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Abstract. This paper is concerned with the global dynamics of a two-
species Grindrod clustering model with Lotka–Volterra competition. The
model takes the advective flux to depend directly upon local population
densities without requiring intermediate signals like attractants or repel-
lents to form the aggregation so as to increase the chances of survival of
individuals like human populations forming small nucleated settlements.
By imposing appropriate boundary conditions, we establish the global
boundedness of solutions in two-dimensional bounded domains. More-
over, we prove the global stability of spatially homogeneous steady states
under appropriate conditions on system parameters, and show that the
rate of convergence to the coexistence steady state is exponential while
the rate of convergence to the competitive exclusion steady state is alge-
braic.
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1. Introduction

The reaction-diffusion systems have been advocated to interpret numerous bi-
ological phenomena such as wave propagations [13,41], pattern formation [16,
25], ecological invasions [11,19], competition of species [18,23], wound heal-
ing [39], and so on (cf. [5,33]). However, in many biological processes involving
directed motions, such as chemotaxis and predators seeking prey (prey-taxis),
reaction-diffusion models may not be adequate to describe how organisms
move and disperse. For instance, Rowell in [37] explains how models with
random diffusion fail to explain certain ecological phenomena and do not ac-
curately reflect the non-Brownian motion of individuals. The Lotka–Volterra
type predator–prey system with random diffusion only is unable to produce
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spatial patterns (cf. [47]) to interpret the spatiotemporal heterogeneity ob-
served in the field experiment [24,45]. Rational movement along resource gra-
dients has been thought to reduce the diffusive effect and result in clustering
and formation of colonies to increase the chances of survival of individuals like
human populations forming small nucleated settlements which grow as the
population saturates locally. Incorporating both random and rational move-
ments, Grindrod [15] proposed models of individual clustering in single-species
and multi-species communities by taking the advective flux to depend directly
upon local population densities without requiring intermediate signals like at-
tractants or repellents.

Let us first briefly review the origin of Grindrod clustering models [15].
Classically, models for the spatial dispersion of biological populations have the
form

ut = Δφ(u) + f(u, x, t),

where u(x, t) denotes the population density at location x and time t, and
f(u, x, t) represents population kinetics due to the birth and death; φ satisfies
φ(0) = 0 and φ′(u) > 0 for u > 0. As highlighted in [15], the above model
contains no aggregation mechanism such as swarming, herding, and cluster-
ing of individuals, which can serve as a balancing factor between death and
birth rates and increase survival chances. To incorporate this phenomenon, a
modified population balance equation reads

∂tu = −∇ · (uV (u, t, x)) + uE(u, t, x),

where V and E are the average velocity of individuals and the net rate of
reproduction per individual, respectively. E typically has the form

E(u) =
{

1 − u, monostable case,
(1 − u)(u − a) for some a ∈ (0, 1), bistable case.

Considering random diffusion with a probability δ ∈ (0, 1), and deterministic
dispersion with the probability 1 − δ in an average velocity w to increase
the expected net rate of reproduction, V responding to u and E is given by
V = −δ ∇u

u + (1 − δ)w. The former obeys Fickian diffusion ∇u
u , while the

latter is supposed to increase the net rate of reproduction per individual, such
as w ≈ λ∇E with λ > 0. This leads to the following model [15]{

∂tu = δΔu − (1 − δ)∇ · (uw) + uE(u, t, x),
−εΔw + w = λ∇E(u),

where ε > 0 is a small constant accounting for the small fluctuation to smooth
out any sharp local variations in ∇E. After some rescalings, and assuming that
the environment is homogeneous, the single-species model proposed in [15]
reads ⎧⎨

⎩
ut = dΔu − χ∇ · (uw) + γuE(u), x ∈ Ω, t > 0,
−εΔw + w = ∇E(u), x ∈ Ω, t > 0,
u(x, 0) = u0(x), x ∈ Ω,

(1.1)

where Ω ⊂ R
n (n ≥ 2) is a bounded domain with a smooth boundary, Variables

u(x, t) and E(u), and the parameter ε have the same meaning as above, w(x, t)
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denotes the average velocity increasing the expected rate of reproduction of
individuals up to a rescaling. The parameters d, χ, γ are all positive.

In the case of multi-species communities, the interspecific interactions
(like competition or cooperation) between different species are indispensable.
In particular the m-species Grindrod clustering model with competitive inter-
actions reads as (cf. [15])⎧⎨

⎩
∂tui = diΔui − χi∇ · (uiwi) + uiEi, x ∈ Ω, t > 0,
−εiΔwi + wi − ∇Ei = 0, x ∈ Ω, t > 0,
ui(x, 0) = ui0(x), x ∈ Ω,

(1.2)

with

Ei := Ei (u1, u2, · · · , um) = ai −
m∑

j=1

bijuj , i = 1, 2, · · · ,m,

where all parameters di, χi, εi, ai, bij are positive. The original no-flux bound-
ary condition (i.e. no individuals can cross the boundary) proposed in [15,
formula (2.4)] for the two-species Grindrod clustering model (i.e., m = 2) is

∇ui · n = wi · n = 0, on ∂Ω, i = 1, 2,

where n denotes the unit outer normal vector to the boundary ∂Ω. However,
the above boundary condition wi · n |∂Ω= 0 for wi is inadequate to warrant
the global well-posedness of the model (1.2) in multi-dimensions (n ≥ 2). This
limitation was identified by Nasreddine [34–36] for the single-species Grindroid
clustering model, where the additional boundary condition ∂w

∂n × n |∂Ω= 0 is
suggested for the velocity w. Such a kind of boundary condition is not peculiar,
see e.g. [12,38] for other models incorporating this kind of boundary condition.
Accordingly, for the m-species Grindroid clustering model (1.2), we incorporate
the boundary condition ∂wi

∂n × n |∂Ω= 0 for wi (i = 1, 2, · · · ,m). Therefore,
the boundary conditions of (1.2) to be considered are

∇ui · n = wi · n = 0, ∂nwi × n = 0, on ∂Ω, i = 1, 2, · · · ,m. (1.3)

As usual, for vectors a = (a1, a2, · · · , an) and b = (b1, b2, · · · , bn), the cross
product a × b is the number a1b2 − a2b1 if n = 2 and the vector (a2b3 −
a3b2, a1b3 −a3b1, a1b2 −a2b1) if n = 3. In one dimension (n = 1), the condition
∂nwi×n = 0 is not needed. The Dirchlet boundary condition w|∂Ω = 0 satisfies
the condition for w in (1.3). Though the Grindrod models were proposed three
decades ago, there is no mathematical result available, except some prelimi-
nary results obtained for the single-species Grindrod model (1.1) with bound-
ary conditions in (1.3). Nasreddine [34] proved the local-in-time existence of
strong solutions of (1.1) with (1.3) in multi-dimensions for (u,w) ∈ W 1,p(Ω)
with p > n and global existence of strong solutions to (1.1) in one dimen-
sion with (1.3) for both monostable and bistable functions E(u) as well as
L2 convergence of solutions to constant steady states in the monostable case.
The global existence of strong solutions of (1.1) with (1.3) in two dimensions
was later established in [36], where the solution bound in W 1,p(Ω) depends
on time and the possibility of blow-up at infinite time was not precluded. The
diffusion vanishing problem of (1.1) with (1.3) as ε → 0 in one dimension was
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investigated in [35], and the existence of traveling wave solutions of (1.1) in R

was established in [21] for E(u) = 1 − u. The planar and radial traveling wave
solutions of single-species and two-species Grindrod models with monostable
function E(u) in R

n was investigated in [26] alongside numerical simulations
and found that directed motion can have substantial impacts not only on wave
speed but also on the existence and structure of emergent patterns. The pat-
tern formation of the two-species Grindrod model (i.e. (1.2) with m = 2) with
(1.3) in a two-dimensional convex domain was studied in [27], by assuming
wi = ∇φi for some potential functions φi (i = 1, 2), for three interspecific
interactions: competition, generalist predator–prey and predator–prey. In par-
ticular, how the advective dispersal of species in heterogeneous resources and
hazards leads to asymptotic steady states that retain spatial aggregation or
clustering in regions of resource abundance and away from hazards was exam-
ined. By investigating pattern formation of the multi-species Grindrod model
(1.2) approximated by a non-local cross-diffusion model, the authors of [40]
proved that the Turing patterns, which were impossible for the two-species
models, may arise for m-species Grindrod models with m ≥ 3.

From the above literature review, we see that the qualitative understand-
ing of the Grindrod clustering models remains poorly understood, especially
whether the solution blows up in infinite time in multi-dimensions is incon-
clusive and the large-time behavior of solutions is also unclear. This paper
is devoted to exploring these basic questions. Without loss of generality, we
consider the two-species Grindrod clustering model with competitions⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

∂tu1 = d1Δu1 − χ1∇ · (u1w1) + u1E1(u1, u2), x ∈ Ω, t > 0,
∂tu2 = d2Δu2 − χ2∇ · (u2w2) + u2E2(u1, u2), x ∈ Ω, t > 0,
−ε1Δw1 + w1 = ∇E1(u1, u2), x ∈ Ω, t > 0,
−ε2Δw2 + w2 = ∇E2(u1, u2), x ∈ Ω, t > 0,
∇ui · n = wi · n = 0, ∂nwi × n = 0, i = 1, 2, x ∈ ∂Ω, t > 0,
(u1, u2)(x, 0) = (u10, u20)(x), x ∈ Ω,

(1.4)

with

E1(u1, u2) := γ1 − u1 − cu2 and E2(u1, u2) := γ2 − bu1 − u2, (1.5)

where Ω ⊂ R
2 is a bounded domain with a smooth boundary and n is the unit

outward normal vector of ∂Ω, and all parameters di, χi, εi, γi, b, c, i ∈ {1, 2},
are positive. We underline that the boundary conditions in (1.4) (see also
(1.3)) means that ∂nwi is parallel to n on ∂Ω, which along with the boundary
condition wi · n |∂Ω= 0 implies

wi · ∂nwj |∂Ω= 0, i, j ∈ {1, 2} . (1.6)

We remark that without advection (i.e. χ1 = χ2 = 0), the first two equa-
tions of (1.4)–(1.5) have no components wi(i = 1, 2) and become the well-
known competition-diffusion Lotka–Volterra model which has been well stud-
ied (cf. [4,30]). The competition models with advection have also been widely
studied in literatures (cf. [1,2,6–9,14,50]). All these works have assumed that
the advection is biased to the concentration gradient of given resources. The
competition dynamics in advective environments like the river or stream were



NoDEA Global dynamics of a two-species clustering model Page 5 of 42    47 

also studied (cf. [29,31]). We refer to [48,49] for the study of global dynamics
of diffusion-advection competition models with more general diffusive and/or
advective coefficients. When the advection is modeled by the prey-taxis in
a predator–prey system, the competition dynamics were investigated in [44].
Evidently, the advection considered in the Grindrod model (1.4)–(1.5) are dif-
ferent from those considered in the existing studies mentioned above.

In this paper, we shall establish the global boundedness and time-asym-
ptotic dynamics of solutions to (1.4). Our first result concerning the global
existence and boundedness of classical solutions is stated in the following the-
orem.

Theorem 1.1. Let Ω ⊂ R
2 be a bounded domain with a smooth boundary. As-

sume u10, u20 ∈ W 1,p(Ω) with p > 2 and u10, u20 � 0. Then the system (1.4)
admits a unique classical solution (u1, u2,w1,w2) satisfying{

ui ∈ C0(Ω̄ × [0,∞)) ∩ C2,1(Ω̄ × (0,∞)),
wi ∈ [C2,1(Ω̄ × (0,∞))

]2
,

i = 1, 2,

and u1, u2 > 0 in Ω × (0,∞). Moreover, there exists a positive constant C
independent of t such that

2∑
i=1

(‖ui(·, t)‖W 1,p(Ω) + ‖wi(·, t)‖W 1,p(Ω)

) ≤ C for all t > 0. (1.7)

Next, we explore asymptotic dynamics of (1.4). Except the extinction
steady state (0, 0,0,0), the system (1.4) has three possible homogeneous steady
states (u1s, u2s,0,0) depending on the value of parameters b, c, γ1, γ2. They can
be classified into the following three categories similar to the classical Lotka–
Volterra competition system (cf. [30]):

• Case 1. Weak competition: c < γ1
γ2

< 1
b .

• Case 2. Competitive exclusion: γ1
γ2

< min{ 1
b , c} (resp. γ1

γ2
> max{ 1

b , c}).
• Case 3. Strong competition: 1

b < γ1
γ2

< c.

Then the corresponding homogeneous steady state (u1 s, u2 s,0,0) can be solved
as follows:

(u1s, u2s) =
{

(0, γ2) or (γ1, 0) or (u∗
1, u

∗
2), in Case 1,

(0, γ2) or (γ1, 0), in Case 2,

where

(u∗
1, u

∗
2) :=

(
γ1 − γ2c

1 − bc
,
γ2 − γ1b

1 − bc

)
. (1.8)

To state our main results on the large time behavior of solutions, we introduce
some notations. Denote the function

f(x, y) :=
1 + x2y2

1 − xy
> 1 for x, y > 0 and xy < 1, (1.9)

and define two positive constants

K1 :=
16d1ε1

χ2
1

and K2 :=
16d2ε2

χ2
2

. (1.10)
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Moreover, when c < γ1
γ2

< 1
b (weak competition), define two positive constants

K∗
1 :=

2u∗
1

(
K2

1−bc − u∗
2(1 + bc)

)
K2 − f(b, c)u∗

2

if K2 > f(b, c)u∗
2 (1.11)

and

K∗
2 :=

2u∗
2

(
K1

1−bc − u∗
1(1 + bc)

)
K1 − f(b, c)u∗

1

if K1 > f(b, c)u∗
1. (1.12)

Our second result is stated in the following.

Theorem 1.2. Suppose that the conditions in Theorem 1.1 hold. Then the so-
lution (u1, u2,w1,w2) of the system (1.4) obtained in Theorem 1.1 has the
following convergence properties.

(i) Assume c < γ1
γ2

< 1
b and (u∗

1, u
∗
2) is given by (1.8). If (K1,K2) defined in

(1.10) satisfies

K1 > f(b, c)u∗
1 and K2 > K∗

2 , (1.13)

or

K2 > f(b, c)u∗
2 and K1 > K∗

1 , (1.14)

then there exist positive constants C and λ independent of t such that
2∑

i=1

(
‖ui(·, t) − u∗

i ‖W 1,∞(Ω) + ‖wi‖W 1,∞(Ω)

)
≤ Ce−λt as t → ∞.

(ii) Assume γ1
γ2

< min{ 1
b , c}. If

K2 > f

(
b,

γ1

γ2

)
γ2 =

γ2
2 + b2γ2

1

γ2 − bγ1
, (1.15)

then there exists a positive constant C independent of t such that

‖u1(·, t)‖W 1,∞(Ω) + ‖u2(·, t) − γ2‖W 1,∞(Ω)

+
2∑

i=1

‖wi‖W 1,∞(Ω) ≤ C

1 + t
as t → ∞.

(iii) Assume γ1
γ2

> max{ 1
b , c}. If

K1 > f

(
γ2

γ1
, c

)
γ1 =

γ2
1 + c2γ2

2

γ1 − cγ2
,

then there exists a positive constant C independent of t such that

‖u1(·, t) − γ1‖W 1,∞(Ω) + ‖u2(·, t)‖W 1,∞(Ω)

+
2∑

i=1

‖wi‖W 1,∞(Ω) ≤ C

1 + t
as t → ∞.
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Figure 1. Illustration of Σ defined by (1.16)

Remark 1.1. It is unclear whether the parameter regime of (K1,K2) satisfying
(1.13) or (1.14) in Theorem 1.2(i) is admissible. Below we shall confirm this
and further show what the admissible regime looks like. First, one can check
that (K∗

1 ,K∗
2 ) defined by (1.11) and (1.12) satisfies

K∗
1 > f(b, c)u∗

1 > u∗
1 and K∗

2 > f(b, c)u∗
2 > u∗

2.

Viewing K∗
1 and K∗

2 as functions of K2 and K1 according to (1.11) and (1.12),
respectively, we get

K∗
1 =

2u∗
1

1 − bc
+

IK

K2 − f(b, c)u∗
2

and K∗
2 =

2u∗
2

1 − bc
+

IK

K1 − f(b, c)u∗
1

,

where

IK =
2u∗

1u
∗
2(f(b, c) + b2c2 − 1)

(1 − bc)
> 0

due to f(b, c) > 1. Therefore, K∗
1 (resp. K∗

2 ) decreases monotonically with
respect to K2 ∈ (f(b, c)u∗

2,+∞) (resp. K1 ∈ (f(b, c)u∗
1,+∞)). Let

Σ := {(K1,K2) | (K1,K2) satisfies (1.13) or (1.14)} , (1.16)

then the region of Σ is showed in Fig. 1.

The rest of this paper is organized as follows. In Sect. 2, we shall address
the local existence of solutions to (1.4), and then we will use an extension cri-
terion to prove that the local solution is actually uniformly bounded and exists
globally in time in Sect. 3. In Sect. 4, we shall prove the global stabilities stated
in Theorem 1.2 by constructing Lyapunov functionals along with compactness
arguments.

2. Preliminaries: local existence and some inequalities

Before proceeding, we introduce some notations used throughout the paper.
Notations:
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• For brevity, we abbreviate
∫ t

0

∫
Ω

f(·, s)dxds and
∫
Ω

f(·, t)dx as
∫ t

0

∫
Ω

f

and
∫
Ω

f , respectively. In addition, C and Ci (i = 1, 2, 3, · · · ) stand for
generic positive constants which may vary from line to line.

• W k,p(Ω) = {u ∈ Lp(Ω) : Dαu ∈ Lp(Ω) for 0 ≤ |α| ≤ k} denotes the
usual Sobolev space, where Dαu is the weak partial derivative. If p = 2,
we write Hk(Ω) = W k,2(Ω).
In this section, we establish the local existence of solutions to the system

(1.4) under appropriate initial conditions. Moreover, we shall collect and prove
some useful inequalities which will be used in the subsequent sections. To begin
with, we consider the regularity of the solution w to the following system:{−Δw + μw = f in Ω,

w · n |∂Ω= 0, ∂nw × n |∂Ω= 0, if n = 2, 3,
(2.1)

where μ ∈ {0, 1} and f ∈ (Lp(Ω))n for some 1 < p < +∞. The system (2.1)
has the following properties.

Lemma 2.1. (cf. [38, Theorem 3, Theorem 4, Remark 5]) Let μ = 0 and Ω ⊂
R

n, n ∈ {2, 3}, be a bounded domain with a smooth boundary.
(i) If f ∈ (Lp(Ω))n with some 1 < p < +∞, then the system (2.1) has a

unique solution w ∈ (W 2,p(Ω))n satisfying

‖w‖W 2,p(Ω) ≤ C(p, n,Ω)‖f‖Lp(Ω), (2.2)

where C(p, n,Ω) is a positive constant depending only on p, n and Ω.
(ii) If f ∈ (Ck,α(Ω̄))n with some α ∈ (0, 1) and k ∈ N, then the system (2.1)

has a unique solution w ∈ Ck+2,β(Ω̄) for some β ∈ (0, 1) and

‖w‖Ck+2,β(Ω̄) ≤ C(k, α, β, n,Ω)‖f‖Ck,α(Ω̄). (2.3)

where C(k, α, β, n,Ω) is a positive constant depending only on k, α, β, n
and Ω.

Now we prove the following results for the case μ = 1.

Lemma 2.2. Let μ = 1 and Ω ⊂ R
n, n ∈ {2, 3}, be a bounded domain with a

smooth boundary.
(i) If f ∈ (Hk(Ω)

)n with k ∈ {0, 1, 2}, then the system (2.1) has a unique
solution w ∈ Hk+2(Ω) satisfying

‖w‖Hk+2(Ω) ≤ C(k, n,Ω)‖f‖Hk(Ω), (2.4)

where C(k, n,Ω) is a positive constant depending only on k, n and Ω.
(ii) If f ∈ (Lp(Ω))n with some 1 < p < +∞, then the system (2.1) has a

unique solution w ∈ (W 2,p(Ω))n satisfying

‖w‖W 2,p(Ω) ≤ C(p, n,Ω)‖f‖Lp(Ω), (2.5)

where C(p, n,Ω) is a positive constant depending only on p, n and Ω.
(iii) If f ∈ (Ck,α(Ω̄))n with some α ∈ (0, 1) and k ∈ {0, 1, 2}, then the system

(2.1) has a unique solution w ∈ Ck+2,β(Ω̄) for some β ∈ (0, 1) and

‖w‖Ck+2,β(Ω̄) ≤ C(k, α, β, n,Ω)‖f‖Ck,α(Ω̄). (2.6)
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where C(k, α, β, n,Ω) is a positive constant depending only on k, α, β, n
and Ω.

Proof. The existence and uniqueness of the solution to (2.1) for μ = 1 can be
established by similar arguments for (2.1) in the case of μ = 0 (cf. [38]). Below
we only prove the regularity properties given in (2.4)–(2.6).

(i) Since the proof of (2.4) involves tedious calculations, we place it in
Appendix A (see Lemma A1 and Lemma A2 in Appendix A).

(ii) Next we prove (2.5). The first equation of (2.1) can be rewritten as

−Δw = f − w. (2.7)

Therefore, in view of (2.2) and (2.7), it is sufficient to prove that for p ∈ (1,∞),
there exists a positive constant C(p, n,Ω) such that

‖f − w‖Lp(Ω) ≤ C(p, n,Ω)‖f‖Lp(Ω). (2.8)

We consider three cases: p ≥ 2, 6
5 ≤ p < 2 and 1 < p < 6

5 . First, if p ≥ 2, it
follows from f ∈ (Lp(Ω))n ↪→ (L2(Ω))n for p ≥ 2 and (2.4) that w ∈ (H2(Ω))n

with ‖w‖H2(Ω) ≤ C(p, n,Ω)‖f‖Lp(Ω), which alongside the Sobolev embedding
(H2(Ω))n ↪→ (Lp(Ω))n yields

‖w‖Lp(Ω) ≤ C(p, n,Ω)‖f‖Lp(Ω)

and hence (2.8) holds for p ≥ 2. Secondly, if 6
5 ≤ p < 2, we claim that

the solution w to (2.1) satisfies ‖w‖H1(Ω) ≤ C(p, n,Ω)‖f‖Lp(Ω). (2.9)

To this end, we define the real Hilbert space (cf. [10])

X :=
{
u ∈ (H1(Ω))n | u · n = 0 on ∂Ω

}
with the norm

‖u‖X :=
(∫

Ω

|∇u|2
) 1

2

.

Since H1(Ω) ↪→ L6(Ω) ↪→ Lp∗
(Ω) = (Lp(Ω))∗ with p∗ := p

p−1 , we have f ∈
(Lp(Ω))n ↪→ (H1(Ω))∗. Define the bilinear form B[·, ·] on X by

B[u,v] :=
∫

Ω

∇u · ∇v +
∫

Ω

u · v, ∀ u,v ∈ X.

Then we have

|B[u,v]| ≤ ‖∇u‖L2(Ω)‖∇v‖L2(Ω) + ‖u‖L2(Ω)‖v‖L2(Ω)

≤ ‖u‖H1(Ω) ‖v‖H1(Ω)

≤ C ‖u‖X ‖v‖X ∀ u,v ∈ X,

where we have used the fact that the X norm is equivalent to the usual H1(Ω)
norm (cf. [12]). Moreover,

B[u,u] = ‖u‖2
H1(Ω) ≥ C ‖u‖2

X , ∀ u ∈ X. (2.10)
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Therefore, by the Lax–Milgram theorem, we obtain that for each f ∈ (Lp(Ω))n

with 6
5 ≤ p < 2, there exists a unique uf ∈ X such that

B[uf ,v] =
∫

Ω

f · v, ∀ v ∈ X.

Therefore, by (2.10), Hölder’s inequality, the Sobolev embedding H1(Ω) ↪→
Lp∗

(Ω) and the equivalence of X norm and H1(Ω) norm, we have

‖u‖2
H1(Ω) ≤ C ‖u‖2

X ≤ CB[u,u] ≤ C

∫
Ω

f · u ≤ C‖f‖Lp(Ω)‖u‖Lp∗ (Ω)

≤ C‖f‖Lp(Ω) ‖u‖H1(Ω)

for all u ∈ X, that is

‖u‖H1(Ω) ≤ C‖f‖Lp(Ω), ∀ u ∈ X.

Therefore, the claim (2.9) is proved since the solution w to (2.1) satisfies
w ∈ X, and hence (2.8) holds for 6

5 ≤ p < 2 due to the Sobolev embedding
H1(Ω) ↪→ Lp(Ω). It remains to consider the case 1 < p < 6

5 . We let α :=
p

3−2p ∈ (1, 2) which satisfies

3α = (α − 1)p∗. (2.11)

Then |w|α =
(

n∑
i=1

w2
i

)α
2

satisfies

⎧⎨
⎩

Δ|w|α = α(α − 2)|w|α−4|w · ∇w|2 + α|w|α−2
(|∇w|2 + w · Δw

)
in Ω,

∂n|w|α = α
n∑

i,j=1

|w|α−2wi∂jwinj = α|w|α−2w · ∂nw = 0 on ∂Ω,

(2.12)
where we have used w · ∂nw = 0 on ∂Ω due to the boundary conditions of w
in (2.1). Integrating the first equation of (2.12) on Ω by parts with ∂n|w|α = 0
on ∂Ω and using −Δw = f − w in Ω, one has

(α − 2)
∫

Ω

|w|α−4|w · ∇w|2 +
∫

Ω

|w|α−2|∇w|2

= −
∫

Ω

|w|α−2w · Δw =
∫

Ω

|w|α−2w · (f − w) ,

which together with α − 2 < 0 and
∫
Ω

|w|α−4|w · ∇w|2 ≤ ∫
Ω

|w|α−2|∇w|2
implies

(α − 1)
∫

Ω

|w|α−2|∇w|2 +
∫

Ω

|w|α ≤
∫

Ω

|w|α−1|f |. (2.13)

With (2.11) and (2.13), we are in a position to use the same arguments as
in [38, pp. 133–134] to show that

‖w‖L3α(Ω) ≤ C‖f‖Lp(Ω).

By 3α > 3 and Hölder’s inequality: L3α(Ω) ↪→ Lp(Ω) for 1 < p < 6
5 , we know

that (2.8) holds for 1 < p < 6
5 . Therefore, we have proved that (2.8) holds for

p ∈ (1,∞) as desired.
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(iii) If f ∈ (Ck,α(Ω̄))n with some α ∈ (0, 1) and k ∈ {0, 1, 2}, then (2.4)
implies

‖w‖Hk+2(Ω) ≤ C(k, n,Ω)‖f‖Hk(Ω) ≤ C(k, n,Ω),

which together with the Sobolev embedding Hk+2(Ω) ↪→ Ck,θ(Ω̄) for any
θ ∈ (0, 2 − n

2

)
shows that

f − w ∈ (Ck,α′
(Ω̄))n (2.14)

for any α′ ∈ (0,min
{
α, 1

2

}
). In view of (2.3), (2.7) and (2.14), (2.6) is proved.

�

We are now in a position to show the local existence of the unique classical
solution to (1.4).

Lemma 2.3. Let Ω ⊂ R
2 be a bounded domain with a smooth boundary. Assume

u10, u20 ∈ W 1,p(Ω) with p > 2 and u10, u20 � 0. Then there exists Tmax ∈
(0,∞] such that the system (1.4) has a unique classical solution (u1, u2,w1,w2)
satisfying{

ui ∈ C0(Ω̄ × [0, Tmax)) ∩ C2,1(Ω̄ × (0, Tmax)),
wi ∈ [C2,1(Ω̄ × (0, Tmax))

]2
,

i = 1, 2,

and u1, u2 > 0 in Ω × (0, Tmax). Moreover,

if Tmax < ∞, then lim
t→Tmax

(‖u1(·, t)‖W 1,p(Ω) + ‖u2(·, t)‖W 1,p(Ω)

)
= ∞.

(2.15)

Proof. Fix R > 0, and define for T ∈ (0, 1)

XR(T ) :=

{
(u1, u2) ∈ C

(
[0, T ];W 1,p(Ω)

)
∣∣∣∣ sup

t∈[0,T ]

‖u1(t)‖W 1,p + sup
t∈[0,T ]

‖u2(t)‖W 1,p ≤ R

}
,

which is a complete metric space with the metric

dX(u,v) = sup
t∈[0,T ]

‖u1(t) − v1(t)‖W 1,p + sup
t∈[0,T ]

‖u2(t) − v2(t)‖W 1,p

for u = (u1(t), u2(t)) ∈ XR(T ) and v = (v1(t), v2(t)) ∈ XR(T ). For any
u = (u1, u2) ∈ XR(T ) and t ∈ [0, T ], by p > 2 and Lemma 2.2 we know
that there exists a unique solution (w1,w2) ∈ (H2(Ω)

)2 × (H2(Ω)
)2 to the

following system{−εiΔwi(t) + wi(t) = ∇Ei(u1, u2), i = 1, 2, in Ω,
wi · n = 0, ∂nwi × n = 0, i = 1, 2, on ∂Ω.

(2.16)

Letting
(
etΔ
)
t≥0

denote the Neumann heat semigroup on Ω, we introduce a
mapping Φ = (Φ1,Φ2) on XR(T ) by defining

ũi(t) = Φi(u1, u2)(·, t) := etdiΔui0

+
∫ t

0

e(t−s)diΔ {−∇ · (χiuiwi) + uiEi(u1, u2)} (·, s)ds
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for i = 1, 2, where (w1,w2) ∈ (H2(Ω)
)2 × (H2(Ω)

)2 is the solution of (2.16)
uniquely determined by the given u = (u1, u2) ∈ XR(T ) according to Lemma
2.2. Then one can show that Φ is a contraction map from XR(T ) into itself
if T is sufficiently small by a standard argument (see e.g. [34, Theorem 2.2]).
Therefore, for sufficiently small T , by the Banach fixed point theorem, there
is a unique (u1, u2) ∈ XR(T ) such that

(u1, u2) = (ũ1, ũ2) = Φ(u1, u2) = (Φ1(u1, u2),Φ2(u1, u2)) ,

and (u1, u2,w1,w2) is a unique strong solution of the system (1.4) satisfying{
ui ∈ C

(
[0, T ) ,W 1,p(Ω)

) ∩ C
(
(0, T ) ,W 2,p(Ω)

)
,

wi(t) ∈ (H2(Ω)
)2 for all t ∈ [0, T ),

i = 1, 2. (2.17)

Based on a bootstrap argument, we can use Lemma 2.2, the Lp-estimate
and the Schauder estimate (cf. [28]) to show that the unique strong solution
(u1, u2,w1,w2) of the system (1.4) satisfying (2.17) is actually a classical so-
lution. Finally, u1, u2 ≥ 0 follows from the maximum principle. To be precise,
we rewrite the first equation of system (1.4) as⎧⎨
⎩

∂tu1 − d1Δu1 + χ1w1 · ∇u1 + Q1(x, t)u1 = 0, x ∈ Ω, t ∈ (0, T ) ,
∂u1
∂n = 0, x ∈ ∂Ω, t ∈ (0, T ) ,
u1(x, 0) = u10(x), x ∈ Ω,

(2.18)

where Q1(x, t) := χ1∇ · w1 − E1(u1, u2) for (x, t) ∈ Ω × (0, T ). Then one can
apply the strong maximum principle to system (2.18) and gets that u1(x, t) > 0
for (x, t) ∈ Ω×(0, T ). Similarly, it holds that u2(x, t) > 0 for (x, t) ∈ Ω×(0, T ).
The proof is completed. �

Next we prove a useful Lemma.

Lemma 2.4. Let Ω ⊂ R
n, n ≥ 1, be a bounded domain with a smooth boundary,

and let r, q ≥ 1 be two constants satisfying

1
q

>
1
2

− 1
n

and
1
r

>
1
q

− 1
n

. (2.19)

Then for any ϕ ∈ H2(Ω) satisfying ∂ϕ
∂n

∣∣∣
∂Ω

= 0, there exists a positive constant
C depending only on Ω, n, q and r such that

‖∇ϕ‖Lq(Ω) ≤ C
(
‖Δϕ‖θ

L2(Ω)‖ϕ‖1−θ
Lr(Ω) + ‖ϕ‖Lr(Ω)

)
,

where

θ =
1
r + 1

n − 1
q

1
r + 2

n − 1
2

∈ (0, 1). (2.20)

Proof. First, one can use (2.19) to check that θ defined by (2.20) satisfies
θ ∈ (0, 1). Using the Gagliardo–Nirenberg inequality, we have

‖∇ϕ‖Lq(Ω) ≤ C
(
‖D2ϕ‖θ

L2(Ω)‖ϕ‖1−θ
Lr(Ω) + ‖ϕ‖Lr(Ω)

)
. (2.21)
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Under the homogeneous Neumann boundary condition ∂ϕ
∂n

∣∣∣
∂Ω

= 0, it follows

from [3, Lemma 1] that ‖∇ϕ‖H1(Ω) ≤ C‖Δϕ‖L2(Ω), which implies

‖D2ϕ‖L2(Ω) ≤ ‖∇ϕ‖H1(Ω) ≤ C‖Δϕ‖L2(Ω). (2.22)

The proof is completed by substituting (2.22) into (2.21). �

We recall the following basic result which will be used to investigate the
global stability of solutions.

Lemma 2.5. ([43, Lemma 1.1]) Let τ ≥ 0 and c > 0 be two constants, F (t) ≥
0,
∫∞

τ
H(t)dt < ∞. Assume that E ∈ C1([τ,∞)), E is bounded from below and

satisfies

E′(t) ≤ −cF (t) + H(t) in [τ,∞).

If either F ∈ C1([τ,∞)) and F ′(t) ≤ k in [τ,∞) for some k > 0, or F ∈
Cα([τ,∞)) and ‖F‖Cα([τ,∞)) ≤ k for constants 0 < α < 1 and k > 0, then
limt→∞ F (t) = 0.

3. Boundedness of solutions

In this section, we focus on the global boundedness of solutions of the system
(1.4). Throughout this section, we assume that the conditions in Theorem 1.1
hold and (u1, u2,w1,w2) be a local-in-time classical solution of the system
(1.4) obtained in Lemma 2.3 with a maximal time Tmax. First of all, we give
the following basic property for the solution components w1 and w2.

Lemma 3.1. For i, j ∈ {1, 2}, the solution of (1.4) satisfies∫
Ω

Δwi · wj = −
∫

Ω

∇wi · ∇wj .

Proof. Denote wi = (w(i)
1 , w

(i)
2 ), i = 1, 2. Using integration by parts we get

∫
Ω

Δwi · wj =
2∑

k=1

∫
Ω

Δw
(i)
k · w

(j)
k

= −
2∑

k=1

∫
Ω

∇w
(i)
k · ∇w

(j)
k +

2∑
k=1

∫
∂Ω

(
∇w

(i)
k · n

)
w

(j)
k dS. (3.1)

By (1.6) we have
2∑

k=1

∫
∂Ω

(
∇w

(i)
k · n

)
w

(j)
k dS =

2∑
k=1

∫
∂Ω

w
(j)
k ∂nw

(i)
k dS =

∫
∂Ω

wj · ∂nwidS = 0.

This together with (3.1) completes the proof. �

The following result is a basic property about the uniform-in-time bound-
edness of u1 and u2 in L1(Ω).
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Lemma 3.2. Suppose that the conditions in Theorem 1.1 hold. Then for i =
1, 2, it holds that

‖ui(·, t)‖L1(Ω) ≤ max
{

‖ui0‖L1(Ω),
(1 + γi)2

4
|Ω|
}

for all t ∈ (0, Tmax).

(3.2)

Proof. Integrating the first equation of (1.4) with respect to x ∈ Ω, and using
∇u1 · n |∂Ω= w1 · n |∂Ω= 0, u1, u2 > 0 and the Young’s inequality s ≤

1
1+γ1

s2 + 1+γ1
4 for s ≥ 0, we have

d

dt

∫
Ω

u1 ≤ γ1

∫
Ω

u1 −
∫

Ω

u2
1

≤ γ1

∫
Ω

u1 −
∫

Ω

[
(1 + γ1) u1 − (1 + γ1)2

4

]

= −
∫

Ω

u1 +
(1 + γ1)2

4
|Ω| for all t ∈ (0, Tmax). (3.3)

An application of Grönwall’s inequality to (3.3) yields (3.2) for i = 1. Similarly,
(3.2) holds for i = 2. This completes the proof. �

Now we are in a position to derive the following estimates.

Lemma 3.3. Suppose that the conditions in Theorem 1.1 hold. Then there exist
two constants k > 0 and C > 0 independent of t such that for all τ ∈ [0, Tmax)
and t ∈ (0, Tmax − τ), it hold that∫

Ω

u1 log u1 +
∫

Ω

u2 log u2 ≤ C (3.4)

and
2∑

i=1

∫ t+τ

t

(
‖∇√

ui‖2
L2(Ω) + ‖ui‖2

L2(Ω) + ‖wi‖2
W 1,2(Ω) +

∫
Ω

u2
i log ui

)
ds ≤ kτ + C.

(3.5)

Proof. Multiplying the first equation in (1.4) by (log u1 + 1) and integrating
the resulting equation by parts along with the boundary conditions in (1.4),
we have
d

dt

∫
Ω

u1 log u1 + d1

∫
Ω

|∇u1|2
u1

= χ1

∫
Ω

w1 · ∇u1 +
∫

Ω

u1E1(u1, u2)(log u1 + 1)

(3.6)

for all t ∈ (0, Tmax). For the first term on the right hand side of (3.6), using
integration by parts subject to the boundary conditions w1 ·n |∂Ω= 0, one has

χ1

∫
Ω

w1 · ∇u1 = −χ1

∫
Ω

u1∇ · w1 ≤ ε1

4
‖∇w1‖2

L2(Ω)

+
χ2

1

ε1
‖u1‖2

L2(Ω) for all t ∈ (0, Tmax).
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Multiplying the third equation of (1.4) by w1, integrating the resulting equa-
tion by parts along with the boundary conditions in (1.4), and using Lemma 3.1
and Young’s inequality, for all t ∈ (0, Tmax) one has

ε1‖∇w1‖2
L2(Ω) + ‖w1‖2

L2(Ω) =
∫

Ω

(u1 + cu2)∇ · w1

≤ ε1

4
‖∇w1‖2

L2(Ω) +
2
ε1

‖u1‖2
L2(Ω) +

2c2

ε1
‖u2‖2

L2(Ω).

(3.7)

The combination of (3.6)–(3.7) shows that

d

dt

∫
Ω

u1 log u1 + d1

∫
Ω

|∇u1|2
u1

+
ε1

2
‖∇w1‖2

L2(Ω) + ‖w1‖2
L2(Ω)

≤
∫

Ω

u1E1(u1, u2)(log u1 + 1) +
(2 + χ2

1)
ε1

‖u1‖2
L2(Ω) +

2c2

ε1
‖u2‖2

L2(Ω) (3.8)

for all t ∈ (0, Tmax). Similarly, for u2, it holds that

d

dt

∫
Ω

u2 log u2 + d2

∫
Ω

|∇u2|2
u2

+
ε2

2
‖∇w2‖2

L2(Ω) + ‖w2‖2
L2(Ω)

≤
∫

Ω

u2E2(u1, u2)(log u2 + 1) +
(2 + χ2

2)
ε2

‖u2‖2
L2(Ω) +

2b2

ε2
‖u1‖2

L2(Ω) (3.9)

for all t ∈ (0, Tmax). Using (3.8) and (3.9), for all t ∈ (0, Tmax) one has

d

dt

∫
Ω

(u1 log u1 + u2 log u2) +
∫

Ω

(u1 log u1 + u2 log u2) + d1

∫
Ω

|∇u1|2
u1

+ d2

∫
Ω

|∇u2|2
u2

+
ε1

2
‖∇w1‖2

L2(Ω) + ‖w1‖2
L2(Ω) +

ε2

2
‖∇w2‖2

L2(Ω)

+ ‖w2‖2
L2(Ω) + ‖u1‖2

L2(Ω) + ‖u2‖2
L2(Ω) +

1
2

∫
Ω

u2
1 log u1 +

1
2

∫
Ω

u2
2 log u2

≤
∫

Ω

u1E1(u1, u2)(log u1 + 1) + q1‖u1‖2
L2(Ω) +

∫
Ω

u1 log u1 +
1
2

∫
Ω

u2
1 log u1︸ ︷︷ ︸

=:I1

+
∫

Ω

u2E2(u1, u2)(log u2+1)+q2‖u2‖2
L2(Ω)+

∫
Ω

u2 log u2+
1
2

∫
Ω

u2
2 log u2︸ ︷︷ ︸

=:I2

,

(3.10)

where q1 := (2+χ2
1)

ε1
+ 2b2

ε2
+ 1 and q2 := (2+χ2

2)
ε2

+ 2c2

ε1
+ 1. Clearly, the following

results hold:

s log s ≤ s2 and − s(log s + 1) ≤ −s log s ≤ 1
e

≤ 1 for all s ≥ 0. (3.11)

Making use of (1.5), (3.2) and (3.11), we obtain
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I1 =
∫

Ω

u1 (γ1 − u1 − cu2) (log u1 + 1)+q1

∫
Ω

u2
1+
∫

Ω

u1 log u1+
1
2

∫
Ω

u2
1 log u1,

= (1 + γ1)
∫

Ω

u1 log u1 + γ1

∫
Ω

u1 − 1
2

∫
Ω

u2
1 log u1

− c

∫
Ω

u1u2(log u1 + 1) + (q1 − 1)
∫

Ω

u2
1,

≤ (1 + γ1)
∫

Ω

u2
1 + γ1

∫
Ω

u1 − 1
2

∫
Ω

u2
1 log u1 + c

∫
Ω

u2 + (q1 − 1)
∫

Ω

u2
1,

≤ −1
2

∫
Ω

u2
1 [log u1 − 2(γ1 + q1)] + C for all t ∈ (0, Tmax). (3.12)

The continuous function φ(s) := s2 [log s − 2(γ1 + q1)] for s > 0 is bounded
from below. In fact, φ(s) > 0 for s ∈ (s∗,∞) with s∗ := e2(γ1+q1) > 0 and

φ(s) ≥ s2 log s − 2(γ1 + q1)s2
∗ ≥ − 1

2e
− 2(γ1 + q1)s2

∗ for s ∈ (0, s∗],

where we have used the fact that s2 log s ≥ − 1
2e for s ∈ (0,∞). This along

with (3.12) shows that

I1 ≤ C for all t ∈ (0, Tmax). (3.13)

Similarly, one can deduce that

I2 ≤ C for all t ∈ (0, Tmax). (3.14)

Substituting (3.13) and (3.14) into (3.10), one has

d

dt

∫
Ω

(u1 log u1 + u2 log u2) +
∫

Ω

(u1 log u1 + u2 log u2) + d1

∫
Ω

|∇u1|2
u1

+ d2

∫
Ω

|∇u2|2
u2

+
ε1

2
‖∇w1‖2

L2(Ω) + ‖w1‖2
L2(Ω) +

ε2

2
‖∇w2‖2

L2(Ω)

+ ‖w2‖2
L2(Ω) + ‖u1‖2

L2(Ω) + ‖u2‖2
L2(Ω) +

1
2

∫
Ω

u2
1 log u1 +

1
2

∫
Ω

u2
2 log u2

≤ C for all t ∈ (0, Tmax). (3.15)

Finally, (3.4) is achieved by applying Grönwall’s inequality to (3.15), and (3.5)
is obtained by (3.4) and an integration of (3.15) with respect to t. �

With (3.5), we can obtain the following uniform-in-time estimates of
‖u1‖Lq(Ω) and ‖u2‖Lq(Ω) for q ∈ (1,∞).

Lemma 3.4. Suppose that the conditions in Theorem 1.1 hold. For any 1 <
q < ∞, there exists a positive constant C(q) independent of t such that

‖u1‖q
Lq(Ω) + ‖u2‖q

Lq(Ω) ≤ C(q) for all t ∈ (0, Tmax). (3.16)

Proof. Multiplying the first equation of (1.4) by quq−1
1 for q > 1 and inte-

grating the resulting equation by parts subject to the boundary condition
∇u1 · n |∂Ω= w1 · n |∂Ω= 0, we have
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d

dt
‖u1‖q

Lq(Ω) +
4(q − 1)d1

q
‖∇u

q
2
1 ‖2

L2(Ω)

= (q − 1)χ1

∫
Ω

w1 · ∇uq
1 + q

∫
Ω

uq
1(γ1 − u1 − cu2)

= −(q − 1)χ1

∫
Ω

uq
1∇ · w1 + q

∫
Ω

uq
1(γ1 − u1) − cq

∫
Ω

u2u
q
1

=: I3 + I4 − cq

∫
Ω

u2u
q
1 for all t ∈ (0, Tmax). (3.17)

By Hölder’s inequality we have

I3 ≤ (q − 1)χ1‖uq
1‖L2(Ω)‖∇ · w1‖L2(Ω) for all t ∈ (0, Tmax), (3.18)

where it follows from the Gagliardo–Nirenberg inequality that

‖uq
1‖L2(Ω) = ‖u

q
2
1 ‖2

L4(Ω) ≤ C(‖∇u
q
2
1 ‖ 1

2
L2(Ω)‖u

q
2
1 ‖ 1

2
L2(Ω) + ‖u

q
2
1 ‖L2(Ω))2. (3.19)

Substituting (3.19) into (3.18), and using Young’s inequality and Hölder’s in-
equality, for all t ∈ (0, Tmax), one has

I3 ≤ C(q)
(
‖∇u

q
2
1 ‖L2(Ω)‖u

q
2
1 ‖L2(Ω) + ‖u

q
2
1 ‖2

L2(Ω)

)
‖∇ · w1‖L2(Ω)

≤ 2(q − 1)d1

q
‖∇u

q
2
1 ‖2

L2(Ω) + C(q)‖u
q
2
1 ‖2

L2(Ω)‖∇ · w1‖2
L2(Ω)

+ C(q)‖u
q
2
1 ‖2

L2(Ω)‖∇ · w1‖L2(Ω)

≤ 2(q − 1)d1

q
‖∇u

q
2
1 ‖2

L2(Ω) + C(q)‖u1‖q
Lq(Ω)

(
‖∇ · w1‖2

L2(Ω) + 1
)

. (3.20)

Using Hölder’s inequality: ‖u1‖Lq(Ω) ≤ |Ω| 1
q(q+1) ‖u1‖Lq+1(Ω) and Young’s in-

equality: qγ1u
q
1 ≤ (q − 1)uq+1

1 + γq+1
1 C(q), we have

I4 ≤ −‖u1‖q+1
Lq+1(Ω) + γq+1

1 C(q)|Ω|
≤ −|Ω|− 1

q ‖u1‖q+1
Lq(Ω) + C(q) for all t ∈ (0, Tmax). (3.21)

Then the combination of (3.17), (3.20) and (3.21) shows that

d

dt
‖u1‖q

Lq(Ω) − C(q)‖u1‖q
Lq(Ω)

(
‖∇ · w1‖2

L2(Ω) + 1
)

+ |Ω|− 1
q ‖u1‖q+1

Lq(Ω) ≤ 0

(3.22)

for all t ∈ (0, Tmax). Using (3.5), for all τ ∈ (0, Tmax) and t ∈ (0, Tmax − τ),
we have ∫ t+τ

t

‖∇ · w1‖2
L2(Ω) ≤

∫ t+τ

t

‖∇w1‖2
L2(Ω) ≤ kτ + C. (3.23)

With (3.23), one can apply a nonlinear Gronwall’s inequality shown in [22,
Lemma 2.3] to (3.22) to obtain

sup
t∈(0,Tmax)

‖u1‖q
Lq(Ω) ≤ C(q). (3.24)
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Performing the same procedures as u1, one can deduce the following estimate
for u2 as

sup
t∈(0,Tmax)

‖u2‖q
Lq(Ω) ≤ C(q),

which along with (3.24) completes the proof. �
The following uniform-in-time estimates of w1 and w2 in W 1,2(Ω) can

be easily obtained.

Lemma 3.5. Suppose that the conditions in Theorem 1.1 hold. Then there exists
a positive constant C independent of t such that

‖w1‖W 1,2(Ω) + ‖w2‖W 1,2(Ω) ≤ C for all t ∈ (0, Tmax). (3.25)

Proof. In view of (3.7) and (3.16), we get ‖w1‖W 1,2(Ω) ≤ C for all t ∈ (0, Tmax).
The estimate for w2 follows similarly. �

Now we are in a position to derive the L∞-boundedness of u1 and u2 by
the Lp-Lq estimates of the Neumann heat semigroup.

Lemma 3.6. Suppose that the conditions in Theorem 1.1 hold. Then there exists
a positive constant C independent of t such that

‖u1(·, t)‖L∞(Ω) + ‖u2(·, t)‖L∞(Ω) ≤ C for all t ∈ (0, Tmax). (3.26)

Proof. It follows from (3.16), (3.25) and the Sobolev embedding W 1,2(Ω) ↪→
L6(Ω) that

‖u1w1‖L4(Ω) ≤ ‖u1‖L12(Ω)‖w1‖L6(Ω) ≤ C for all t ∈ (0, Tmax), (3.27)

where Hölder’s inequality was used. Now given t ∈ (0, Tmax), we let t0 :=
(t − 1)+. Applying the variation-of-constants formula, using u1, u2 ≥ 0 and
the comparison principle, for all t ∈ (0, Tmax), one has

u1(·, t) ≤ e(t−t0)d1Δu1(·, t0) − χ1

∫ t

t0

e(t−s)d1Δ∇ · (u1(·, s)w1(·, s)) ds

+ γ1

∫ t

t0

e(t−s)d1Δu1(·, s)ds,

which implies

‖u1(·, t)‖L∞(Ω) ≤ ‖e(t−t0)d1Δu1(·, t0)‖L∞(Ω)

+ χ1

∫ t

t0

‖e(t−s)d1Δ∇ · (u1(·, s)w1(·, s)) ‖L∞(Ω)ds

+ γ1

∫ t

t0

‖e(t−s)d1Δu1(·, s)‖L∞(Ω)ds

=: I5 + I6 + I7 for all t ∈ (0, Tmax). (3.28)

It follows from the well-known Neumann heat semigroup (cf. [32, Lemma 2.2],
see also [46, formula (1.8)]) that

‖etd1Δu1(·, t)‖L∞(Ω) ≤ C

t
‖u1(·, t)‖L1(Ω) for all t ∈ (0, 2) ∩ (0, Tmax).
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For t ≥ 1, t0 = t − 1 and hence we have along with (3.2)

I5 = ‖ed1Δu1(·, t − 1)‖L∞(Ω) ≤ C‖u1(·, t − 1)‖L1(Ω)

≤ C for all t ∈ [1,∞) ∩ (0, Tmax). (3.29)

Since u10 ∈ W 1,p(Ω) ↪→ L∞(Ω) due to p > 2, it follows from the parabolic
maximum principle that

I5 = ‖etd1Δu10‖L∞(Ω) ≤ ‖u10‖L∞(Ω) ≤ C for all t ∈ (0, 1) ∩ (0, Tmax).
(3.30)

For I6, using (3.27) and the smoothing property of the Neumann heat semi-
group [46, Lemma 1.3 (ii)], we get

I6 ≤ C

∫ t

t0

(1 + (t − s)− 3
4 )e−λ1(t−s)‖u1(·, s)w1(·, s)‖L4(Ω)ds

≤ C for all t ∈ (0, Tmax), (3.31)

where λ1 denotes the smallest positive eigenvalue of −Δ in Ω. Now it remains
to estimate the term I7. Let u1(s) := 1

|Ω|
∫
Ω

u1(x, t). Then using t − t0 ≤ 1,
the smoothing property of the Neumann heat semigroup [46, Lemma 1.3 (i)],
(3.2) and Lemma 3.4 with q = 2, we obtain

I7 ≤ γ1

∫ t

t0

‖e(t−s)d1Δ(u1(·, s) − u1(s))‖L∞(Ω)ds + γ1

∫ t

t0

‖e(t−s)d1Δu1(s)‖L∞(Ω)ds

≤ C

∫ t

t0

(1 + (t − s)−
1
2 )e−λ1(t−s)‖u1(·, s) − u1(s)‖L2(Ω)ds + C

∫ t

t0

‖u1(s)‖L∞(Ω)

≤ C

∫ t

t0

(1 + (t − s)−
1
2 )e−λ1(t−s) (‖u1(·, s)‖L2(Ω) + ‖u1(s)‖L2(Ω)

)
+ C(t − t0)

≤ C for all t ∈ (0, Tmax). (3.32)

Now the combination of (3.28)–(3.32) yields

‖u1(·, t)‖L∞(Ω) ≤ C for all t ∈ (0, Tmax).

Similar arguments applied to u2 give

‖u2(·, t)‖L∞(Ω) ≤ C for all t ∈ (0, Tmax).

The proof is completed. �

We next deduce the uniform-in-time estimates for ∇u1 and ∇u2 in L2(Ω).

Lemma 3.7. Suppose that the conditions in Theorem 1.1 hold. Then there exists
a positive constant C independent of t such that

‖∇u1(·, t)‖L2(Ω) + ‖∇u2(·, t)‖L2(Ω) ≤ C for all t ∈ (0, Tmax). (3.33)

Proof. Multiplying the first equation of (1.4) by −Δu1 and integrating the
resulting equation by parts along with the boundary conditions in (1.4), one
has
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1
2

d

dt
‖∇u1‖2

L2(Ω) = − d1‖Δu1‖2
L2(Ω) + χ1

∫
Ω

Δu1∇ · (u1w1)

−
∫

Ω

u1E1(u1, u2)Δu1 (3.34)

for all t ∈ (0, Tmax). With the boundary condition ∇u1 · n |∂Ω= 0 and (3.26),
we further have

−
∫

Ω

u1E1(u1, u2)Δu1 =
∫

Ω

(
γ1|∇u1|2 − 2u1|∇u1|2 − c(u1∇u2 + u2∇u1)∇u1

)
≤ C1(‖∇u1‖2

L2(Ω) + ‖∇u2‖2
L2(Ω)) for all t ∈ (0, Tmax).

(3.35)

Clearly, for all t ∈ (0, Tmax), it holds that∫
Ω

Δu1∇ · (u1w1) =
∫

Ω

u1(∇ · w1)Δu1 +
∫

Ω

(w1 · ∇u1)Δu1 =: I8 + I9.

(3.36)

Making use of (3.25) and (3.26), for all t ∈ (0, Tmax), we obtain

I8 ≤ d1

4χ1
‖Δu1‖2

L2(Ω) +
χ1

d1
‖u1∇ · w1‖2

L2(Ω) ≤ d1

4χ1
‖Δu1‖2

L2(Ω) + C2. (3.37)

Noticing that ∇|∇z|2 = 2D2z ·∇z for z ∈ C2(Ω̄) with D2z = ∇(∇z), we arrive
at

I9 = −
∫

Ω

(
w1 · D2u1 + ∇w1 · ∇u1

) · ∇u1

= −
∫

Ω

w1 · (∇u1 · D2u1) −
∫

Ω

(∇w1 · ∇u1) · ∇u1

= −1
2

∫
Ω

w1 · ∇|∇u1|2 −
∫

Ω

(∇w1 · ∇u1) · ∇u1

=
1
2

∫
Ω

(∇ · w1)|∇u1|2 −
∫

Ω

(∇w1 · ∇u1) · ∇u1

≤ 3
2
‖∇w1‖L2(Ω)‖∇u1‖2

L4(Ω)

≤ C3‖∇u1‖2
L4(Ω) for all t ∈ (0, Tmax), (3.38)

where Hölder’s inequality and Lemma 3.5 have been used. Applying Lemma 2.4
(with q = 4, r = n = 2 and θ = 3

4 ) to ‖∇u1‖L4(Ω) and using (3.26), (3.38) and
Young’s inequality, for all t ∈ (0, Tmax), we have

I9 ≤ C4(‖Δu1‖
3
2
L2‖u1‖

1
2
L2(Ω) + ‖u1‖2

L2(Ω)) ≤ d1

4χ1
‖Δu1‖2

L2(Ω) + C5. (3.39)

The substitution of (3.37) and (3.39) into (3.36) yields

χ1

∫
Ω

Δu1∇ · (u1w1) ≤ d1

2
‖Δu1‖2

L2(Ω) + (C2 + C5)χ1 for all t ∈ (0, Tmax).

(3.40)
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Using (3.26), (3.34), (3.35) and (3.40), for all t ∈ (0, Tmax), one can see that
1
2

d

dt
‖∇u1‖2

L2(Ω) +
d1

2
‖Δu1‖2

L2(Ω) ≤ C6(‖∇u1‖2
L2(Ω) + ‖∇u2‖2

L2(Ω) + 1).

(3.41)

Similar procedures applied to u2 yield that
1
2

d

dt
‖∇u2‖2

L2(Ω) +
d2

2
‖Δu2‖2

L2(Ω) ≤ C7(‖∇u1‖2
L2(Ω) + ‖∇u2‖2

L2(Ω) + 1)

for all t ∈ (0, Tmax). This along with (3.41) shows that
1
2

d

dt

(
‖∇u1‖2

L2(Ω) + ‖∇u2‖2
L2(Ω)

)
+

d1

2
‖Δu1‖2

L2(Ω) +
d2

2
‖Δu2‖2

L2(Ω)

≤ C8

(
‖∇u1‖2

L2(Ω) + ‖∇u2‖2
L2(Ω) + 1

)
for all t ∈ (0, Tmax). (3.42)

Applying Lemma 2.4 (with q = r = n = 2 and θ = 1
2 ) to ‖∇ui‖L2(Ω) for

i = 1, 2 and using (3.26) and Young’s inequality, for all t ∈ (0, Tmax), we
obtain (

C8 +
1
2

)
‖∇ui‖2

L2(Ω) ≤ C9(‖Δui‖
1
2
L2‖ui‖

1
2
L2(Ω) + ‖ui‖L2(Ω))2

≤ di

4
‖Δui‖2

L2(Ω) + C10.

This together with (3.42) shows that
1
2

d

dt
(‖∇u1‖2

L2(Ω) + ‖∇u2‖2
L2(Ω)) +

1
2
(‖∇u1‖2

L2(Ω) + ‖∇u2‖2
L2(Ω))

+
d1

4
‖Δu1‖2

L2(Ω) +
d2

4
‖Δu2‖2

L2(Ω)

≤ C11 for all t ∈ (0, Tmax). (3.43)

Applying Grönwall’s inequality to (3.43) leads to

‖∇u1‖2
L2(Ω) + ‖∇u2‖2

L2(Ω) ≤ C12 for all t ∈ (0, Tmax),

which proves (3.33). �

With (3.33), we can use Lemma 2.2 to derive the uniform-in-time esti-
mates of w1 and w2 in H2(Ω) (Lemma 3.8), which along with the Lp-Lq-
estimates of the Neumann heat semigroup enables us to further obtain the
boundedness of ∇u1 and ∇u2 as stated in Lemma 3.9.

Lemma 3.8. Suppose that the conditions in Theorem 1.1 hold. Then there exists
a positive constant C independent of t such that

‖w1‖H2(Ω) + ‖w2‖H2(Ω) ≤ C for all t ∈ (0, Tmax). (3.44)

Proof. From Lemma 2.2 and (3.33), (3.44) follows immediately. �

Lemma 3.9. Suppose that the conditions in Theorem 1.1 hold. Then there exists
a positive constant C independent of t such that

‖u1(·, t)‖W 1,p(Ω) + ‖u2(·, t)‖W 1,p(Ω) ≤ C for all t ∈ (0, Tmax). (3.45)
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Proof. Applying the variation-of-constants formula, one has

u1(·, t) = etd1(Δ−1)u10 +
∫ t

0

e(t−s)d1(Δ−1)ϕ(u1, u2,w1)(·, s)ds,

where

ϕ(u1, u2,w1) := −∇ · (χ1u1w1) + u1 (γ1 + d1 − u1 − cu2).

It follows from (3.26), (3.33), (3.44) and the Sobolev embedding H2(Ω) ↪→
L∞(Ω) that

‖ − ∇ · (χu1w1)‖L2(Ω) ≤ C
(‖∇u1‖L2(Ω) + ‖∇w1‖L2(Ω)

)
≤ C for all t ∈ (0, Tmax),

which along with (3.26) shows that

‖ϕ(u1, u2,w1)‖L2(Ω) ≤ C for all t ∈ (0, Tmax).

Now using the smoothing property of the Neumann heat semigroup [46, Lemma
1.3 (ii)] again, we obtain

‖∇u1(·, t)‖Lp(Ω) ≤ C ‖u10‖W 1,p(Ω)

+ C

∫ t

0

(
1 + (t − s)

1
p −1
)

e−λ1(t−s)

× ‖ϕ(u1, u2,w1)(·, s)‖L2(Ω)ds

≤ C for all t ∈ (0, Tmax). (3.46)

In a similar manner, we have

‖∇u2(·, t)‖W 1,p(Ω) ≤ C for all t ∈ (0, Tmax),

which along with (3.26) and (3.46) completes the proof. �

Proof of Theorem 1.1. Tmax = ∞ is a direct consequence (2.15) and (3.45).
By (3.45) and Lemma 2.2, one can obtain (1.7) directly. �

4. Global Stability

In this section, we shall investigate the asymptotic behavior of solutions to the
system (1.4) and prove Theorem 1.2 by the Lyapunov functional method along-
side compactness arguments. To begin with, we derive the following higher-
order estimates of solutions when time t is away from 0.

Lemma 4.1. Suppose that the conditions in Theorem 1.1 hold. Then for any
θ ∈ (0, 1), there exists a positive constant C(θ) such that

2∑
i=1

(
‖ui‖

C2+θ,1+ θ
2 (Ω̄×[1,∞))

+ ‖wi‖
C2+θ,1+ θ

2 (Ω̄×[1,∞))

)
≤ C(θ). (4.1)
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Proof. It follows from (1.7) that

‖u1(·, t)‖W 1,p(Ω) + ‖u2(·, t)‖W 1,p(Ω) ≤ C for all t > 0.

Taking t0 = 1
8 as the initial time, then u1(·, t0), u2(·, t0) ∈ W 1,p(Ω). Using a

similar argument as in the proof of Lemma 3.9, for any q ∈ (1,∞), one can
find a positive constant C(q) such that

‖u1(·, t)‖W 1,q(Ω) + ‖u2(·, t)‖W 1,q(Ω) ≤ C(q) for all t > t0. (4.2)

Then using Lemma 2.2 and (4.2) one has

‖w1(·, t)‖W 2,q(Ω) + ‖w2(·, t)‖W 2,q(Ω) ≤ C(q) for all t > t0. (4.3)

For any θ ∈ (0, 1), using (4.3) and the Sobolev embedding W 2,r(Ω) ↪→ C1,1− 2
r

(Ω̄) ↪→ C1,θ(Ω̄) for r > 2
1−θ , we can find some r0 > 2

1−θ and C(θ) > 0 such
that

‖w1(·, t)‖C1,θ(Ω̄) + ‖w2(·, t)‖C1,θ(Ω̄)

≤ C ‖w1(·, t)‖W 2,r0 (Ω) + ‖w2(·, t)‖W 2,r0 (Ω) ≤ C(θ) (4.4)

for all t > t0. From (1.4), we know that u1 satisfies⎧⎨
⎩

∂tu1 − d1Δu1 + χ1w1 · ∇u1 + Q1(x, t)u1 = 0, x ∈ Ω, t > t0,
∂u1
∂n = 0, x ∈ ∂Ω, t > t0,
u1(x, t) |t=t0= u1(x, t0), x ∈ Ω,

(4.5)

where Q1(x, t) = χ1∇ · w1 − E1(u1, u2) for (x, t) ∈ Ω × (t0,∞). Using (4.2)
and (4.4), one has

‖χ1w1‖L∞(Ω×[j+ 1
4 ,j+2]) + ‖Q1‖L∞(Ω×[j+ 1

4 ,j+2]) ≤ C for all j ≥ 0. (4.6)

In view of (4.2) and (4.6), one can apply the interior Lp estimate [28, Theorems
7.22 and 7.35] to (4.5) to obtain

‖u1‖W 2,1
q (Ω×[j+ 1

2 ,j+2]) ≤ C(q) for all j ≥ 0,

where W 2,1
q (Ω × [t1, t2]) :=

{
u | Du,D2u, ut ∈ Lq (Ω × [t1, t2])

}
for t2 > t1 >

0. By taking q appropriately large and using the Sobolev embedding theorem
we have

‖u1‖
C1+θ, 1+θ

2 (Ω̄×[j+ 1
2 ,j+2])

≤ C(θ) for all j ≥ 0. (4.7)

Similarly, it follows that

‖u2‖
C1+θ, 1+θ

2 (Ω̄×[j+ 1
2 ,j+2])

≤ C(θ) for all j ≥ 0. (4.8)

Using (4.4), (4.7) and (4.8), we obtain that the solution (w1,w2) of the elliptic
system (2.16) satisfies

‖w1‖
C1+θ, 1+θ

2 (Ω̄×[j+ 1
2 ,j+2])

+ ‖w2‖
C1+θ, 1+θ

2 (Ω̄×[j+ 1
2 ,j+2])

≤C(θ) for all j ≥ 0.

(4.9)

Clearly, it follows from (4.7)–(4.9) that

‖χ1w1‖
Cθ, θ

2 (Ω̄×[j+ 1
2 ,j+2])

+ ‖Q1‖
Cθ, θ

2 (Ω̄×[j+ 1
2 ,j+2])

≤ C(θ) for all j ≥ 0.
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An application of the Schauder estimate to (4.5) shows that

‖u1‖
C2+θ,1+ θ

2 (Ω̄×[j+1,j+2])
≤ C(θ) for all j ≥ 0. (4.10)

Similarly, we have

‖u2‖
C2+θ,1+ θ

2 (Ω̄×[j+1,j+2])
≤ C(θ) for all j ≥ 0. (4.11)

In view of (4.10) and (4.11), we can apply Lemma 2.2 to (2.16) to obtain

‖w1‖
C2+θ,1+ θ

2 (Ω̄×[j+1,j+2])
+ ‖w2‖

C2+θ,1+ θ
2 (Ω̄×[j+1,j+2])

≤ C(θ) for all j ≥ 0.

(4.12)

Noting that the constant C(θ) is independent of j ≥ 0, we get (4.1) directly
from (4.10)-(4.12). �

4.1. Weak competition: c < γ1

γ2
< 1

b

To proceed, we define the positive constants

η0 :=
K1 − K∗

1

2(2u∗
1 + K1)

and η :=
1 − bc

2c2
(1 − η0)

(
K2

u∗
2

− f(b, c)
)

(4.13)

under the condition (1.14).

Lemma 4.2. Let η0 and η be defined by (4.13). If bc ∈ (0, 1) and (1.14) holds,
then the positive constants

Γ1 :=
η0

2
f(b, c) +

(
1 − η0

2

) K2

u∗
2

and Γ2 :=
1
2

min
{

Γ2∗ +
K1

u∗
1

η,Γ2∗ + Γ∗
2

}

satisfy

b2 + η < Γ2 <
K1

u∗
1

η, ψ1(Γ2) > 0 and Γ1 <
K2

u∗
2

, (4.14)

where

Γ2∗ =
2
(
α1 −

√
α2

1 + α2c2
)

c2
, Γ∗

2 :=
2
(
α1 +

√
α2

1 + α2c2
)

c2
,

and

ψ1(s) := −c2

4
s2 + α1s + α2 for s > 0,

with

α1 :=
(

1 − bc

2

)
Γ1 − ηc2 − 1 and

α2 := −1
4
b2Γ2

1 − (b2 + η
)
Γ1 + b2

(
c2η + 1

)
+ c2η2 + η.

Proof. This proof is straightforward and tedious, and we give the detailed
proof in Appendix B. �

Now we are in a position to derive the following result.



NoDEA Global dynamics of a two-species clustering model Page 25 of 42    47 

Lemma 4.3. Let (u1, u2,w1,w2) be the global classical solution of (1.4) ob-
tained in Theorem 1.1. Assume c < γ1

γ2
< 1

b and let (u∗
1, u

∗
2) be defined in (1.8).

If (1.13) or (1.14) holds, then there exist positive constants Γ1 and Γ2 such
that the energy functional

E1(t) :=Γ2

∫
Ω

(
u1 − u∗

1 − u∗
1 ln

u1

u∗
1

)

+ Γ1

∫
Ω

(
u2 − u∗

2 − u∗
2 ln

u2

u∗
2

)
for all t > 0

satisfies

E1(t) ≥ 0 for all t ≥ 0, (4.15)

and

d

dt
E1(t) ≤ −θ1F1(t) for all t > 0 (4.16)

for a positive constant θ1, where

F1(t) :=
∫

Ω

(u1 − u∗
1)

2 +
∫

Ω

(u2 − u∗
2)

2 for all t > 0. (4.17)

Proof. By the symmetry of the equations satisfied by u1 and u2 in (1.4), we
only need to prove the conclusion under the condition (1.14). In the rest of
this proof, we let the positive constants Γ1 and Γ2 be given by Lemma 4.2.

We first prove (4.15). Define the function ψ(s) := s − u∗
1 − u∗

1 ln s
u∗
1

for

s > 0, then ψ′(s) = 1 − u∗
1
s with ψ′(u∗

1) = 0 and ψ′′(s) = u∗
1

s2 > 0. Hence we
have ψ(s) ≥ ψ(u∗

1) = 0 for s > 0, which implies u1 −u∗
1 −u∗

1 ln u1
u∗
1

≥ 0. Similar
arguments for u2 yield u2 − u∗

2 − u∗
2 ln u2

u∗
2

≥ 0. Therefore, (4.15) is proved. It
remains to prove (4.16). To this end, we multiply the first equation in (1.4)
by 1 − u∗

1
u1

, integrate the resulting equation by parts along with the boundary
conditions in (1.4) and use γ1 − u∗

1 − cu∗
2 = 0 to get

d

dt

∫
Ω

(
u1 − u∗

1 − u∗
1 ln

u1

u∗
1

)

=
∫

Ω

(
1 − u∗

1

u1

)
(d1Δu1 − ∇ · (χ1u1w1) + u1E1(u1, u2))

= −d1u
∗
1

∫
Ω

|∇u1|2
u2

1

+ χ1u
∗
1

∫
Ω

w1 · ∇u1

u1

+
∫

Ω

(u1 − u∗
1) (−u1 − cu2 + u∗

1 + cu∗
2)

= −d1u
∗
1

∫
Ω

|∇u1|2
u2

1

+ χ1u
∗
1

∫
Ω

w1 · ∇u1

u1

−
∫

Ω

(u1 − u∗
1)

2 − c

∫
Ω

(u1 − u∗
1) (u2 − u∗

2) (4.18)
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for all t > 0. Similarly, it holds that

d

dt

∫
Ω

(
u2 − u∗

2 − u∗
2 ln

u2

u∗
2

)
= −d2u

∗
2

∫
Ω

|∇u2|2
u2

2

+ χ2u
∗
2

∫
Ω

w2 · ∇u2

u2

−
∫

Ω

(u2 − u∗
2)

2 − b

∫
Ω

(u1 − u∗
1) (u2 − u∗

2)

(4.19)

for all t > 0. As deriving (3.7), by Young’s inequality we can obtain

ε1‖∇w1‖2
L2(Ω) + ‖w1‖2

L2(Ω)

=
∫

Ω

∇ (u1 − u∗
1 + c(u2 − u∗

2)) · w1 =
∫

Ω

(u1 − u∗
1 + c(u2 − u∗

2)) ∇ · w1

≤ ε1‖∇w1‖2
L2(Ω) +

1
4ε1

(
‖u1 − u∗

1‖2
L2(Ω) + c2‖u2 − u∗

2‖2
L2(Ω)

)
,

which implies

‖w1‖2
L2(Ω) ≤ 1

4ε1

(
‖u1 − u∗

1‖2
L2(Ω) + c2‖u2 − u∗

2‖2
L2(Ω)

)
for all t > 0.

(4.20)

Similarly, we can obtain

‖w2‖2
L2(Ω) ≤ 1

4ε2

(
b2‖u1 − u∗

1‖2
L2(Ω) + ‖u2 − u∗

2‖2
L2(Ω)

)
for all t > 0.

(4.21)

For η given by (4.13), the combination of (4.18)–(4.21) shows that

d

dt
E1(t) = −d1Γ2u

∗
1

∫
Ω

|∇u1|2
u2

1

− d2Γ1u
∗
2

∫
Ω

|∇u2|2
u2

2

− Γ2

∫
Ω

(u1 − u∗
1)

2

− Γ1

∫
Ω

(u2 − u∗
2)

2 + χ1Γ2u
∗
1

∫
Ω

w1 · ∇u1

u1
+ χ2Γ1u

∗
2

∫
Ω

w2 · ∇u2

u2

− (cΓ2 + bΓ1)
∫

Ω

(u1 − u∗
1) (u2 − u∗

2)

≤ −d1Γ2u
∗
1

∫
Ω

|∇u1|2
u2

1

− d2Γ1u
∗
2

∫
Ω

|∇u2|2
u2

2

− 4ε2‖w2‖2
L2(Ω) − 4ηε1‖w1‖2

L2(Ω)

− (Γ2 − b2 − η
) ∫

Ω

(u1 − u∗
1)

2 − (Γ1 − 1 − ηc2
) ∫

Ω

(u2 − u∗
2)

2

+ χ1Γ2u
∗
1

∫
Ω

w1 · ∇u1

u1
+ χ2Γ1u

∗
2

∫
Ω

w2 · ∇u2

u2

− (cΓ2 + bΓ1)
∫

Ω

(u1 − u∗
1) (u2 − u∗

2)

≤ −
∫

Ω

X1A1X
T
1 −

∫
Ω

Y1B1Y
T
1 for all t > 0, (4.22)
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where X1 := (u1 − u∗
1, u2 − u∗

2), Y1 :=
(

∇u1
u1

, ∇u2
u2

,w1,w2

)
and A1, B1 are

matrices denoted by

A1 :=
(

Γ2 − b2 − η cΓ2+bΓ1
2

cΓ2+bΓ1
2 Γ1 − 1 − ηc2

)
,

B1 :=

⎛
⎜⎜⎜⎝

d1Γ2u
∗
1 0 −χ1Γ2u∗

1
2 0

0 d2Γ1u
∗
2 0 −χ2Γ1u∗

2
2

−χ1Γ2u∗
1

2 0 4ηε1 0
0 −χ2Γ1u∗

2
2 0 4ε2

⎞
⎟⎟⎟⎠ .

We next prove that the matrices A1 and B1 are both positive definite.
Denoting the determinant of a general square matrix X by |X| and denote the
upper left k-by-k (k = 1, 2, 3) corner of B1 by B

(k)
1 , then by (4.14) we have

|B(1)
1 | = d1Γ2u

∗
1 > 0, |B(2)

1 | = d1d2Γ2Γ1u
∗
1u

∗
2 > 0,

|B(3)
1 | =

∣∣∣∣∣∣∣
d1Γ2u

∗
1 0 −χ1Γ2u∗

1
2

0 d2Γ1u
∗
2 0

−χ1Γ2u∗
1

2 0 4ηε1

∣∣∣∣∣∣∣
=

1
4
d2Γ2Γ1 (χ1u

∗
1)

2
u∗

2

(
K1

u∗
1

η − Γ2

)
> 0,

and

|B1| =
1
16

Γ2Γ1 (χ1χ2u
∗
1u

∗
2)

2

(
K1

u∗
1

η − Γ2

)(
K2

u∗
2

− Γ1

)
> 0.

Sylvester’s criterion thus entails that the matrix B1 is positive definite. For
the matrix A1, we know from (4.14) that Γ2 − b2 − η > 0 and

|A1| =
∣∣∣∣Γ2 − b2 − η cΓ2+bΓ1

2
cΓ2+bΓ1

2 Γ1 − 1 − ηc2

∣∣∣∣ = ψ1(Γ2) > 0,

where the function ψ1 is defined in Lemma 4.2. Again, it follows from Sylvester’s
criterion that the matrix A1 is positive definite. Therefore, we can find a pos-
itive constant θ1 such that

X1A1X
T
1 ≥ θ1|X1|2 and Y1B1Y

T
1 ≥ θ1|Y1|2 for all t > 0. (4.23)

The combination of (4.17), (4.22) and (4.23) proves (4.16). �

With Lemmas 2.5, 4.1 and 4.3, we can use a similar argument as in the
proof of [42, Lemma 3.4] to prove the following result.

Lemma 4.4. Under the conditions of Lemma 4.3, for any θ ∈ (0, 1), it holds
that

‖u1−u∗
1‖C2+θ(Ω̄)+‖u2−u∗

2‖C2+θ(Ω̄)+‖w1‖C2+θ(Ω̄)+‖w2‖C2+θ(Ω̄) → 0 as t → ∞.

Proof. Let E1(t),F1(t) be given in Lemma 4.3. Clearly, E1(t) is bounded from
below according to (4.15). Thanks to Lemma 4.1, it can be seen that F1(t) ∈
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Cθ/2([1,∞)) and ‖F1‖Cθ/2([1,∞)) ≤ k in [1,∞) for some k > 0. In view of
(4.16), we can apply Lemma 2.5 to deduce limt→∞ F1(t) = 0. That is

lim
t→∞ (‖u1 − u∗

1‖2 + ‖u2 − u∗
2‖2) = 0.

Take 0 < θ < θ′ < 1. According to Theorem 2.1, in the space C2+θ′
(Ω̄),

u1(·, t) and u2(·, t) are bounded for t ≥ 1. Using the compact arguments and
the uniqueness of limits (cf. [42, (3.12)], see also [20, Remark 6.2]) we can show
that

‖u1 − u∗
1‖C2+θ(Ω̄) + ‖u2 − u∗

2‖C2+θ(Ω̄) → 0 as t → ∞. (4.24)

Using (4.20), (4.21) and (4.24), one has

‖w1‖W 1,2(Ω) + ‖w2‖W 1,2(Ω) → 0 as t → ∞.

This together with (4.1), the compact arguments and the uniqueness of limits
shows that

‖w1‖C1+θ(Ω̄) + ‖w2‖C1+θ(Ω̄) → ∞ as t → ∞,

which along with (4.24) completes the proof. �

We are now in a position to investigate the convergence rate.

Lemma 4.5. Under the conditions of Lemma 4.3. There exist two constants
σ > 0 and C > 0 independent of t such that

2∑
i=1

(
‖ui(·, t) − u∗

i ‖W 1,∞(Ω) + ‖wi‖W 1,∞(Ω)

)
≤ Ce−σt (4.25)

holds for all t > T0 with some T0 > 1, where u∗
1 and u∗

2 are given by (1.8).

Proof. With Lemmas 4.3 and 4.4, one can use a similar argument as in the
proof of [44, Lemma 3.7] (where the L∞(Ω) decay rate are obtained) to obtain
that there exist positive constants σ1 and T0 such that

‖u1(·, t) − u∗
1‖W 1,∞(Ω) + ‖u2(·, t) − u∗

2‖W 1,∞(Ω) ≤ C1e
−σ1t for all t > T0.

(4.26)

For the convenience of readers, we shall sketch the proof of (4.26). In view of
Lemma 4.4, we can apply L’Hôpital’s rule to derive that

lim
ui→u∗

i

ui − u∗
i − u∗

i ln ui

u∗
i

(ui − u∗
i )

2 = lim
ui→u∗

i

1 − u∗
i

ui

2 (ui − u∗
i )

= lim
ui→u∗

i

1
2ui

=
1

2u∗
i

, i = 1, 2,

which by the continuity yields a constant T0 > 1 such that

1
4u∗

i

∫
Ω

(ui − u∗
i )

2 ≤
∫

Ω

(
ui − u∗

i − u∗
i ln

u

u∗
i

)
≤ 1

u∗
i

∫
Ω

(ui − u∗
i )

2
, i = 1, 2

(4.27)

for all t ≥ T0. Then, it follows from the definition of E1(t) and F1(t) that

E1(t) ≤ C2F1(t) for all t ≥ T0,
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which together with (4.16) implies

d

dt
E1(t) +

θ1

C2
E1(t) ≤ 0 for all t ≥ T0.

Solving the above inequality, we obtain

E1(t) ≤ E1(T0)e
− θ1

C2
t for all t ≥ T0. (4.28)

By the definition of E1(t) and F1(t) and (4.27), one can find a constant C3 > 0
such that

F1(t) ≤ C3E1(t) for all t ≥ T0,

which along with (4.28) shows that

‖u1(·, t) − u∗
1‖L2(Ω) + ‖u2(·, t) − u∗

2‖L2(Ω) ≤ C4e
− θ1

2C2
t for all t ≥ T0. (4.29)

The combination of (4.1), (4.29) and the Gagliardo–Nirenberg inequality

‖ui − u∗
i ‖W 1,∞(Ω) ≤ C5

(
‖D2ui‖

4
5
L4 ‖ui − u∗

i ‖
1
5
L2 + ‖ui − u∗

i ‖L2

)
for i = 1, 2

(4.30)

yields (4.26) by choosing C1 large enough and taking σ1 = θ1
10C2

.
In view of (4.20) and (4.21), it follows from (4.26) immediately that

‖w1‖L2(Ω) + ‖w2‖L2(Ω) ≤ C6e
−σ1t for all t > T0. (4.31)

With (4.1) and (4.31), we can use a similar argument as deriving (4.30) to
show that

‖w1‖W 1,∞(Ω) + ‖w2‖W 1,∞(Ω) ≤ C7e
−σ2t for all t > T0, (4.32)

where σ2 = σ1
5 . Therefore, (4.25) is a direct consequence of (4.26) and (4.32)

by taking C appropriately large and σ = σ2. The proof is completed. �

4.2. Competitive exclusion: γ1

γ2
< min{1

b
, c}

As the results stated for the weak competition case in the above subsection,
we have the following conclusions.

Lemma 4.6. Let (u1, u2,w1,w2) be the global classical solution of (1.4) ob-
tained in Theorem 1.1. Assume γ1

γ2
< min{ 1

b , c} and (1.15) holds. Define two
constants

Γ3 :=
1
2

(
K2

γ2
+ f

(
b,

γ1

γ2

))
and Γ4 :=

Γ3

(
2γ2

2 − bγ1γ2

)− 2γ2
2

γ2
1

, (4.33)

where the function f is given by (1.9). Then

K2

γ2
> Γ3 > f

(
b,

γ1

γ2

)
> 1 and Γ4 > b2. (4.34)

Moreover, the energy functional

E2(t) := Γ4

∫
Ω

u1 + Γ3

∫
Ω

(
u2 − γ2 − γ2 ln

u2

γ2

)
for all t > 0 (4.35)
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satisfies E2(t) ≥ 0 for all t > 0, and

d

dt
E2(t) ≤ −θ2F2(t) for all t > 0 (4.36)

for a positive constant θ2, where

F2(t) :=
∫

Ω

u2
1 +
∫

Ω

(u2 − γ2)
2 for all t > 0. (4.37)

Proof. First of all, by a similar argument as proving (4.15), we can obtain
E2(t) ≥ 0 for all t > 0. We then prove (4.34). Using γ2 − bγ1 > 0 and (1.15),
we obtain the first inequality in (4.34) directly, moreover, we have

Γ4 − b2 =
1

2γ2
1 (γ2 − bγ1)

[
(2γ2 − bγ1)(γ2 − bγ1)K2 + b3γ3

1 + 3bγ1γ
2
2 − 2γ3

2

]

≥ 1
2γ2

1 (γ2 − bγ1)
[
(2γ2 − bγ1)

(
γ2
2 + b2γ2

1

)
+ b3γ3

1 + 3bγ1γ
2
2 − 2γ3

2

]

=
bγ2(γ2 + bγ1)
γ1 (γ2 − bγ1)

> 0,

which proves the second inequality in (4.34).
It remains to prove (4.36). Integrating the first two equations of (1.4) by

parts with ∇u1 · n |∂Ω= w1 · n |∂Ω= 0 and using γ1
γ2

< c, we have

d

dt

∫
Ω

u1 =
∫

Ω

u1 (γ1 − u1 − cu2)

≤
∫

Ω

u1

(
γ1 − u1 − γ1

γ2
u2

)

= −
∫

Ω

u2
1 − γ1

γ2

∫
Ω

u1(u2 − γ2) for all t > 0. (4.38)

As deriving (4.19), for all t > 0, we have

d

dt

∫
Ω

(
u2 − γ2 − γ2 ln

u2

γ2

)

≤ −d2γ2

∫
Ω

|∇u2|2
u2

2

+ χ2γ2

∫
Ω

w2 · ∇u2

u2
−
∫

Ω

(u2−γ2)2 − b

∫
Ω

u1 (u2 − γ2) .

(4.39)

It follows from (4.21), (4.35), (4.38), (4.39) and Young’s inequality that

d

dt
E2(t) ≤ − (Γ4 − b2

) ∫
Ω

u2
1 − (Γ3 − 1)

∫
Ω

(u2 − γ2)2 −
(

γ1

γ2
Γ4 + bΓ3

)

×
∫

Ω

u1 (u2 − γ2) − d2γ2Γ3

∫
Ω

|∇u2|2
u2

2

+ χ2γ2Γ3

∫
Ω

w2 · ∇u2

u2
− 4ε2‖w2‖2

L2(Ω)

≤ −
∫

Ω

X2A2X
T
2 −

∫
Ω

Y2B2Y
T
2 for all t > 0, (4.40)
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where X2 = (u1, u2 − γ2), Y2 =
(

∇u2
u2

,w2

)
and A2, B2 are matrices denoted

by

A2 :=

(
Γ4 − b2

γ1
γ2

Γ4+bΓ3

2γ1
γ2

Γ4+bΓ3

2 Γ3 − 1

)
, B2 :=

(
d2γ2Γ3 −χ2γ2Γ3

2

−χ2γ2Γ3
2 4ε2

)
.

Using γ2 − bγ1 > 0, (1.15), (4.33) and (4.34), we obtain Γ4 − b2 > 0 and

|A2| =

[
(γ2 − bγ1)K2 + b2γ2

1 + 2bγ1γ2 − γ2
2

] [
(γ2 − bγ1)K2 − (γ2

2 + b2γ2
1

)]
4γ2

1γ2(γ2 − bγ1)

=

(
(γ2 − bγ1)K2 + b2γ2

1 + 2bγ1γ2 − γ2
2

)
4γ2

1

(
K2

γ2
− f

(
b,

γ1

γ2

))

≥ b(bγ1 + γ2)
2γ1

(
K2

γ2
− f

(
b,

γ1

γ2

))
> 0. (4.41)

Moreover, it is obvious that d2γ2Γ3 > 0, and by (4.34) we have

|B2| =
Γ3 (γ2χ2)

2

4

(
K2

γ2
− Γ3

)
> 0. (4.42)

In view of Sylvester’s criterion, it follows from (4.41) and (4.42) that the matri-
ces A2 and B2 are positive definite, and hence we can find a positive constant
θ2 such that

X2A2X
T
2 ≥ θ2|X2|2 and Y2B2Y

T
2 ≥ θ2|Y2|2 for all t > 0,

which along with X2 = (u1, u2 − γ2), (4.37) and (4.40) proves (4.36). The
proof is completed. �

Lemma 4.7. Under the conditions of Lemma 4.6, there exists a constant T1 > 0
such that

‖u1(·, t)‖W 1,∞(Ω) + ‖u2(·, t) − γ2‖W 1,∞(Ω) +
2∑

i=1

‖wi‖W 1,∞(Ω) ≤ C

1 + t

for all t > T1, where C is a positive constant independent of t.

Proof. First, by a similar argument as in the proof of Lemma 4.4, one can
obtain

‖u1‖C2+θ(Ω̄) + ‖u2 − γ2‖C2+θ(Ω̄) + ‖w1‖C1+θ(Ω̄) + ‖w2‖C1+θ(Ω̄) → 0 as t → ∞.

Recalling the definitions of E2(t) and F2(t), and using (4.27) and Hölder’s
inequality, we can find some T1 > 0 such that

E2(t) ≤ C1

(∫
Ω

u1 +
∫

Ω

(u2 − γ2)
2

)

≤ C2

{(∫
Ω

u2
1

) 1
2

+
(∫

Ω

(u2 − γ2)
2

) 1
2
}

≤ C3F
1
2
2 (t) for all t > T1,
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which together with (4.36) gives that
d

dt
E2(t) +

θ2

C2
3

E2
2 (t) ≤ 0 for all t > T1.

Solving the above ordinary differential inequality, we arrive at

E2(t) ≤ C4

1 + t
for all t > T1.

The rest of the proof can follow similar arguments as in the proof of Lemma 4.5
and we omit it for brevity. �
Proof of Theorem 1.2.. The assertions in (i) and (ii) of Theorem 1.2 result
from Lemma 4.5 and Lemma 4.7, respectively. The assertions in (iii) are es-
sentially similar to those in (ii) and can be proved by simply swapping u1, b, γ1

with u2, c, γ2, respectively, in the proof of (ii). �
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Appendix A

In this section, we consider the regularity of the vector field w satisfying:{−Δw + w = f in Ω,
w · n = 0, ∂nw × n = 0 on ∂Ω,

(A1)

where Ω ⊂ R
n, n ∈ {2, 3}, is a bounded domain with a smooth boundary and

f ∈ (Lp(Ω))n for some 1 < p < ∞. Then the following regularity result holds.

Lemma A1. If f ∈ (L2(Ω)
)n, then the problem (A1) has a unique solution

w ∈ (H2(Ω))n and there is a positive constant C(Ω) depending only on Ω such
that

‖w‖H2(Ω) ≤ C(Ω)‖f‖L2(Ω).

Proof. The existence and uniqueness of the solution w ∈ (H2(Ω))n to (A1) is
stated in Lemma 2.2. Next we prove the regularity. We only give the details
for n = 3, and the proof for n = 2 is similar and simpler. We divide the proof
into two steps.

Step 1. We prove the following estimate for a positive constant C,

‖w‖H1(Ω) ≤ C‖f‖L2(Ω). (A2)

Multiplying the i-th component (i = 1, 2, 3) of the first equation in (A1) by
wi and integrating the resulting equation by parts, we get∫

Ω

|∇wi|2dx +
∫

Ω

|wi|2dx −
∫

∂Ω

wi · ∂nwidx =
∫

Ω

fiwidx,

which gives∫
Ω

|∇w|2dx +
∫

Ω

|w|2dx −
∫

∂Ω

w · ∂nwdx =
∫

Ω

w · fdx.

Noticing the boundary condition implies

w · ∂nw = 0 on ∂Ω,

we get (A2) by the Cauchy-Schwarz inequality:
∫
Ω

w · fdx ≤ 1
2‖w‖2

L2(Ω) +
1
2‖f‖2

L2(Ω).
Step 2. Suppose {n, τ1, τ2} constitutes the Frenet coordinate associated

with the boundary ∂Ω. By assuming the domain is sufficiently smooth, we can
extend {n, τ1, τ2} to a C∞ function defined in Ω such that their C2 norms
are uniformly bounded and any two of them are orthogonal to each other, still
denoted by {n, τ1, τ2}.

http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
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Now we shall estimate the H2-norm of w · n, w · τ1 and w · τ2 in the
following. We start with w · n which satisfies

Δ(w · n) = Δw · n + w · Δn + 2
3∑

i=1

∇wi · ∇ni.

Therefore, we have from (A1) that⎧⎨
⎩

−Δ(w · n) = (f − w) · n − w · Δn − 2
3∑

i=1

∇wi · ∇ni in Ω,

w · n = 0 on ∂Ω.

(A3)

We denote the right hand side of the first equation in (A3) by f̃1. Using the
classical elliptic regularity estimate, along with the boundary condition and
the conclusion in Step 1, we get

‖w · n‖H2(Ω) ≤ C(Ω)‖f̃1‖L2(Ω) ≤ C(Ω)‖f‖L2(Ω). (A4)

Concerning w · τ1, we have⎧⎨
⎩

−Δ(w · τ1) = (f − w) · τ1 − w · Δτ1 − 2
3∑

i=1

∇wi · ∇τ1i in Ω,

∂n(w · τ1) = w · ∂nτ1 on ∂Ω,

(A5)

where the boundary condition holds since

∂n(w · τ1) = ∂nw · τ1 + w · ∂nτ1 = w · ∂nτ1.

By the trace theorem and the conclusion in Step 1, we have

‖∂n(w · τ1)‖
H

1
2 (∂Ω)

= ‖w · ∂nτ1‖
H

1
2 (∂Ω)

≤ C(Ω)‖w‖H1(Ω) ≤ C(Ω)‖f‖L2(Ω).

On the other hand, by denoting the right hand side in the first equation of
(A5) by f̃2, it is easy to see that ‖f̃2‖L2(Ω) ≤ C(Ω)‖f‖L2(Ω). By the results of
[17, Section 2.3], we have

‖w · τ1‖H2(Ω) ≤ C(Ω)
(
‖f̃2‖L2(Ω) + ‖∂n(w · τ1)‖

H
1
2 (∂Ω)

)
≤ C(Ω)‖f‖L2(Ω).

(A6)
Similarly, we have

‖w · τ2‖H2(Ω) ≤ C(Ω)‖f‖L2(Ω). (A7)

Collecting (A4), (A6) and (A7), we arrive at

‖w‖H2(Ω) ≤ C(Ω)‖f‖L2(Ω).

Hence the proof is completed. �

Lemma A2. If f ∈ (
H2(Ω)

)n, then the system (A1) has a unique solution
w ∈ (H4(Ω))n and there is a positive constant C(Ω) depending only on Ω such
that

‖w‖H3(Ω) ≤ C(Ω)‖f‖H1(Ω) and ‖w‖H4(Ω) ≤ C(Ω)‖f‖H2(Ω).
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Proof. We consider the regularity of solutions to (A1) for n = 3 only, and the
case for n = 2 can be proved similarly. Defining the Frenet coordinate system
{n, τ1, τ2} and taking differentiation of (A1) with respect to xk, k ∈ {1, 2, 3},
we have ⎧⎪⎨

⎪⎩
−Δwxk

+ wxk
= fxk

in Ω,

wxk
· n = −w · nxk

on ∂Ω,

∂nwxk
× n + ∂nw × nxk

= 0 on ∂Ω.

(A8)

Next, we estimate the functions wxk
· n, wxk

· τ1 and wxk
· τ2. By direct

computations, we get⎧⎨
⎩

−Δ(wxk
· n) = (fxk

− wxk
) · n − wxk

· Δn − 2
3∑

i=1

∇(∂xk
wi) · ∇ni in Ω,

wxk
· n = −w · nxk

on ∂Ω.

(A9)
Denote the right hand side of (A9) by f̃3. Using Lemma A1, we see that

‖f̃3‖L2(Ω) ≤ C(Ω)‖f‖H1(Ω).

By the classical elliptic regularity, we have

‖wxk
· n‖H2(Ω) ≤ C(Ω)

(
‖f̃3‖L2(Ω) + ‖w · nxk

‖H2(Ω)

)
≤ C(Ω)‖f‖H1(Ω).

(A10)
Concerning wxk

· τ1, we have⎧⎪⎪⎪⎨
⎪⎪⎪⎩

−Δ(wxk
· τ1) = (fxk

− wxk
) · τ1 − wxk

· Δτ1

−2
3∑

i=1

∇(∂xk
wi) · ∇τ1i in Ω,

∂n(wxk
· τ1) = ∂nwxk

· τ1 + wxk
· ∂nτ1 on ∂Ω.

(A11)

Denoting the right hand side in the first equation of (A11) by f̃4, we can use
Lemma A1 to get that

‖f̃4‖L2(Ω) ≤ C(Ω)‖f‖H1(Ω). (A12)

From the last two equations in (A8), we notice that on ∂Ω,

∂nwxk
× n = −∂nw × nxk

. (A13)

From (A13) we get

∂nwxk
· τ1 = ∂nw × nxk

× n · τ1. (A14)

As a consequence of (A14), we have

∂n(wxk
· τ1) = ∂nw × nxk

× n · τ1 + wxk
· ∂nτ1.

Then it is easy to see that

‖∂n(wxk
· τ1)‖

H
1
2 (∂Ω)

≤ C(Ω)‖∂nw × nxk
× n · τ1 + wxk

· ∂nτ1‖H1(Ω)

≤ C(Ω)‖w‖H2(Ω). (A15)

With (A12) and (A15), the results of [17, Section 2.3] entail that

‖wxk
·τ1‖H2(Ω) ≤ C(Ω)

(
‖f̃4‖L2(Ω) + ‖∂n(wxk

· τ1)‖
H

1
2 (∂Ω)

)
≤ C(Ω)‖f‖H1(Ω).
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Similarly, we have

‖wxk
· τ2‖H2(Ω) ≤ C(Ω)‖f‖H1(Ω).

Combining the above two estimates with (A10), we get

‖w‖H3(Ω) ≤ C(Ω)‖f‖H1(Ω). (A16)

Now we derive the higher regularity based on the assumption that f ∈
H2(Ω). Differentiating (A1) with respect to xj and xk, j, k ∈ {1, 2, 3}, we have⎧⎪⎨
⎪⎩

−Δwxjxk
+ wxjxk

= fxjxk
in Ω,

wxjxk
· n = −w · nxjxk

− wxj
· nxk

− wxk
· nxj

on ∂Ω,

∂nwxjxk
× n + ∂nwxj

× nxk
+ ∂nwxk

× nxj
+ ∂nw × nxjxk

= 0 on ∂Ω.

(A17)
Next, we estimates the terms wxjxk

· n, wxjxk
· τ1 and wxjxk

· τ2. Direct
computations give us that⎧⎪⎪⎪⎨

⎪⎪⎪⎩

−Δ(wxjxk
· n) = (fxjxk

− wxjxk
) · n − wxjxk

· Δn

−2
3∑

i=1

∇(∂xjxk
wi) · ∇ni in Ω,

wxjxk
· n = −w · nxjxk

− wxj
· nxk

− wxk
· nxj

on ∂Ω.

(A18)

Denote the right hand side of the first and second equations of (A18) by f̃5
and f̃6, respectively. Using (A16), we see that

‖f̃5‖L2(Ω) ≤ C(Ω)‖f‖H2(Ω),

and
‖f̃6‖H2(Ω) ≤ C(Ω)‖w‖H3(Ω) ≤ C(Ω)‖f‖H1(Ω).

By the classical elliptic regularity, we have

‖wxjxk
· n‖H2(Ω) ≤ C(Ω)

(
‖f̃5‖L2(Ω) + ‖f̃6‖H2(Ω)

)
≤ C(Ω)‖f‖H2(Ω). (A19)

Concerning wxjxk
· τ1, we find it satisfies⎧⎪⎪⎪⎨

⎪⎪⎪⎩

−Δ(wxjxk
· τ1) = (fxjxk

− wxjxk
) · τ1 − wxjxk

· Δτ1

−2
3∑

i=1

∇(∂xjxk
wi) · ∇τ1i in Ω,

∂n(wxjxk
· τ1) = ∂nwxjxk

· τ1 + wxjxk
· ∂nτ1 on ∂Ω.

Denoting the right hand side in the first equation of (A11) by f̃7 and using
(A15), we get

‖f̃7‖L2(Ω) ≤ C(Ω)‖f‖H2(Ω).

From the last equation in (A17), we have

∂nwxjxk
× n = −∂nwxj

× nxk
− ∂nwxk

× nxj
− ∂nw × nxjxk

on ∂Ω,

which yields

∂nwxjxk
· τ1 = (∂nwxj

× nxk
+ ∂nwxk

× nxj
+ ∂nw × nxjxk

) × n · τ1 on ∂Ω.
(A20)
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As a consequence of (A20), we have

∂n(wxjxk
· τ1) =(∂nwxj

× nxk
+ ∂nwxk

× nxj
+ ∂nw × nxjxk

) × n · τ1

+ wxjxk
· ∂nτ1 on ∂Ω. (A21)

Then it is easy to see that
‖∂n(wxjxk

· τ1)‖
H

1
2 (∂Ω)

≤ C(Ω)‖(∂nwxj
× nxk

+ ∂nwxk
× nxj

+ ∂nw × nxjxk
) × n · τ1‖H1(Ω)

+ C(Ω)‖wxjxk
· ∂nτ1‖H1(Ω)

≤ C(Ω)‖w‖H3(Ω).

(A22)
With (A21) and (A22), we use the results of [17, Section 2.3] again and get
that

‖wxjxk
· τ1‖H2(Ω) ≤ C(Ω)

(
‖f̃7‖L2(Ω) + ‖∂n(wxjxk

· τ1)‖
H

1
2 (∂Ω)

)
≤ C(Ω)‖f‖H2(Ω).

Similar procedures give

‖wxjxk
· τ2‖H2(Ω) ≤ C(Ω)‖f‖H2(Ω).

Combining the above two estimates with (A19), we get

‖w‖H4(Ω) ≤ C(Ω)‖f‖H2(Ω),

which along with (A16) completes the proof. �

Appendix B

In this section, we give the proof of Lemma 4.2.

Proof of Lemma 4.2. It follows from η > 0,

f(b, c) =
1 + b2c2

1 − bc
>

2 + b2c2

2 − bc
> 1 and

2c2

1 − bc
>

3c2

2 − bc
> c2

that β := η0f(b, c) + (1 − η0) K2
u∗
2

< K2
u∗
2

satisfies

β = f(b, c) +
2c2

1 − bc
η >

2 + b2c2

2 − bc
+

3c2

2 − bc
η > 1 + c2η. (B1)

Moreover, it holds that

Γ1 =
η0

2
f(b, c) +

(
1 − η0

2

) K2

u∗
2

=
1
2

(
β +

K2

u∗
2

)
∈
(

β,
K2

u∗
2

)
. (B2)

Thus the inequality satisfied by Γ1 in (4.14) is proved. We next prove the
inequalities satisfied by Γ2 in (4.14). By (B1) and (B2), we have

α2
1 + α2c

2 =
(
Γ1 − ηc2 − 1

) (
Γ1(1 − bc) − (b2c2 + 2c2η + 1

))
=
(
Γ1 − ηc2 − 1

)
(1 − bc) (Γ1 − β)

>
(
β − ηc2 − 1

)
(1 − bc) (Γ1 − β)

> 0. (B3)
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Using (1.11), (1.14) and (4.13), we obtain

α1 − c2K1

2u∗
1

η

=
(

1 − bc

2

)
Γ1 − ηc2

(
1 +

K1

2u∗
1

)
− 1

<

(
1 − bc

2

)
K2

u∗
2

− 1 − bc

2
(1 − η0)

(
K2

u∗
2

− f(b, c)
)(

1 +
K1

2u∗
1

)
− 1

=
1 − bc

4u∗
1u

∗
2

{
2(2 − bc)
1 − bc

K2u
∗
1 − (1 − η0) (K2 − f(b, c)u∗

2) (2u∗
1 + K1) − 4u∗

1u
∗
2

1 − bc

}

=
1 − bc

4u∗
1u

∗
2

{
2u∗

1

(
K2

1 − bc
− (1 + bc)u∗

2

)
− (K2 − f(b, c)u∗

2) K1

}

+
(1 − bc)η0

4u∗
1u

∗
2

{2u∗
1K2 − 2u∗

1u
∗
2f(b, c) + (K2 − f(b, c)u∗

2) K1}

= −1 − bc

4u∗
1u

∗
2

(K2 − f(b, c)u∗
2) ((K1 − K∗

1 ) − η0 (2u∗
1 + K1))

= −1 − bc

8u∗
1u

∗
2

(K2 − f(b, c)u∗
2) (K1 − K∗

1 ) < 0. (B4)

Clearly,

Γ2∗ < Γ∗
2, (B5)

and by (B3) and (B4) we get

K1

u∗
1

η − Γ2∗ =
K1

u∗
1

η −
2
(
α1 −

√
α2

1 + α2c2
)

c2

=
2
c2

(√
α2

1 + α2c2 −
(

α1 − c2K1

2u∗
1

η

))

≥ 2
c2

√
α2

1 + α2c2

> 0. (B6)

We deduce from (B5) and (B6) that

Γ2∗ < Γ2 < min
{

K1

u∗
1

η,Γ∗
2

}
. (B7)

Since Γ2∗ and Γ∗
2 are two zeros of ψ1(s) = − c2

4 s2 + α1s + α2 for s > 0, by
(B7) we have ψ1(Γ2) > 0. It remains to prove Γ2 > b2 + η. Indeed, we have
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Γ2∗ − (b2 + η) =
2
(
α1 −

√
α2

1 + α2c2
)

c2
− (b2 + η)

=
1
c2

⎛
⎜⎜⎝(2 − bc)Γ1 − (2 + b2c2 + 3c2η

)
︸ ︷︷ ︸

=:J1

− 2
√

α2
1 + α2c2

︸ ︷︷ ︸
=:J2

⎞
⎟⎟⎠ .

(B8)

By (B1) and (B2) we know that

J1 > (2 − bc)β − (2 + b2c2 + 3c2η
)

> 0 and

J2
1 − J2

2 = c2
(
b2c + bΓ1 + cη

)2 ≥ 0,

which along with (B7) and (B8) shows that Γ2 > Γ2∗ ≥ b2 + η, and hence the
proof is completed. �

References

[1] Averill, I., Lam, K.-Y., Lou, Y.: The role of advection in a two-species compe-
tition model: a bifurcation approach, vol. 245. Mem. Amer. Math. Soc., (2017)

[2] Averill, I., Lou, Y., Munther, D.: On several conjectures from evolution of dis-
persal. J. Biol. Dyn. 6(2), 117–130 (2012)

[3] Bourguignon, J.P., Brezis, H.R.: Remarks on the Euler equation. J. Funct. Anal.
15, 341–363 (1974)

[4] Brown, P.N.: Decay to uniform states in ecological interactions. SIAM J. Appl.
Math. 38(1), 22–37 (1980)

[5] Robert, S.: Cantrell and Chris Cosner. Spatial ecology via reaction-diffusion
equations, John Wiley & Sons Ltd, Chichester (2003)

[6] Cantrell, R.S., Cosner, C., Lou, Y.: Movement toward better environments and
the evolution of rapid diffusion. Math. Biosci. 204(2), 199–214 (2006)

[7] Cantrell, R.S., Cosner, C., Lou, Y.: Advection-mediated coexistence of compet-
ing species. Proc. Roy. Soc. Edinb. A 137(3), 497–518 (2007)

[8] Cantrell, R.S., Cosner, C., Lou, Y.: Evolution of dispersal and the ideal free
distribution. Math. Biosci. Eng. 7(1), 17 (2010)

[9] Chen, X., Hambrock, R., Lou, Y.: Evolution of conditional dispersal: a reaction-
diffusion-advection model. J. Math. Biol. 57(3), 361–386 (2008)

[10] Cioranescu, D., Dias, J.-P.: A time dependent coupled system related to the
tridimensional equations of a nematic liquid crystal. J. Math. Anal. Appl. 73(1),
252–266 (1980)

[11] Cosner, C.: Reaction–diffusion–advection models for the effects and evolution of
dispersal. Discret. Contin. Dyn. Syst. 34(5), 1701–1745 (2014)



   47 Page 40 of 42 W. Tao, Z.-A. Wang and W. Yang NoDEA

[12] Dias, J.-P.: Un problème aux limites pour un système d’équations non linéaires
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