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Abstract—Mobile cloud computing (MCC) as an emerging
and prospective computing paradigm, can significantly enhance
computation capability and save energy of smart mobile devices
(SMDs) by offloading computation-intensive tasks from resource-
constrained SMDs onto the resource-rich cloud. However, how
to achieve energy-efficient computation offloading under the hard
constraint for application completion time remains a challenge
issue. To address such a challenge, in this paper, we provide
an energy-efficient dynamic offloading and resource scheduling
(eDors) policy to reduce energy consumption and shorten applica-
tion completion time. We first formulate the eDors problem into the
energy-efficiency cost (EEC) minimization problem while satisfying
the task-dependency requirements and the completion time dead-
line constraint. To solve the optimization problem, we then propose
a distributed eDors algorithm consisting of three subalgorithms
of computation offloading selection, clock frequency control and
transmission power allocation. More importantly, we find that
the computation offloading selection depends on not only the
computing workload of a task, but also the maximum completion
time of its immediate predecessors and the clock frequency and
transmission power of the mobile device. Finally, our experimental
results in a real testbed demonstrate that the eDors algorithm can
effectively reduce the EEC by optimally adjusting the CPU clock
frequency of SMDs based on the dynamic voltage and frequency
scaling (DVFS) technique in local computing, and adapting the
transmission power for the wireless channel conditions in cloud
computing.

Index Terms—Mobile cloud computing, energy-efficiency cost,
computation offloading, resource allocation.

I. INTRODUCTION

Recently, smart mobile devices (SMD), e.g., smartphones and

tablet-PCs, are gaining enormous popularity due to their porta-

bility and compactness. As expected, SMDs are taken as the

dominant future computing devices for supporting computation-

intensive applications, such as interactive gaming, image/video

processing, e-commerce, and online social network services [1],

[2]. Such complex applications necessitate higher computing

power, memory and battery lifetime on SMDs [3]. Due to the

physical size constraint, however, mobile devices are in general

resource-constrained. In particular, the limited energy supply

from the battery has been one of the most challenging design

issues for SMDs [5]–[7].

With the development of wireless communication technology

such as 3G, Wi-Fi and 4G, mobile cloud computing (MCC) is

envisioned as a promising approach to address such a challenge.

The objective of MCC is to extends powerful computing capa-

bility of the resource-rich clouds to the resources constrained

SMDs so as to augment computing potentials of SMDs. To

achieve this objective, MCC needs to migrate resource-intensive

computations from SMDs to the cloud via wireless access,

referred to as computation offloading. A mobile application

in MCC needs to be partitioned into a sequence of tasks

that can be executed on the mobile device, called local com-

puting/execution, or be executed on the cloud, named cloud

computing/execution. Clearly, MCC can accommodate SMDs

to execute complex applications which are impractical to run

solely on SMDs due to insufficient SMD resources, such as

perception applications [4]. As another advantage, MCC can

improve the performance of mobile devices by selectively

offloading tasks of an application onto the cloud. Moreover,

MCC is beneficial to save energy in mobile devices and prolong

operation time.

Although the MCC based on computation offloading tech-

nique can significantly enhance computation capability of

SMDs, it still remains challenging to develop a reliable MCC

system. A key challenge is how to achieve an energy-efficient

computation offloading. In order to realize the prospective ben-

efits of MCC in energy saving and performance improvement

for mobile devices, we should consider the following questions:

(i) Which tasks of an application should be offloaded onto the

cloud? (ii) How much CPU clock frequency should be assigned

for each task in local computing? (iii) How much transmission

power should be employed for offloading the tasks in cloud

computing?

To answer the above questions, in this paper we focus on the

joint computation offloading and resource scheduling problem,

in which there are three key issues to be addressed.

• What happens with computation offloading selection when

both task-dependency requirements and application com-

pletion time constraint are enforced? The enforcement is

necessary since there exist in general a certain precedences

among the tasks and the application completion time is a

hard constraint for latency-sensitive applications.

• Can the energy-efficiency cost (EEC), as defined in Defi-

nition 2, be minimized by optimally controlling the CPU

clock frequency of the mobile device via the DVFS tech-

nique [8] in local execution?

• Can the EEC be minimized by optimally allocating the

data transmission power for each computation offloading

while satisfying the task-precedence requirements in cloud

execution?

The objective of this paper is to provide an optimal energy-

efficient dynamic offloading and resource scheduling (eDors)
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policy, by minimizing the EEC paid by the mobile device for

completing an application. Compared to the previous work [8]–

[12], this paper has several contributions. First, by considering

the impact of task precedence on computation completion time,

we characterize the EEC by energy consumption and computa-

tion completion time in local computing and cloud computing,

respectively. Second, we formulate the eDors problem into an

EEC minimization problem under the constraints of applica-

tion completion time and task-precedence requirement. In the

formulation, the maximum completion time (i.e., completion

time deadline) requirement of an application is enforced to

satisfy different types of applications such as delay-sensitive

applications and delay-tolerate applications. Third, To solve the

optimization problem, we propose a distributed eDors algorithm

for the policy of computation offloading selection, clock fre-

quency control and transmission power allocation. More impor-

tantly, we find that the computation offloading selection decision

depends on not only the computing workload of a task, but also

the maximum completion time of its immediate predecessors

as well as the clock frequency and transmission power of the

mobile device. Fourth, we implement the proposed eDors policy

on a real testbed consisting of 20 Android smartphones and a

cloud sever and the experimental results show that compared to

the existing policy [8], [9], [11], the eDors policy can effectively

reduce energy consumption and application completion time.

To the best of our knowledge, this is the first dynamic

offloading and resource scheduling work that minimizes energy

consumption and application completion time under completion

time deadline constraint and task-precedence requirement, by

taking into account the CPU clock frequency control in local

computing and the transmission power allocation in cloud

computing.

II. RELATED WORK

There has been a lot of work on the computation offload-

ing problem in the literature and various offloading policies

have been proposed. These policies can be classified into two

categories: (i) performance based offloading policies [4], [10],

[13]–[16], and (ii) energy based offloading policies [8], [11],

[12], [17], [18].

The objective of performance based offloading policies is

to enhance the performance of mobile devices in terms of

execution/completion time and throughput by utilizing cloud re-

sources. Therefore, the resource-intensive computations are of-

floaded to the cloud. Chun et al. in [13] proposed a CloneCloud

that partitions applications automatically at a fine granularity.

In [10], based on the CloneCloud, Yang et al. optimized

the overall execution time by dynamically offloading part of

Android code running on a smartphone to the cloud. In [4],

Satyanarayanan et al. proposed a model that uses a concept of

virtual machine that runs on trusted and resource-rich computer,

or a cluster of computers named cloudlet. Yang et al. in [14],

[15] studied the multi-user computation partitioning so as to

optimize the partition of a data stream application such that the

application has maximum throughput. However, the above work

neither focuses on the energy efficiency minimization problem,

nor considers the impact of task dependency on computation

offloading policy.

On the other hand, energy based offloading policies aim to

reduce energy consumption of mobile devices. This is achieved

by reducing the computational overhead of tasks through com-

putation offloading. As a result, computation-intensive tasks are

performed in the cloud. In [18], by using Lyapunov optimiza-

tion, Huang et al. presented a dynamic offloading algorithm to

save energy on the mobile device. In [11], Zhang et al. provided

an energy-optimal mobile cloud computing framework under

stochastic wireless channel. Furthermore, they [12] proposed

a collaborative task execution framework for mobile tasks.

However, the above work did not consider employing the CPU

clock frequency control to reduce energy consumption. Lin et al.

[8] proposed a task scheduling algorithm to minimize the total

energy consumption of an application. But it did not consider

power allocation in the task offloading decision.

To the best of our knowledge, only a few work has ad-

dressed the computation offloading problem to minimize both

energy consumption and application completion time under

the setting of multiple SMDs. In [9], Chen formulated the

decentralized computation offloading problem among SMDs as

a decentralized game. Compared to our work, however, they

did not consider the task precedence and resource scheduling

in computation offloading policy.

III. SYSTEM AND COMPUTATION MODEL

This section outlines the system model of MCC and formu-

lates the EECs in local computing and cloud computing.

A. System Model

We assume that there are N smart mobile devices (SMDs)

located in a region, denoted by a set of N = {1, 2, . . . , N}, each

of which has a computationally intensive mobile application to

be completed. A mobile application in MCC is partitioned into a

sequence of M tasks, denoted by a set of M = {1, 2, . . . ,M}.

SMDs offload the computation to the computational cloud in

two ways, i.e., through a mobile network (telecom network)

or through access points as shown in Fig. 1. In the mobile

network case, the mobile devices such as cellular smartphones

are connected to a mobile network through a Base Station (BS)

via 3G or LTE. In the access point case, the SMDs connect to

the access points through Wi-Fi.

In this paper, we employ the dynamic partitioning scheme in

[15] to achieve the partition of a mobile application. The reason

is that this scheme considers the partitioning of multiple users’

computations together with the scheduling of offloaded com-

putations on the cloud resources. Certainly, other partitioning

schemes can work as well with our scheme in this paper. We

utilize a directed acyclic task graph G = (V,E) to describe the

relationship among these tasks, as shown in Fig. 2. Each node

i ∈ V in G represents a task and a directed edge e(i, j) indicates

the precedence constraint between tasks i and j such that task

j cannot start execution until its precedent task i completes.

Since the communication and computation models play a

key role in mobile cloud computing, we next introduce the

communication and computation models in detail.



Fig. 1. Illustration of mobile cloud computing with multiple mobile devices.
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Fig. 2. A simple example of the relationships between tasks.

B. Communication Model

We first introduce the communication model for wireless

access. Unless otherwise specified, the wireless access point

can be either a WiFi access point, or a basestation in cellular

networks. The channel from SMD n to access point s follows

quasi-static block fading. We let am,n ∈ {0, 1} denote the

computation offloading decision of task m of mobile device

n. Specifically, am,n = 1 means that SMD n chooses to

offload the computation of task m to the cloud via wireless

access while am,n = 0 implies that SMD n decides to execute

task m locally on its own device. Furthermore, we denote the

decision profile of all the tasks of all the mobile devices by

A = {am,n|m ∈ M, n ∈ N}. For a given decision profile A,

we can compute the uplink data rate for computation offloading

of task m of mobile device n as

Rm,n(A) =W log2

(

1 +
PT
m,nHm,n

σ2
m,n +

∑

i6=m,j 6=n,ai,j=1 P
T
i,jHi,j

)

(1)
where PT

m,n is the transmission power of SMD n offloading

task m to wireless access point s. Hm,n denotes the channel

gain from SMD n to access point s when transmitting task m
due to the path loss and shadowing attenuation, σ2

m,n denotes

the thermal noise power associated with link (n, s), and W is

channel bandwidth.

We can observe from (1) that if many mobile devices offload

the computation via wireless access simultaneously, they may

lead to severe interference and low data rates.

C. Computation Model

We let Dm,n denote the size of computation input data (e.g.,

the program codes and input parameters) related to computation

task m of SMD n. Lm,n denotes the computing workload, i.e.,

the total number of CPU cycles, required for accomplishing task

m of SMD n. Let FT l
k,n, FT

t
k,n, FT

c
k,n and FT r

k,n denote the

completion time of the local execution, the wireless task trans-

mission (i.e., the task has been completely offloaded to cloud),

the cloud execution and the wireless reception of task k of SMD

n, respectively. Next, we discuss the computation overhead in

terms of energy consumption and application completion time

for local and cloud computing.

1) Local Computing: Let fm,n denote the computation ca-

pability (i.e., the clock frequency of the CPU chip) of SMD

n on task m. Here we allow different mobile devices to have

different computation capability, and different tasks to be exe-

cuted at different clock frequency for a SMD. The computation

execution time of task m of SMD n by local computing is then

given by

T l
m,n = Lm,nf

−1
m,n, (2)

and the energy consumption of the mobile device is given by

El
m,n = κLm,nf

2
m,n, (3)

where κ is the effective switched capacitance depending on the

chip architecture. We set κ = 10−11 so that energy consumption

is consistent with the measurements in [19]. It is clear that we

can adjust the clock frequency of the CPU chip to achieve the

optimum computation time and energy consumption on a mobile

device by employing DVFS technique.

Before a task m begins to be executed, all its immediate

predecessors must have already been executed. Next, we give

the definition of ready time of a task [8].

Definition 1 (Ready Time). The ready time of a task is defined

as the earliest time when all immediate predecessors of the

task have completed execution. Thus the ready time of task m
of SMD n in local computing, denoted by RT l

m,n is given by

RT l
m,n = max

k∈pred(m)
max{FT l

k,n, FT
r
k,n}, (4)

where pred(m) denotes the set of immediate predecessors of

task m.

Similar to the existing work [9], [18], we ignore the time

and energy consumption that the cloud returns the computation

outcome back to the mobile device, due to the fact that for many

applications (e.g., image processing), the size of the outcome in

general is much smaller than that of input data. Based on this

assumption, (4) can be rewritten as

RT l
m,n ≥ (1− ak,n)FT

l
k,n + ak,nFT

c
k,n, k ∈ pred(m), (5)

which implies that if not considering the time of receiving the

outcome of task k through the wireless channel, task m can

start execution only after task k has completed execution.

Clearly, the completion time of the local execution of task m
on SMD n is the sum of the local computation execution time

and the ready time in local computing, i.e.,

FT l
m,n = T l

m,n +RT l
m,n, (6)

According to (2) and (3), we can then compute the energy-

efficiency cost (EEC) by the following definition.



Definition 2 (Energy-Efficiency Cost (EEC)). Energy-Efficiency

Cost (EEC) is defined as the weighted sum of energy consump-

tion and computation completion time of executing a task. Thus

the EEC of task m of SMD n in local computing is given by

Z l
m,n = γEm,nE

l
m,n + γTm,nFT

l
m,n, (7)

where 0 ≤ γEm,n ≤ 1 and 0 ≤ γTm,n ≤ 1 denote the weights of

energy consumption and computation completion time for SMD

n making decision on task m, respectively.

To meet user-specific demands, we allow different SMDs to

choose different wights in the decision making. For example,

a device with low battery energy would like to choose a larger

γEm,n in the decision making to save more energy. When a

mobile device is running some delay-sensitive applications (e.g.,

online movies), it may prefer to set a larger γTn to reduce the

delay.

2) Cloud Computing: For the cloud computing, a mobile

device n will offload its computation task m to the cloud.

Then the cloud will execute the computation task and return

the results to the mobile device n. Clearly, the execution of

task m in the cloud includes three phases in sequence: (i) the

transmitting phase, (ii) the cloud computing phase, and (iii) the

receiving phase.

According to the communication model in Section III-B, we

can compute the transmission time and energy consumption of

SMD n offloading task m, respectively, by

T c,trs
m,n (A) = Dm,n/Rm,n(A), (8)

and

Ec,trs
m,n (A) = PT

m,nT
c,tr
m,n(A). (9)

Furthermore, we can get the computation execution time of task

m of SMD n on the cloud by

T c,exe
m,n = Lm,nf

−1
c , (10)

where fc indicates the clock frequency of the processing unit

on the cloud. We assume that fc is fixed and does not change

during the computation.

In this paper, we do not take into account the energy

consumption by the execution of task m of SMD n on the

cloud, which is justified since the cloud is in general powered

by alternating current and has enough energy to execute the

offloaded tasks.

Similar to Section III-C1, in the case of considering the

dependency among tasks, the ready time of task m on cloud,

denoted by RT c
m,n, given by

RT c
m,n = max{FT t

m,n, max
k∈pred(m)

FT c
k,n}. (11)

We can observe that if an immediate predecessor task k of

task m is executed locally, then FT c
k,n = 0. Therefore,

max
k∈pred(m)

FT c
k,n in (11) is the time when all the immediate

predecessors of task m that are offloaded to the cloud have

finished execution on the cloud. In addition, we can find that

the cloud can start executing task m only after the task has been

completely offloaded to cloud or all the immediate predecessors

of task m have been completely executed on the cloud, i.e.,

RT c
m,n ≥ FT t

m,n, RT
c
m,n ≥ max

k∈pred(m)
FT c

k,n. (12)

In particular, if we ignore the time of receiving the outcome of

task m, the completion time of the cloud execution of task m
of SMD n is the sum of the execution time of task m of SMD

n on the cloud and the ready time, i.e.,

FT c
m,n = T c,exe

m,n +RT c
m,n, (13)

As a result, from (8)-(10), we can give the EEC of computing

task m of SMD n on cloud by

Zc
m,n = γTm,n(FT

c
m,n) + γEm,nE

c,trs
m,n (A). (14)

We can observe from (14) that the low data transmission

rate Rm,n of mobile device n would result in high energy

consumption in the wireless access and long transmission time

for offloading the input data to cloud.

IV. PROBLEM FORMULATION

In this section, we will formulate the eDors problem.

For a given task sequence set M of an application of SMD

n, the EEC for this application can be computed by

Zn =

M
∑

m=1

Zm,n =

M
∑

m=1

(1− am,n)Z
l
m,n + am,nZ

c
m,n (15)

We aim to provide the optimal computation offloading se-

lection policy A∗, clock frequency control policy F∗ and

transmission power allocation policy P∗ such that the energy

efficiency cost is minimized. Therefore, according to constraints

(5) and (12), the eDors problem for all SMDs can be formulated

as a constrained minimization problem as follows

OPT-1 min
A,F ,P

N
∑

n=1

Zn (16)

subject to ∀m ∈ M, ∀n ∈ N ,

C1 :

M∑

m=1

(1− am,n)FT l
m,n + am,n(FT c

m,n) ≤ Tn,max,

C2 : (1− ak,n)FT l
k,n + ak,nFT c

k,n ≤ RT l
m,n, k ∈ pred(m),

C3 : FT t
m,n ≤ RT c

m,n,

C4 : max
k∈pred(m)

FT c
k,n ≤ RT c

m,n, C5 : am,n ∈ {0, 1},

where A = {am,n|m ∈ M, n ∈ N},F = {fm,n|m ∈ M, n ∈
N},P = {PT

m,n|m ∈ M, n ∈ N}. Constraint C1 is completion

time constraint which specifies that the total completion time

of all the tasks of an application of SMD n is bounded by

the required maximum completion time (i.e., completion time

deadline), Tn,max. The setting of Tn,max is determined by the

latency requirement for an application. Local task-precedence

requirement C2 ensures that task m can start execution only

after all its immediate predecessors have completely finished

execution. Constraints C3 and C4 are cloud task-precedence

requirement constraints which indicate that task m can begin

to be executed on the cloud only after the task has been

completely offloaded to cloud, as shown in constraint C3, or



all the immediate predecessors of task m have been completely

executed on the cloud, as shown in constraint C4. Computation

offloading selection constraint C5 specifies that task m of SMD

n is locally executed on its own device or is offloaded onto the

cloud to complete execution.

The key challenge in solving the optimization problem OPT-

1 in (16) is that the integer constraint am,n ∈ {0, 1} makes

problem OPT-1 become a mixed integer programming problem,

which is in general non-convex and NP-hard. Thus, similar to

the relaxation method in [20]–[24], we first relax the binary

computation offloading decision variable am,n to a real number

between 0 and 1, i.e., 0 ≤ am,n ≤ 1.

Next, we explore the convexity of the optimization problem

OPT-1 with the relaxed optimization variable am,n.

Theorem 1. The optimization problem OPT-1 with constraints

C1-C5 is convex with respect to (w.r.t) the optimization vari-

ables {am,n}, {fm,n} and {PT
m,n}.

Proof: We should first prove that the objective function

Zm,n in (16) is jointly convex w.r.t. the optimization variables

am,n, fm,n and PT
m,n. Then we show the convexity of con-

straints C1-C5. Due to space limit, we omit the detailed proof.

Theorem 1 reveals that the optimization problem OPT-1 in

(16) has a zero duality gap and satisfies the Slater’s constraint

qualification. The zero-duality-gap result provides an avenue to

obtain the optimal solution of the primal problem in (16) derived

from its corresponding dual problem.

V. DISTRIBUTED ALGORITHM FOR EDORS PROBLEM

In this section, we solve the problem OPT-1 with the relaxed

constraint C5 to provide a distributed eDors algorithm.

A. Dual Problem Formulation

The resource allocation policy is derived via solving the dual

problem of (16). For this purpose, we first give the Lagrangian

function of the primal problem (16) by L(w, µ,A,F ,P).
Lagrangian multiplier w = [wn, n = 1, . . . , N ]T is for the

completion time constraint C1, where wn denotes the prices of

total completion time of an application of SMD n no more than

the required maximum completion time. Lagrangian multiplier

µ = [µm,n,m = 1, ...,M, n = 1, . . . , N ]T corresponds to

cloud task-precedence requirement constraint C3, where µm,n

represents the price for task m to be executed on the cloud only

after being completely offloaded to cloud.

The dual problem for the primal problem (16) is given by

max
w,µ

min
A,F ,P

L(w, µ,A,F ,P) (17)

The dual problem in (17) is decomposed into a hierarchy of

two levels. Level 1, the inner minimization in (17), consists of

N subproblems with identical structure that can be solved in a

distributed manner. Level 2, the outer maximization in (17), is

the master problem.

In the following, we give the distributed subalgorithms of

computation offloading selection, clock frequency control and

transmission power allocation.

0 1
,m na
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, ,
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Fig. 3. Illustration of the objective function with the minimum value.

B. Computation Offloading Selection

Computation offloading selection subalgorithm aims to de-

termine which tasks of an application are offloaded onto the

cloud such that the energy efficiency cost of completing the

application is minimized while the task-precedence require-

ments being preserved. Let Costlm,n = Z l
m,n + wnFT

l
m,n

denote the computation cost on the local device and Costcm,n =
Zc
m,n+wnFT

c
m,n denote the computation cost on the cloud. The

optimal computation offloading selection policy can be obtained

by solving the following minimization problem

min
am,n

Costlm,n + am,n(Cost
c
m,n − Costlm,n) (18)

subject to constraints C2, C4 and C5.

It is clear that the objective function in (18) is a linear

function on variable am,n. We have the following observations.

If Costcm,n ≥ Costlm,n, the objective function in (18) achieves

minimum when am,n ∈ [0, 1] reaches minimum; on the con-

trary, if Costcm,n < Costlm,n, then the objective function has

the minimum value when am,n reaches maximum, as shown in

Fig. 3. Therefore, we have the computation offloading selection

policy as follows

am,n =

{

1, if Costcm,n < Costlm,n,

0, otherwise.
(19)

This indicates that when the computation cost on the cloud is

less than that on the local device, it is beneficial that task m
is offloaded onto the cloud to compute. We can observe from

the definitions of Costcm,n and Costlm,n that the computation

offloading selection policy of SMD n for task m depends on

not only the specification of SMD n such as clock frequency

and transmission power, but also the maximum completion time

of its immediate predecessors and the offloading data rate.

C. Clock Frequency Control

The goal of the clock frequency control policy is to optimally

set the clock frequency of the mobile device such that the

energy efficiency cost of the application execution is minimized.

Clearly, the policy works in the case when a task is executed on

the local device, i.e., am,n = 0. The policy of clock frequency

control can be derived by solving the following optimization

problem

min
fm,n

Z l
m,n + wnFT

l
m,n + µm,n(FT

t
m,n −RT c

m,n) (20)

subject to constraints C2 and C4.



Similar to the proof Theorem 1, it is easy to verify that the

optimization problem (20) is convex w.r.t fm,n. The objective

function F (fm,n) in (20) can be rewritten as

F (fm,n) = γEm,nκLm,nf
2
m,n + µm,n(FT

t
m,n −RT c

m,n)(21)

+(γTm,n + wn)(Lm,nf
−1
m,n +RT l

m,n).

It is known that RT l
m,n, FT t

m,n and RT l
m,n are independent

of fm,n. Using standard convex optimization techniques and

the KKT conditions [25], the clock frequency control policy is

given by

fm,n = 3

√

γTm,n + wn

2κγEm,n

. (22)

We can observe that the clock frequency of SMD n executing

task m depends on the weight of computation completion

time, γTm,n, the weight of energy consumption, γEm,n, and the

price for the required application completion time deadline, wn.

Moreover, we can find that for given γTm,n and γEm,n, the price

wn plays an important role in the adjustment of the optimal

clock frequency configuration of SMD n, which is affected by

the completion time of its immediate predecessors FT c
k,n and

FT l
k,n, k ∈ pred(m).

D. Transmission Power Allocation

The transmission power allocation policy aims to optimally

allocate the transmission power for each task of the mobile

device such that the EEC of cloud computing the task is

minimized. Clearly, this policy is valid in the case that the task

needs to be offloaded onto the cloud, i.e., am,n = 1. In this

case, the transmission power allocation policy can be obtained

by solving the following minimization problem

min
PT

m,n

N
∑

n=1

M
∑

m=1

Zc
m,n+wnFT

c
m,n+µm,n(FT

t
m,n−RT

c
m,n). (23)

subject to constraints C2 and C4.

We let Y (PT
m,n) denote the objective function in (23) and

then according to Eqs. (8)-(14), we can give Y (PT
m,n) of two

forms based on two different values of RT c
m,n.

Case I: FT t
m,n > max

k∈pred(m)
FT c

k,n, i.e., RT c
m,n = FT t

m,n.

Y (PT
m,n) can be rewritten as

Y (PT
m,n) =

N
∑

n=1

M
∑

m=1

[(γTm,n + wn)(T
c,exe
m,n + FT t

m,n)(24)

+γEm,nE
c,trs
m,n (A)],

where FT t
m,n = T c,trs

m,n (A)+RT trs
m,n. RT trs

m,n denotes the ready

time of task m being transmitted on the wireless sending

channel in order to preserve the task-precedence requirements,

which is a constant for task m.

Case II: FT t
m,n ≤ max

k∈pred(m)
FT c

k,n, i.e., RT c
m,n =

max
k∈pred(m)

FT c
k,n, which is a function independent of PT

m,n.

Y (PT
m,n) can be expressed by

Y (PT
m,n) =

N
∑

n=1

M
∑

m=1

[(γTm,n + wn)(T
c,exe
m,n +RT c

m,n) (25)

+γEm,nE
c,trs
m,n (A) + µm,n(FT

t
m,n −RT c

m,n)].
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Fig. 4. The intersection point is the solution of Eq. (26).

Next, we first give the transmission power allocation policy for

Case I.

It is easy to verify from the proof of Theorem 1 that Y (PT
m,n)

in (24) is convex w.r.t PT
m,n. Using the KKT conditions [25],

the transmission power allocation policy is given by

αm,n

̟m,n + PT
m,nHm,n

+ 1 = ln

(

1 +
PT
m,nHm,n

̟m,n

)

(26)

where αm,n = (γTm,n + wn)Hm,n/γ
E
m,n −̟m,n and ̟m,n =

σ2
m,n +

∑

i6=m,j 6=n,ai,j=1 P
T
i,jHi,j denotes the power of the

thermal noise and the interferences at access point s receiving

task m of SMD n from transmitters other than SMD n.

It is not difficult to observe that the optimal transmission

power is the solution of Eq. (26), i.e., the intersection point

between two equations, ϕ(PT
m,n) and ψ(PT

m,n), as shown in

Fig. 4, which can be given by ϕ(PT
m,n) =

αm,n

̟m,n+PT
m,nHm,n

+1,

and ψ(PT
m,n) = ln

(

1 +
PT

m,nHm,n

̟m,n

)

. However, Eq. (26) is

a transcendental equation, and in general does not have a

closed-form solution for PT
m,n. Thus we can only obtain its

approximate solution by Newton iteration method, i.e., the

transmission power PT
m,n is updated iteratively by

PT
m,n(t+ 1) = PT

m,n(t)−
ϕ(PT

m,n(t))− ψ(PT
m,n(t))

ϕ′(PT
m,n(t)− ψ′(PT

m,n(t))
(27)

whereϕ′(·) and ψ′(·) denote the first-order derivative w.r.t.

PT
m,n(t). It is shown in [26] that the method usually converges,

provided that the initial value PT
m,n(0) is close enough to the

zero PT∗
m,n, and that ϕ′(PT

m,n(t) 6= ψ′(PT
m,n(t)).

Similar to Case I, the transmission power PT
m,n for Case II

can be iteratively updated by

PT
m,n(t+ 1) = PT

m,n(t)−
φ(PT

m,n(t))− ψ(PT
m,n(t))

φ′(PT
m,n(t)− ψ′(PT

m,n(t))
(28)

where φ(PT
m,n(t) =

βm,n

̟m,n+PT
m,nHm,n

and βm,n =

µm,nHm,n/γ
E
m,n −̟m,n.

We can have the underlying observations from (26) and (28)

that the optimal transmission power is closely related to the

weight of computation completion time, γTm,n, the weight of

energy consumption, γEm,n, the wireless channel conditions and

the interferences from other SMDs.



E. Lagrangian Multiplier Update

The Level 2 master problem in (17) can be solved by using

the subgradient method. We can update the set of Lagrange

multipliers for a given set of A,F ,P by

wn(k + 1) = [wn(k) + ϑ(k)(Tn,max

−
M
∑

m=1

(1− am,n)FT
l
m,n + am,nFT

c
m,n]

+, (29)

µm,n(k + 1) = [µm,n(k) + ϑ(k)(RT c
m,n − FT t

m,n)]
+, (30)

where index k > 0 is the iteration index and ϑ(k) is positive

iteration step size. Then, the updated Lagrange multipliers in

(29)-(30) can be used for updating the resource allocation policy

in (19), (22), (27) and (28).

The proposed algorithm is described in Algorithm 1. It is not

difficult to obtain that the time complexity of the algorithm for

SMD n is O(M ∗Itermax ∗Iterpower), where Itermax denotes

the maximum number of iterations of algorithm for a task, and

Iterpower indicates the number of iterations for transmission

power convergence by Newton iteration method for an iteration

of algorithm.

VI. PERFORMANCE EVALUATION

In this section, we evaluate the performance of the proposed

algorithm.

A. Experiment Profile

We first consider the mobile cloud computing scenario that

N = 20 smartphones are randomly scattered over a 100m ×
100m region and the wireless access base-station is located in

the center of the region. For the wireless access, we set the

channel bandwidth W = 5 MHz, and the thermal noise power

σ2
m,n = 50 dBm. We set the channel gain Hm,n = dζn,s from

SMD n to access point s, where dn,s is the distance between

mobile device n and wireless access point s, and ζ = 4 is the

path loss factor. We set the initial decision weights γEm,n =
γTm,n = 0.5.

To evaluate the effectiveness of dynamic offloading policy, we

employ the computation partitioning scheme in [15] to partition

a face recognition application in [2] into 100 tasks. Then we

implement and test our proposed dynamic offloading policy on a

real testbed, where 20 smartphones are SAMSUNG Galaxy S5

with quad-core 2.5 GHz of maximum CPU clock frequency and

2 GB of RAM, and the cloud server consists of 2 IBM X3850X6

servers, each of which has 4 quad-core 3.4 GHz Xeon CPUs

and 128 GB of RAM running Ubuntu 14.0. The data size of the

computation tasks and the total number of the CPU cycles (i.e.,

computing load) follow the Gaussian distribution CN(µ1, σ
2
1)

and CN(µ2, σ
2
2), where the mean µ1 = 200KB, µ2 = 1000

Mega cycles, and the standard deviation σ1 = 50 and σ2 =
100. For the sake of illustration, we take 10 of the partitioned

tasks as observation objects, the dependency of which are as

shown in Fig. 2. We use the computing Load-input Data Ratio

(LDR) to characterize the complexity of a task, i.e., LDRm,n =
Lm,n/Dm,n. Without loss of generality, we can let the LDRs

of 10 tasks be [11.056 5.499 11.35 3.011 9.522 4.742 5.052

5.786 3.676 3.925] Mega cycles/KB input data.

Algorithm 1 Iterative eDors algorithm for SMD n

Require:
M:a sequence of M tasks of SMD n;
pred(m): the set of immediate predecessors of task m;
Itermax: maximum number of iterations;
ǫ: an infinitesimal number;

Ensure:
{A,F ,P}: optimal resource allocation policy;

1: Initialize: Dm,n, Lm,n, γE
m,n, γT

m,n, ϑ(t), wn and µm,n , {fm,n},
{P T

m,n} and iteration index t← 1;
2: for m = 1 to M do
3: while t ≤ Itermax and |µm,n(t+ 1) − µm,n(t)| > ǫ do
4: /∗ Computation offloading selection ∗/
5: Compute Rm,n, T l

m,n, El
m,n by (1)-(3), respectively;

6: if pred(m) == ∅ then
7: RT l

m,n = 0, RT trs
m,n = 0

8: else
9: Compute RT l

m,n = max
k∈pred(m)

max{FT l
k,n, FT c

k,n};

10: Compute RT trs
m,n = max

k∈pred(m)
{FT l

k};

11: end if
12: Compute FT l

m,n by (6) and Zl
m,n by (7);

13: Calculate Costlm,n = Zl
m,n +wnFT l

m,n;

14: Compute T c,trs
m,n , Ec,trs

m,n , T c,exe
m,n by (8)-(10), respectively;

Compute FT t
m,n = T c,trs

m,n +RT trs
m,n;

15: if pred(m) == ∅ then
16: RT c

m,n = T c,trs
m,n ;

17: else
18: Compute RT c

m,n by (11);
19: end if
20: Compute FT c

m,n, Zc
m,n by (13)-(14), respectively;

21: Compute Costcm,n = Zc
m,n + wnFT c

m,n;

22: if Costcm,n < Costlm,n then
23: am,n = 1
24: else
25: am,n = 0
26: end if
27: if am,n == 0 then
28: /∗ Clock frequency control ∗/
29: Compute the clock frequency fm,n by (22);
30: P T

m,n(t+ 1) = P T
m,n(t);

31: else
32: /∗ Transmission power allocation ∗/
33: fm,n(t+ 1) = fm,n(t);
34: if FT t

m,n > max
k∈pred(m)

FT c
k,n then

35: Compute P T
m,n by (Eq.22) using Newton iteration

method;
36: else
37: Compute P T

m,n by (Eq.24) using Newton iteration
method;

38: end if
39: end if
40: /∗ Lagrangian multiplier update ∗/
41: Update Lagrangian multipliers wn(t + 1), µm,n(t + 1) by

(29)-(30), respectively;
42: t = t+ 1;
43: end while
44: end for
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B. Convergence and Impact of Task Complexity

In this subsection, we evaluate the convergence of the pro-

posed eDors algorithm and the impact of task complexity on

EECs.

We plot the convergence of tasks 2-5 by the proposed eDors

algorithm and the dynamics of their EECs in Fig. 5. The reason

of choosing tasks 2-5 is that they have the same immediate pre-

decessors. We can observe that (i) the proposed eDors algorithm

can achieve converge within 100 iterations for all tasks; (ii)

the task with larger LDR has the lower speed of convergence,

that is, the complexity of task can increase the convergence

time. (iii) the task with larger LDR has higher energy efficiency

cost. Therefore, in the computation partitioning, the proper LDR

setting of tasks plays an imperative role in improving energy

efficiency and reducing execution delay.

C. Impact of Weights γEm,n and γTm,n

In this subsection, we examine the impact of weights, γEm,n

and γTm,n on the energy consumption and computation delay

of tasks with different number of predecessors. Fig. 6 depicts

the comparison of energy consumption and computation delay

for different settings of γEm,n and γTm,n. We can observe that

for a given task, the energy consumption increase as the γEm,n

decreases, however, the changes of the computation delay are

opposite. This is reasonable since a large γEm,n will lead to

the increase of αm,n and ϕ(PT
m,n). which in turn causes the

decrease of transmission power in cloud execution.

More interestingly, we can find from Fig. 6 that for the tasks

with the same number of immediate predecessors, the LDRs of

the predecessors have more impacts on computation delay than

energy consumption. Also, we can observe that more immediate

predecessors can bring slightly more energy consumption and

computation delay, such as tasks 9 and 10 shown in Fig. 6.
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D. Comparison of Energy Efficiency Cost on Execution Strategy

In this subsection, we compare the proposed eDors task exe-

cution with two other execution strategies, i.e., local execution

and cloud execution [11], under the hard completion time dead-

line constraint. We implement two baseline algorithms. Baseline

I algorithm implements local execution. Baseline II is used to

demonstrate cloud execution. Fig. 7 plots the comparison of

energy efficiency costs of the proposed eDors algorithm and

Baseline algorithms I and II for the same application profile.

We can draw several observations from Fig. 7. First, com-

pared to Baseline I, the eDors algorithm can reduce the energy

efficiency cost significantly. Almost 4 times of energy efficiency

cost can be reduced by the eDors algorithm when it stays stable.

This is because that our eDors algorithm can optimally select

tasks to be offloaded on the could to execute according the

computation cost on the cloud and the local device. Second,

compared to Baseline II, the eDors algorithm has also lower

energy efficiency cost when Baseline II becomes applicable.

In the case of low completion time deadline, Baseline II for

the cloud execution cannot be used. As the completion time

deadline becomes longer, Baseline II starts to become active

and then its energy efficiency cost decreases slightly. However,

the energy efficiency cost of the eDors algorithm is almost two

times lower than that of Baseline II algorithm. This is justified

since the eDors algorithm adopts the optimal policies of clock

frequency control and transmission power allocation.

E. Comparison of Energy Consumption and Completion Time

In this subsection, we compare the energy consumption and

application completion time of the eDors algorithm, the task

scheduling algorithm in [8] called Lin’s Algorithm, and the

offloading game algorithm in [9] named Chen’s Algorithm for

different input data sizes. Fig. 8 depicts the energy consumption

and completion time for the three algorithms.

We can observe that when the size of input data is small,

Chen’s Algorithm has the least energy consumption. However,

as the size of input data becomes large, the energy consumption

increases rapidly, which is because that Chen’s Algorithm does

not have the adaptive and control mechanism of energy con-

sumption. Therefore, for large-scale input data, our algorithm

and Lin’s algorithm can reduce energy consumption signifi-

cantly by adaptively adjusting clock frequency and transmission

power. However, our algorithm has always less energy consump-

tion compared with Lin’s algorithm, which is justified since

our eDors algorithm not only applies the dynamic voltage and

frequency scaling technique to control CPU clock frequency in

local computing, but also takes advantage of transmission power
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Fig. 8. Comparison of energy consumption and application completion time
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control mechanism to reduce energy consumption in cloud

computing. In addition, we can also observe from Fig. 8(b)

that the application completion time by our eDors algorithm

increases slowly when the size of input data is large.

VII. CONCLUSIONS

In this paper, we study the problem of energy-efficient

dynamic offloading and resource scheduling (eDors) in mobile

cloud computing. To the best of our knowledge, this work is

the first work of integrating dynamic offloading with resource

scheduling so as to achieve the minimization of joint energy

consumption and application completion time under completion

time deadline constraint and task-precedence requirement. We

propose a novel distributed eDors algorithm which is composed

of the subalgorithms of computation offloading selection, clock

frequency control and transmission power allocation. We im-

plement the eDors algorithm in a real testbed and experimental

results demonstrate that compared to the existing offloading

policies, the eDors algorithm can effectively reduce the energy

consumption and application completion time, by taking advan-

tage of the CPU clock frequency control in local computing and

the transmission power allocation in cloud computing.

For the future work, we are going to consider the impact

of the mobility of SMDs on computation offloading policy. In

this case, the mobility patterns might play an important role

in the problem formulation. In addition, we will study how to

integrate the dynamic runtime computation partitioning with the

proposed eDors policy so as to further reduce the EEC.
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