5 High-Order CESE Schemes

schemes on uniform meshes, and Shen et al. [7] for the 2D high-order scheme for 
hybrid meshes. In these schemes, only the conserved variables are computed through 
the integration on the CE surfaces, while all the physical derivatives are computed 
through the finite difference of lower-order derivatives. In the following text, we 
will present the constructions of the third-order CESE schemes. The construction of 
arbitrary order schemes could be achieved by implementing the same strategy, and 
details can be accessed in Shen et al. [7] and Yang et al. [8]. 

5.1.1 Construction of a Third-Order 1D CESE Scheme 

Recall the 1D scalar problem 

∂u 

∂t 
+ 

∂ f (u) 
∂x 

= 0 (5.1) 

with f = au. To formulate a third-order scheme, u(x, t) and f (x, t) in any  (x, t) ∈ SE(j, 
n) are approximated by the second-order Taylor expansion as 

u(x, t) = un j + (ux )
n 
j (x − x j ) + (ut )n j (t − tn) + (uxt  )

n 
j (x − x j )(t − tn) 

+ 
1 

2 
(uxx  )

n 
j (x − x j )2 + 

1 

2 
(utt  )

n 
j (t − tn)2 , (x, t) ∈ (SE)n j (5.2) 

f (x, t) = f n j + ( fx )n j (x − x j ) + ( ft )n j (t − tn) + ( fxt  )n j (x − x j )(t − tn) 

+ 
1 

2 
( fxx  )n j (x − x j )2 + 

1 

2 
( ftt  )n j (t − tn)2 . (x, t) ∈ (SE)n j (5.3) 

where uxt , uxx, utt , f xt , f xx, and f tt are the second-order derivatives of u and f , respec-
tively. These derivatives are assumed constant within the SE. With the aid of the Eqs. 
(5.1) and (5.2), then one has 

(ut )
n 
j = −a(ux )

n 
j , (uxt  )

n 
j = −a(uxx  )

n 
j , (utt  )

n 
j = a2 (uxx  )

n 
j . (5.4) 

It implies that u, ux, uxx are the only independent variables associated with each 
grid point. Substituting Eqs. (5.2) and (5.3) into the integral form of Eq. (5.1). The 
following algebraic relation can be derived as 

un j�x + (uxx  )
n 
j

�x3 

24 
= UL + UR + FL − FR, (5.5) 

where
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UL = �x 
2 u

n−1/2 
j−1/2 + �x2 

8 (ux )
n−1/2 
j−1/2 + �x3 

48 (uxx  )
n−1/2 
j−1/2 

UR = �x 
2 u

n−1/2 
j+1/2 − �x2 

8 (ux )
n−1/2 
j+1/2 + �x3 

48 (uxx  )
n−1/2 
j+1/2 

FL = �t 
2 f 

n−1/2 
j−1/2 + �t2 

8 ( ft )n−1/2 
j−1/2 + �t3 

48 ( ftt  )
n−1/2 
j−1/2 

FR = �t 
2 f 

n−1/2 
j+1/2 + �t2 

8 ( ft )n−1/2 
j+1/2 + �t3 

48 ( ftt  )
n−1/2 
j+1/2 

. (5.6) 

In Eqs. (5.5) and (5.6), the values at t = tn−1/2 are already known. It is necessary to 
calculate (uxx  )

n 
j at t = tn before explicitly computing un j . The second-order derivative, 

(uxx  )
n 
j , is approximated by a central difference as 

(uxx  )
n 
j= 

(ux )
n 
j+1/2 − (ux )

n 
j−1/2

�x 
. (5.7) 

Then un j can be directly computed from Eq. (5.5), and (ux )
n 
j can be calculated 

in the same manner as the second-order a-α schemes using the weighted average 
function. 

5.1.2 Construction of a Third-Order 2D CESE Scheme 
on Uniform Mesh 

Recall the 2D scalar hyperbolic conservation law 

∂u 

∂t 
+ 

∂ f 
∂ x 

+ 
∂g 

∂y 
= 0. (5.8) 

which can be cast into the integral form

∮
S(CE(P ′)) 

h · n dS = 0 (5.9) 

where h = ( f, g, u) is the space–time flux vector, n is the unit outward normal vector 
on the surface of the control volume. Inspired by the construction of the high-order 
1D scheme, second-order Taylor expansion is utilized inside the SE to estimate u, f , 
and g. The definitions of SE and CE are kept the same as the second-order schemes 
(Fig. 4.1). For a point (x, y, t) that belongs to SE(P’), 

u(x, y, t) = u(δx, δy, δt )P ′ , (x, y, t) ∈ SE
(
P ′) (5.10) 

f (x, y, t) = f (δx, δy, δt)P ′ , (x, y, t) ∈ SE
(
P ′) (5.11) 

g(x, y, t) = g(δx, δy, δt)P ′ , (x, y, t) ∈ SE
(
P ′) (5.12)
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where X (δx, δy, δt)N denotes the second-order Taylor expansion about point N as 

X (δx, δy, δt )N = X N + (Xx )N δx +
(
X y

)
N δy + (Xt )N δt 

+ 
1 

2 
(Xxx  )N (δx)

2 + 
1 

2

(
X yy

)
N (δy)

2 + 
1 

2 
(Xtt  )N (δt)

2 

+ (
Xxy

)
N δxδy +

(
X yt

)
N δyδt + (Xxt  )N δxδt. (5.13) 

and 

δx = x − xN , δy = y − yN , δt = t − tN . (5.14) 

Substituting Eqs. (5.10)–(5.12) into (5.8), one obtains 

ut = −  fx − gy 
utt  = −  fxt  − gyt 
uxt  = −  fxx  − gxy  
u yt = −  fxy  − gyy 

. (5.15) 

Together with the chain rule, to compute the derivatives in Eq. (5.13), the only 
unknowns are u, ux , uy , uxx , uyy , and uxy . By integrating over the surface of the 
CE(P’), Eq. (5.9) leads to

∮
S(V ) 

h · n dS =
∫
A′B ′C ′D′

h · n dS +
∫
ABC  D  

h · n dS +
∫
AB  B ′A′

h · n dS 

+
∫
BCC ′B ′

h · n dS +
∫
CD  D′C ′

h · n dS +
∫
DA  A′D′

h · n dS = 0. 

(5.16) 

Thereafter, with the aid of Eqs. (5.10) –(5.12) and (5.16) can be rearranged as 

(u)p′ + 
(�x)2 

24 
(uxx  )p′ + 

(�y)2 

24

(
uyy

)
p′ = 

1 

4

(
u + �t

�x 
f + �t

�y 
g

)
, (5.17) 

where 

ū =û

(
�x 

4 
,
�y 

4 
, 0

)
A 

+ û

(
−�x 

4 
,
�y 

4 
, 0

)
B 

+ û

(
−�x 

4 
, −�y 

4 
, 0

)
C 

+ û

(
�x 

4 
, −�y 

4 
, 0

)
D 

, (5.18) 

f̄ = f̂
(
0,

�y 

4 
,
�t 

4

)
A 

− f̂
(
0,

�y 

4 
,
�t 

4

)
B
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− f̂
(
0, −�y 

4 
,
�t 

4

)
C 

+ f̂
(
0, −�y 

4 
,
�t 

4

)
D 

, (5.19) 

ḡ =ĝ

(
�x 

4 
, 0,

�t 

4

)
A 

+ ĝ

(
−�x 

4 
, 0,

�t 

4

)
B 

− ĝ

(
−�x 

4 
, 0,

�t 

4

)
C 

− ĝ

(
�x 

4 
, 0,

�t 

4

)
D 

, (5.20) 

and 

û(δx, δy, δt)N = (u)N + (ux )N δx +
(
uy

)
N 
δy + (ut )N δt 

+ 
1 

6 
(uxx  )N (δx)

2 + 
1 

6

(
uyy

)
N (δy)

2 + (
uxy

)
N δxδy, (5.21) 

f̂ (δx, δy, δt)N = ( f )N + ( fx )N δx +
(
fy

)
N δy + ( ft )N δt 

+ 
1 

6

(
fyy

)
N (δy)

2 + 
1 

6 
( ftt  )N (δt)2 +

(
fyt

)
N δyδt, (5.22) 

ĝ(δx, δy, δt)N = (g)N + (gx )N δx +
(
gy

)
N δy + (gt )N δt 

+ 
1 

6 
(gxx  )N (δx)

2 + 
1 

6 
(gtt  )N (δt)

2 + (gxt  )N δxδt. (5.23) 

Prior to explicitly computing (u)p′ from Eq. (5.17), (uxx  )p′ and
(
uyy

)
p′ are 

required to be obtained from the finite difference of the interpolations from the 
previous time step. The second-order derivative (uxx  )p′ can be estimated as 

(uxx  )
+ 
p′ = 

(ux )B + �t 
2 (uxt  )B − (ux )A − �t 

2 (uxt  )A

�x 
, (5.24) 

(uxx  )
− 
p′ = 

(ux )C + �t 
2 (uxt  )C − (ux )D − �t 

2 (uxt  )D

�x 
. (5.25) 

(uxx  )p′ is then computed from simple average as 

(uxx  )p′ = 
(uxx  )

+ 
p′ + (uxx  )

− 
p′

2 
. (5.26) 

Similarly, the derivative
(
uyy

)
p′ is computed as

(
uyy

)+ 
p′ =

(
uy

)
D + �t 

2

(
uyt

)
D −

(
uy

)
A − �t 

2

(
uyt

)
A

�y 
, (5.27)
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(
uyy

)− 
p′ =

(
uy

)
C + �t 

2

(
uyt

)
C −

(
uy

)
B − �t 

2

(
uyt

)
B

�y 
, (5.28)

(
uyy

)
p′ =

(
uyy

)+ 
p′ + (

uyy
)− 
p′

2 
. (5.29) 

Equations (5.17), (5.26), and (5.29) form the procedure to get the values of (u)p′ , 
(uxx  )p′ and

(
uyy

)
p′ at the new time level. To complete the time marching, we need 

to further compute ux , uy , and uxy . The weighted average of the sided-estimations 
computes the first-order derivatives as 

(ux )
+ 
p′ = 

1

�x

[
u

(
0, 0,

�t 

2

)
B 

+ u
(
0, 0,

�t 

2

)
C 

− 2(ux )p′

]
, (5.30) 

(ux )
− 
p′ = 

1

�x

[
2(ux )p′ − u

(
0, 0,

�t 

2

)
A 

− u
(
0, 0,

�t 

2

)
D

]
, (5.31)

(
uy

)+ 
p′ = 

1

�y

[
u

(
0, 0,

�t 

2

)
C 

+ u
(
0, 0,

�t 

2

)
D 

− 2(ux )p′

]
, (5.32)

(
uy

)− 
p′ = 

1

�y

[
2
(
uy

)
p′ − u

(
0, 0,

�t 

2

)
A 

− u
(
0, 0,

�t 

2

)
B

]
, (5.33) 

(ux )p′ = W
((
u− 
x

)
P ′ ,

(
u+ 
x

)
P ′ , α

)
, (5.34)

(
uy

)
p′ = W

((
u− 
y

)
P ′ ,

(
u+ 
y

)
P ′ , α

)
. (5.35) 

Meanwhile, the mixed derivative uxy  is computed from

(
uxy

)+ 
p′ = 

(ux )D + �t 
2 (uxt  )D − (ux )A − �t 

2 (uxt  )A

�y 
, (5.36)

(
uxy

)− 
p′ = 

(ux )C + �t 
2 (uxt  )C − (ux )B − �t 

2 (uxt  )B

�y 
, (5.37)

(
uyx

)+ 
p′ = 

(ux )B + �t 
2 (uxt  )B − (ux )A − �t 

2 (uxt  )A

�x 
, (5.38)

(
uyx

)− 
p′ = 

(ux )C + �t 
2 (uxt  )C − (ux )D − �t 

2 (uxt  )D

�x 
, (5.39)

(
uxy

)
p′ = 

1 

4

[(
uxy

)+ 
p′ + (

uxy
)− 
p′ + (

uyx
)+ 
p′ + (

uyx
)− 
p′

]
. (5.40)
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5.1.3 Construction of a Third-Order 2D CESE Scheme 
on Unstructured Mesh 

Similar to constructing the third-order scheme on a a uniform mesh, second-order 
Taylor expansion is utilized here, and the variables stored at each grid point are still 
u, ux , uy , uxx , uyy , and uxy . Now we recollect the definitions of SE and CE in the 2D 
CESE scheme on the unstructured mesh as depicted in Fig. 4.4, and the flux balancing 
relation was derived in Eq. (4.48). From the summation of the conservation law for 
all the sub-CEs, we arrive at the flux balancing relation for CE(V

′
i ): 

¨ 

C ′
1 O

′
1···C ′

M O
′
M 

u dσ = 
M∑

m=1 

¨ 

Cm Om Vi Om−1 

u dσ − 
M∑

m=1 

¨ 

Cm Om O ′
mC

′
m+Om−1CmC ′

m O
′
m−1 

V · ndσ .  

(5.41) 

The LHS of Eq. (5.41) represents the integration of u on the top surface of CE(V
′
i ), 

i.e., 

¨ 

C ′
1 O

′
1 ···C ′

M O
′
M 

u dσ = u
(
G′
i
) · S + TERM1 = u

(
G′
i
) · S + 

M∑
m=1 

¨ 

C ′
m O

′
m G

′
i O

′
m−1 

1 

2 

∂2u
(
G′
i

)

∂ x2
(δx)2 

+ 
1 

2 

∂2u
(
G′
i

)

∂y2
(δy)2 + 

∂2u
(
G′
i

)

∂x∂y 
(δx)(δy)dxdy, (5.42) 

where δx = x − x(G ′
i ), δy = y − y(G ′

i ), and S represents the area of the polygon 
C

′
1O

′
1 . . .  C ′

M O
′
M . The second term in RHS (TERM1) of Eq. (5.42) denotes the inte-

gration of the high-order terms of u. The two terms in RHS of Eq. (5.41) can be 
respectively expressed as 

M∑
m=1 

¨ 

Cm Om Vi Om−1 

u dσ = TERM2 = 
M∑

m=1 

¨ 

Cm Om Vi Om−1 

u(Cm ) + 
∂u(Cm ) 

∂x 
(δx) + 

∂u(Cm ) 
∂y 

(δy) 

+ 
1 

2 

∂2u(Cm ) 
∂x2

(δx)2 + 
1 

2 

∂2u(Cm ) 
∂ y2

(δy)2 + 
∂2u(Cm ) 

∂x∂y 
(δx)(δy)dxdy, (5.43) 

where δx = x − x(Cm), δy = y − y(Cm). 

M∑
m=1 

¨ 

Cm Om O ′
mC

′
m+Om−1CmC ′

m O
′
m−1 

V · ndσ = TERM3 = 
M∑

m=1

[
FLU  X (m) 

1 + FLU  X (m) 
2

]
, 

(5.44) 

with
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FLU  X (m) 
1 = �t 

2
�y(m) 

1 

2∑
a=0 

2−a∑
b=0 

2−a−b∑
c=0 

1 

(a + b + 1)a!b!(c + 1)! 
∂a+b+c f (Cm ) 

∂xa ∂yb∂tc

[
�x(m) 

1

]a[
�y(m) 

1

]b[
�t 

2

]c 

− �t 

2
�x(m) 

1 

2∑
a=0 

2−a∑
b=0 

2−a−b∑
c=0 

1 

(a + b + 1)a!b!(c + 1)! 
∂a+b+cg(Cm ) 

∂ xa ∂ yb∂tc

[
�x(m) 

1

]a[
�y(m) 

1

]b[
�t 

2

]c 
, 

(5.45) 

FLU  X (m) 
2 = �t 

2
�y(m) 

2 

2∑
a=0 

2−a∑
b=0 

2−a−b∑
c=0 

1 

(a + b + 1)a!b!(c + 1)! 
∂a+b+c f (Cm ) 

∂xa ∂yb∂tc

[
−�x(m) 

2

]a[
−�y(m) 

2

]b[
�t 

2

]c 

− �t 

2
�x(m) 

2 

2∑
a=0 

2−a∑
b=0 

2−a−b∑
c=0 

1 

(a + b + 1)a!b!(c + 1)! 
∂a+b+cg(Cm ) 

∂xa ∂yb∂tc

[
−�x(m) 

2

]a[
−�y(m) 

2

]b[
�t 

2

]c 
, 

(5.46) 

in which �x (m) 
1 = x(Om) − x(Cm), �y(m) 

1 = y(Om) − y(Cm), �x (m) 
2 = x(Cm) − 

x(Om−1), �y(m) 
2 = y(Cm) − y(Om−1). FLUX(m) 

1 and FLUX(m) 
2 represent the fluxes 

across the adjacent CE surfaces on which the points are defined within SE(Cm). 
By substituting Eqs. (5.42)–(5.44) into (5.41) and moving the high-order terms 

to RHS. Consequently, the value of u(G
′
i ) can be expressed by 

u
(
G ′

i

) = 
1 

S 
(TERM2 − TERM3 − TERM1). (5.47) 

Two remarks should be noted regarding Eq. (5.47). First of all, since u, f , and g 
are nonlinearly distributed on the surfaces of CE, the integral terms appeared in Eqs. 
(5.42) and (5.43) are not simple multiplications of the value at the centroid and the 
surface area as what has been implemented in the second-order scheme. In contrast, 
they are now calculated using the coordinate transformation method: 

x = 
4∑

i=1 

xi Ni (ξ,  η), (5.48) 

y = 
4∑

i=1 

yi Ni (ξ,  η), (5.49) 

where 

N1 = 
1 

4 
(1 − ξ )(1 − η), N2 = 

1 

4 
(1 + ξ )(1 − η), 

N3 = 
1 

4 
(1 + ξ )(1 + η), N4 = 

1 

4 
(1 − ξ )(1 + η). (5.50) 

Thereafter, the integration of an arbitrary function φ(x, y) over the irregular 
quadrangle A is transformed into the integration over a rectangle (Fig. 5.1) as
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Fig. 5.1 Sketch of the coordinate transformation 

¨ 
A 
φ(x, y)ds  = 

1∫

−1 

dη 
1∫

−1 

φ[x(ξ, η), y(ξ, η)]Jdξ, (5.51) 

where J is the Jacobian matrix of the coordinate transformation, 

J = 
∂(x, y) 
∂(ξ,  η) 

=
∣∣∣∣∣
∑4 

i=1 xi 
∂ Ni 
∂ξ

∑4 
i=1 yi 

∂ Ni 
∂ξ∑4 

i=1 xi 
∂ Ni 
∂η

∑4 
i=1 yi 

∂ Ni 
∂η

∣∣∣∣∣. (5.52) 

In addition, TERM2 and TERM3 in Eq. (5.47) can be computed from the infor-
mation at t = tn−1/2. TERM1 consists of high-order terms (uxx , uyy , and uxy) of  u at 
t = tn. As a result, the high-order derivatives must be solved prior to computing u. 
The idea to calculate the high-order derivatives are analogue to that in Sects. 5.1.1 
and 5.1.2. For example, from the Taylor expansion C

′
m we have 

ux
(
C ′
m−1

)
− ux

(
C ′
m

) = uxx
(
C ′
m

)[
x(C ′

m−1) − x(C ′
m )

]
+ uxy

(
C ′
m

)[
y(C ′

m−1) − y(C ′
m )

]
, (5.53) 

ux
(
C ′
m+1

)
− ux

(
C ′
m

) = uxx
(
C ′
m

)[
x(C ′

m+1) − x(C ′
m )

]
+ uxy

(
C ′
m

)[
y(C ′

m+1) − y(C ′
m )

]
. (5.54) 

On the other hand, ux (C
′
m−1), ux (C

′
m), ux (C

′
m+1) can be interpolated from the 

previous time level, 

ux
(
C ′
m−1

) = ux (Cm−1) + uxx  (Cm−1)
�t 

2 

ux
(
C ′
m

) = ux (Cm) + uxx  (Cm)
�t 

2 

ux
(
C ′
m+1

) = ux (Cm+1) + uxx  (Cm+1)
�t 

2 
(5.55) 

By substituting Eq. (5.55) into Eqs. (5.53) and (5.54), a pair of equations with two 
unknowns (uxx  (C

′
m), uxy(C

′
m)) are ready to be solved by Cramer’s rule. A simple
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average (or weighted average to suppress oscillations near discontinuities) can be 
applied for M pairs of derivatives. Once all the second-order derivatives are obtained 
under the same routine, u(G

′
i ) can be immediately calculated from Eq. (5.47). The last 

unknowns remain to be computed are ux and uy , which can be calculated similarly 
in Sect. 4.2, e.g., 

u
(
G ′

i

) + ux
(
G ′

i

)
δx + uy

(
G ′

i

)
δy + 1 2 uxx

(
G ′

i

)
(δx)2 + 1 2 uyy

(
G ′

i

)
(δy)2 

+uxy
(
G ′

i

)
(δx)(δy) = u(Cm) + ut (Cm)�t 

2 + 1 2 utt  (Cm)
(

�t 
2

)2 , (5.56) 

where δx = x(Cm) − x(G ′
i ), δy = y(Cm)− y(G ′

i ). Similarly, on applying Eq. (5.56) 
to Cm+1, a pair of ux and uy can be easily determined. Then, we apply the weighted 
average function to obtain the optimal derivatives. Finally, u(V

′
i ) and its derivatives 

are interpolated by Taylor expansion from the information at u(G
′
i ). 

5.2 Numerical Examples 

The Shu-Osher problem consists of a Mach 3 shock interacting with an entropy 
wave, which requires the capability of capturing fine structures in the flow. The 
computational domain [0, 10] is discretized by a uniform grid size of 0.05, the non-
reflection boundary condition is imposed on both sides, and the initial condition is 
described as 

(ρ,  u, p) =
{

(3.857143, 2.629369, 10.33333) x ≤ 1 
(1 + 0.2 sin(5x), 0, 1) x > 1 

(5.57) 

The density distributions at t = 1.8 are depicted in (Fig. 5.2). Compared to the 
benchmark solution, which is calculated with a-α scheme using very high grid reso-
lution, higher-order CESE schemes are less dissipative and can reveal better flow 
structures.

The second example is the Mach 3 wind tunnel problem with step. This problem 
has been described in Sect. 4.3. Here, we use the identical numerical setups except 
with a mesh size of 1/250. As depicted in Fig. 5.3, vortex-like structures generated in 
the results using high-order schemes, however, disappeared in the low-order schemes 
due to the increasing dissipation. It is not surprising that the triangular mesh result 
surpasses the quadrilateral ones because the mesh area is only half of the latter when 
the mesh sizes are the same.
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Fig. 5.2 Density distributions for Shu-Osher problem at t = 1.8. a Entire view, b Enlargement. 
Courtesy of Shen [7]

Fig. 5.3 Density contours for Mach 3 wind tunnel with a step at t = 4.0. Courtesy of Shen [7] 
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