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Abstract—Recent years have witnessed the sharp increase of
malicious apps that steal users’ personal information. To address
users’ concerns about privacy risks, more and more apps are
accompanied with privacy policies written in natural language
because it is difficult for users to infer an app’s behaviors
according to the required permissions. However, little is known
whether these privacy policies are trustworthy or not. It is
worth noting that a questionable privacy policy may result from
careless preparation by an app developer or intentional deception
by an attacker. In this paper, we conduct the first systematic
study on privacy policy by proposing a novel approach to
automatically identify three kinds of problems in privacy policy.
After tackling several challenging issues, we realize our approach
in a system, named PPChecker, and evaluate it with real apps and
privacy policies. The experimental results show that PPChecker
can effectively identify questionable privacy policies with high
precision. Moreover, applying PPChecker to 1,197 popular apps,
we found that 282 apps (i.e., 23.6%) have at least one kind of
problems. This study sheds light on the research of improving
and regulating apps’ privacy policies.

I. INTRODUCTION

Smartphone has become an indispensable part of our daily
lives with the great driving force from apps. Actually, the
global app economy reached $53 billion in 2012 and expected
to rise to $143 billion in 2016 [1]. Since the number of various
malicious apps (e.g., malware, ransomware, adware, etc.) is
also rapidly increasing [2], users are very concerned about the
privacy risks introduced by apps [3], [4]. Although Android
lists the permissions required by each app before installation, it
is usually difficult for normal users to understand the potential
threats by reading the permissions [5].

Alternatively, app developers can upload a privacy policy to
Google Play store for declaring what information from users
will be collected, used, retained, or disclosed [6]. A survey
showed that 76% free apps in Google Play have provided
privacy policies in 2012 [7]. Actually, many countries have
enacted the privacy laws to force developers to add privacy
policies, such as, California [8] and its California Online
Privacy Protection Act(CalOPPA) [9], the Data Protection Di-
rective(95/46/EC) [10] in European Union, etc. Federal Trade
Commission (FTC) suggests mobile developers to prepare
privacy policies for their apps [11] and provides guidance [12].

Unfortunately, it is not easy to prepare an accurate privacy
policy for an app because of many reasons [13], [14]. For
instance, it is not uncommon that the author of a privacy policy
is not the developer of the app when the app is outsourced.
As another example, if an app uses third-party libs, the app’s
privacy policy should cover these libs’ behaviors or at least
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provide a pointer to their privacy policies. But Balebako et
al. found that around half developers do not know for sure
what information will be collected by third-party libs in their
apps [15], because few third-party libs provide source code and
they are often less transparent about data collection. It is worth
noting that inaccurate privacy policies will lead to fines. For
example, FTC fined Path $800,000 because its privacy policy
failed to mention that it will retain users’ information [16].

Therefore, an important question “Can we trust the privacy
policies of Android Apps?” will be raised. Although manually
dissecting apps and scrutinizing the privacy policies could
answer this question, it is time-consuming and error-prone. In
this paper, we propose a novel approach and develop the first
system, named PPChecker, to automatically identify problems
in privacy policy. It is challenging to design and develop
PPChecker because of the following reasons. First, privacy
policy is written in natural language, and the diversity of
natural language makes it difficult to understand their meanings
or extract useful information [17], [18]. Moreover, both the
app’s privacy policy and the third-party libs’ privacy policies
should be analyzed in order spot the inconsistency. Second,
without assuming the availability of an app’s source code,
PPChecker should be able to understand an app’s behaviors
from its bytecode and contrast the behaviors with the informa-
tion extracted from the privacy policy.

To tackle these challenging issues, PPChecker employs
natural-language processing (NLP) techniques [19] to dissect
privacy policies, and adopts program analysis approaches [20]
to analyze apps (Section III). Moreover, we model the follow-
ing three kinds of problems in privacy policies and propose
algorithms to detect them (Section IV).

• Incomplete privacy policy. The privacy policy does
not cover an app’s all behaviors of accessing sensitive
information, such as the case of path [16].

• Incorrect privacy policy. The privacy policy declares that
the app will not access user information but the app does.

• Inconsistent privacy policy. The privacy policy of an
app is in conflict with that of its third-party libs.

The output of PPChecker can help app companies to spot
inaccuracies in their privacy policies, facilitate normal users to
determine the trustworthiness of apps, and assist app market
owners and organizations like FTC to identify questionable
apps. It is worth noting that the inaccurate privacy policies
can also be used to detect malicious apps. For example, the
unrevealed behaviors in an incomplete privacy policy may
come from the malicious component of a repackaged app [21].
Moreover, an adversary can create an incorrect privacy policy
to fool users. In summary, our major contributions include:
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• To our best knowledge, this is the first investigation on
automatically discovering problems in privacy policy for
Android apps. We model three kinds of problems and
design new algorithms to identify them.

• We propose and develop PPChecker, a novel system
that adopts NLP and program analysis techniques, to
automatically identify problems in privacy policy.

• We conduct careful evaluation on PPChecker by using
real apps along with their privacy policies. The experi-
mental results, which have been verified through manual
checking, show that PPChecker can effectively detect
those problems with high precision.

The rest of this paper is organized as follows. Section II
defines the problem addressed by this paper and introduces
necessary background knowledge. Section III details the design
of PPChecker and Section IV elaborates on the new algorithms
for detecting the problems in privacy policy, respectively. The
experimental results are presented in Section V. We describe
the limitations of PPChecker and possible solutions in Section
VI. After introducing the related work in Section VII, we
conclude the paper in Section VIII.

II. BACKGROUND AND PROBLEM DEFINITION

A. Privacy Policy

Privacy policy informs users what, when, why, and how
information will be collected. For example, Fig. 1 shows a
portion of the app (Golf Live Extra)’s privacy policy. It first
says “When you ..., we may collect and process ...”, indicating
what and when information, including location, IP address,
etc., will be collected. Then, the sentence “we may share ...
with ...” informs readers which information will be shared with
third parties. After that, it declares that the embedded third-
party libs (e.g., Ad) will collect information. In this paper, we
use resource and information interchangeably to denote the
private data to be collected, used, retained or disclosed by an
app as described in its privacy policy.

INFORMATION WE COLLECT AND HOW USED
We have set out the types of information we collect and how it is used below.
......
Location information
When you use one of our location enabled services, we may collect and process information about your actual location.
Log Information
When you use the Mobile App or view content on our websites we may automatically collect and store certain 
information in server logs including but not limited to internet protocol (IP) addresses, device information, internet 
service provider (ISP), clickstream data, browser type and language, viewed and exit pages and date or time stamps.
...... 
HOW WE SHARE PERSONAL INFORMATION
Subject to applicable laws and the terms of ourFull Privacy Policy, we may share your usage and personal 
information with operating systems, carriers and platform providers and/or other mobile apps either 
operated by us  or third parties, as well as any other entities described in any particular Mobile App. 
AUTOMATIC DATA COLLECTION AND ADVERTISING
Some online services, including Mobile Apps, may be supported via advertising, and collect data to help the online 
service serve  ads. 
We may work with analytics companies to help us understand how the online service is being used,
 such as the frequency and duration of usage.
...... 

information collection 

information disclose 

third party library

Fig. 1. App Golf Live Extra’s privacy policy

B. Problem Definition

We aim at automatically identifying three kinds of issues
in an app’s privacy policy, including:

(1) Incomplete privacy policy. A well-written privacy policy
should cover all privacy-related behaviors of the app. An
incomplete privacy policy may result in a fine.

Fig.2 shows such an example where the description, per-
mission and code snippet of the app com.dooing.dooing

are listed. The description has a sentence “Location aware
tasks will help you to utilize your field force in optimum
way.” that indicates the use of location information. Moreover,
the class com.dooing.dooing.ee calls location-related
APIs including getLatitude() and getLongitude(). However, its
privacy policy does not mention the behavior of collecting
location information.

Description:
  Location aware tasks will help you to utilize your 
field force in optimum way. 

Class: com.dooing.dooing.ee                Method: G
<android.location.Location: double getLatitude()>
<android.location.Location: double getLongitude()>

Fig. 2. Description and code snippet of com.dooing.dooing.

(2) Incorrect Privacy policy. A privacy policy should list
an app’s real behaviors. An incorrect privacy policy declares
that the app will not collect, use, retain, or disclose personal
information, but the app does.

For instance, the app com.easyxapp.secret’s privacy
policy declares “we will not store your real phone number ,
name and contacts”. However, we found from its bytecode
that it obtains the contact information through the URI
<android.provider.ContactsContract$CommonDataKinds$Phone:
android.net.Uri CONTENT URI> and writes it to log file.

(3) Inconsistent privacy policy. Since an app may integrate
third-party libs, its privacy policy should cover the behaviors of
third-party libs as a whole or point to their privacy policies. If
an app’s privacy policy declares that it will not access personal
information but its third-party libs’ privacy policies mention
that they will conduct such behavior, we regard the app’s
privacy policy as an inconsistent privacy policy.

Fig.3 lists the information retrieved from the privacy policy
of a very popular game app com.imangi.templerun2
and that from the privacy policy of a third-party lib (i.e.,
Unity3d) used by this app. The solid line indicates the
inconsistency between privacy policies. The app claims that it
does not use/collect location information. However, the third-
party lib declares that it will receive location information.

Android App:
com.imangi.templerun2

App Privacy policy:
we do not use or collect 
your precise geographic 
location.

Third Party Library:
Unity3d

Unity3d Privacy Policy:
We receive information 
about Users, their 
devices, locations and 
interactions with the 
Service primarily in two 
ways.

Fig. 3. Inconsistency in com.imangi.templerun2’s privacy policy.

III. PPCHECKER

We first give an overview of PPChecker in Section III-A
and then detail its three major modules in Section III-B,
Section III-C, and Section IV, individually. Tab. I lists the
major symbols used in this paper.



Privacy Policy 
Analysis

Static Analysis

Problem
Identification

Output:
1) Privacy policy is incomplete or not;
     If true, list the missed information.
2) Privacy policy is incorrect or not;
     If true, list the incorrect sentence.
3) Privacy policy is inconsistent or not.
     If true, list the inconsistent sentences and 
related third party lib. 

Third Party Libs'
Privacy Policies

App's Privacy Policy

App's APK File

App's Description Description 
Analysis

                                     Permissions

Fig. 4. Overview of PPChecker

A. System Overview

As shown in Fig. 4, PPChecker takes in an app’s priva-
cy policy, description, apk file, and third-party libs’ privacy
policies. The output includes: 1) whether the privacy policy
is incomplete or not. If so, it lists the missed information;
2) whether the privacy policy is incorrect or not. If so, it
enumerates the incorrect sentences; 3) whether the privacy
policy is inconsistent or not. If so, it lists the inconsistent
sentences and the relevant third-party lib’s privacy policy.
PPChecker consists of three major modules, including:

(1) Privacy policy analysis module (Section III-B). It ana-
lyzes a privacy policy to determine the information (not) to be
collected, used, retained, or disclosed.

(2) Static analysis module (Section III-C). It inspects an app’s
bytecode to decide whether the app will collect or retain private
information.

(3) Problem identification module (Section IV). It employs
the models of three kinds of problems to identify incomplete
privacy policy (IV-A), incorrect privacy policy (IV-B), and
inconsistent privacy policy(IV-C).

B. Privacy Policy Analysis Module

1. Main Verbs, Sentences and Resources

There are four kinds of main verbs commonly used in
privacy policy [22], [23], including:

• Collect verbs. They describe that one party accesses, col-
lects, or acquires data from another party, such as “collect”,
“gather”, etc. Let V Pcollect indicate such verbs.

• Use verbs. They depict that one party uses data from another
party for certain purpose, such as “use”, “process”, etc. Let
V Puse denote such verbs.

• Retain verbs. They mean that one party keeps the data
collected from another party for a particular period of time
or in a particular location, such as “retain”, “store”, etc. Let
V Pretain represent such verbs.

• Disclose verbs. They indicate that one party transfers the
collected data to another party, such as “disclose”, “share”,
etc. Let V Pdisclose stand for such verbs.

Based on the four kinds of verbs, we define other symbols.
Let AppSent∗ and AppSents∗ denote a ∗ type sentence
and the set of such sentences in an app’s privacy policy,
respectively. The mark ∗ can be replaced by collect, use,
retain, and disclose. Similarly, let LibSent∗ and LibSents∗
represent those sentences in a third-party lib’s privacy policy.

By analyzing the sentences, PPChecker identifies the
private information handled by main verbs. For positive
sentences, we use CollectPP

∗ , UsePP
∗ , RetainPP

∗ , and
DisclosePP

∗ to denote the set of private information that will
be collected, used, retained, and disclosed, respectively. The
mark ∗ can be app for denoting the information mentioned in
an app’s privacy policy, or lib for indicating the information
listed in a third-party lib’s privacy policy.

A privacy policy may use negative sentences. For ex-
ample, “we cannot collect” presents the opposite mean-
ing of “we can collect”. The former is negative sentence.
We utilize NotCollectPP

app, NotUsePP
app, NotRetainPP

app, and
NotDisclosePP

app to denote the set of private information that
will not be collected, used, retained, or disclosed, respectively,
according to an app’s privacy policy.

2. Steps in Privacy Policy Analysis

Fig. 5 shows the procedure of inspecting a privacy policy,
which involves six steps detailed as follows.

Step 1: Sentence extraction. PPChecker extracts the content
from a privacy policy and splits it into sentences. Following
our system in [24], we use Beautiful Soup [25] to extract the
content from each privacy policy in HTML format, and remove
all non-ASCII symbols and some meaningless ASCII symbols.
Note that we currently just consider privacy policies written
in English and therefore the extracted content contains only
English letters and some specified punctuation symbols.

Then, we use the natural language toolkit (NLTK) [26]
to divide the text into sentences. Since NLTK divides an
enumeration list into individual sentences, it may cause errors.
For example, the sentence “we will collect the following
information: your name; your IP address; your device ID.”
will be divided into four parts, and the three resources after
“:” are regarded as three sentences. To address this issue,
PPChecker checks the sequence of sentences from NLTK one
by one. If the previous sentence ends with symbol ”:” or ”;”



TABLE I. MAJOR SYMBOLS IN THIS PAPER

Symbol Meaning
Sentcollect a sentence whose main verb ∈ V Pcollect

Sentuse a sentence whose main verb ∈ V Puse

Sentretain a sentence whose main verb ∈ V Pretain

Sentdisclose a sentence whose main verb ∈ V Pdisclose

AppSentcollect
a sentence in app’s privacy policy
whose main verb ∈ V Pcollect

AppSentuse
a sentence in app’s privacy policy

whose main verb ∈ V Puse

AppSentretain
a sentence in app’s privacy policy
whose main verb ∈ V Pretain

AppSentdisclose
a sentence in app’s privacy policy
whose main verb ∈ V Pdisclose

LibSentcollect
a sentence in lib’s privacy policy
whose main verb ∈ V Pcollect

LibSentuse
a sentence in lib’s privacy policy

whose main verb ∈ V Puse

LibSentretain
a sentence in lib’s privacy policy
whose main verb ∈ V Pretain

LibSentdisclose
a sentence in lib’s privacy policy
whose main verb ∈ V Pdisclose

CollectPP
app

resources to be collected
according to an app’s privacy policy

UsePP
app

resources to be used
according to an app’s privacy policy

RetainPP
app

resources to be retained
according to an app’s privacy policy

DisclosePP
app

resources to be disclosed
according to an app’s privacy policy

CollectPP
lib

resources to be collected
according to a lib’s privacy policy

UsePP
lib

resources to be used
according to a lib’s privacy policy

RetainPP
lib

resources to be retained
according to a lib’s privacy policy

DisclosePP
lib

resources to be disclosed
according to a lib’s privacy policy

NotCollectPP
app

resources that will not be collected
according to an app’s privacy policy

NotUsePP
app

resources that will not be used
according to an app’s privacy policy

NotRetainPP
app

resources that will not be retained
according to an app’s privacy policy

NotDisclosePP
app

resources that will not be disclosed
according to an app’s privacy policy

Collectcodeapp resources collected by an app according to its code
Retaincode

app resources retained by an app according to code

Infodesc
the set of resources used by

an app according to its description

or lowercase letters, PPChecker appends the current sentence
to the previous one. Finally, PPChecker turns all letters into
lower case.

Privacy 
Policy

Semantic 
Patterns

Useful Sentences and
(not) Collected, Used, Retained, Disclosed Resources

1. Sentence 
Extraction

2. Syntactic 
Analysis

4. Sentence 
Selection

6. Information 
Elements Extraction

5. Negation 
Analysis

3. Pattern 
Generation

Fig. 5. The procedure of analyzing a privacy policy.

Step 2: Syntactic analysis. It parses sentences and obtains
syntactic information. For each sentence, we use Stanford Pars-
er [27] to obtain its syntactic tree and dependency relations.
For example, Fig. 6 shows the syntactic information of the
sentence: “we will provide your information to third party
companies to improve service”. The left part is the parse tree

ROOT-0

provide

we would information

your

companies

third party

improve

to service

sbj aux dobj

poss

root

prep_to vmod

aux dobjamod nn

(ROOT
  (S
    (NP(PRP we))
    (VP(MD would)
      (VP(VB provide)
        (NP(PRP$ your)(NN information))
        (PP(TO to)
          (NP(JJ third)(NN party)(NNS companies)))
        (S
          (VP(TO to)
            (VP(VB improve)
              (NP(NN service)))))))
   (. .)))

Fig. 6. Syntactic information of sentence: “we would provide your informa-
tion to third party companies to improve service”.

structure and the right part is the typed dependency relation.

The parse tree breaks a sentence into phrases and shows
them in a hierarchy structure, where each phrase occupies one
line. The parse tree also contains the part-of-speech (POS) tags
of words and phrases, which are assigned based on a word’s or
a phrase’s syntax behavior. Common POS tags include noun
(NN), verb (VB), adjective (ADJ), adverb (ADV), pronoun
(PRP), etc. In Fig. 6, “provide” is a verb, and we can find its
object noun phrases “your information” in its sub-tree.

The typed dependency describes the relation between word-
s. Common relations include: sbj that means the subject, dobj
that represents direct object, root that stands for the relation
point to the root word of a sentence, nsubjpass that refers
to a noun phrase being the syntactic subject of a passive
verb. prep to means a verb, adjective, or noun modified by a
prepositional starting with “to” (e.g., “go to store”). auxpass
means passive auxiliary [28]. In Fig. 6, “provide” is the root
word of this sentence. The subject of this sentence is “we”,
and the object is “your information”.

The syntactic information is used in the following pattern
generation step and the sentence selection step.

Step 3: Pattern generation. Existing privacy policy analysis
systems (e.g., [18] [29]) use pre-defined patterns to find
sentences relevant to information collection. We enhance the
bootstrapping mechanism [30] to automatically find patterns
from privacy policies according to a simple seed pattern. We
will use the example in Fig.7 to explain the bootstrapping
mechanism and then describe the enhancement.

ROOT-0

collect

root

we will location

nsubj dobjaux

ROOT-0

allowed
root

we are

location

nsubjpass

dobj

auxpass
access

xcomp

nsubjpass(allowed, [subject])
root(ROOT, allowed)
xcomp(allowed, access)
dobj(access, [resource])

det
the

nsubj(collect, [subject])
root(ROOT, collect)
dobj(collect, [resource])

to

aux

Fig. 7. Example of finding a new pattern.

We first prepare a corpus containing sentences relevant to
information collection, utilization, reservation, and disclosure.
The seed pattern is subject-verb-object and the initial verbs
include “collect”, “use”, “retain”, and “disclose”. Obviously,
the seed pattern matches the left sentence “we will collect
location” in Fig.7. We collect the subjects and the objects
of all matched sentences (e.g., “we” and “location” in the
left sentence), and insert the subjects and the objects with



frequencies higher than the median into the subject list and
the object list, respectively.

Then, we look for new patterns by matching the subject and
the object in each typed dependency tree with the elements
in the subject list and the object list. For the right sentence
in Fig.7, since its typed dependency tree contains the subject
“we” and the object “location”, we extract the shortest path
between them as the new pattern. Therefore, the new pattern
subject-“allowed”-“access”-object is extracted. All new pat-
terns are inserted into the pattern list for next iteration, and
the algorithm stops when no new pattern is found.

We enhance the algorithm in [30] from two aspects. One
is how to handle semantic drift, which refers to the deviation
of the meaning of new terms from that of the seed patterns
[31]. We propose using three blacklists to address this issue.
First, since we only focus on an app’s behaviors, PPChecker
maintains a subject blacklist, which contains words such as
“you”, “user”, “visitor”, to remove the sentences describing
the app’s users. Second, since we only care about four kinds
of behaviors of an app, PPChecker removes verbs unrelated to
such behaviors (e.g., “have”, “make”, etc.). Third, PPChecker
discards sentences that are irrelevant to personal information
by employing a blacklist for objects (e.g., services, etc.).

The other one is how to rank and acquire new patterns.
After finding new patterns from the corpus, we rank them for
selecting important ones. Given a pattern p, it is important if it
can match more sentences about information collection, usage,
retention, or disclose. However, p’s importance decreases if it
can match many irrelevant sentences. To score each pattern,
we construct two sentence sets from real policy policies. One
is called positive sentence set that contains sentences about
information collection, usage, retention, or disclose, whereas
the other one, named negative sentence set, includes unrelated
sentences. For a pattern p, we use pos(p) to denote the
number of positive sentences p can match, and utilize neg(p)
to represent the number of negative sentences p can match.
Let unk(p) indicate the number of sentences that cannot be
matched by any pattern. Then, the accuracy and confidency
of pattern p are defined as:

acc(p) =
pos(p)

pos(p) + neg(p)
, conf(p) =

pos(p)− neg(p)

pos(p) + neg(p) + unk(p)
(1)

Moreover, the score of p equals Score(p) = conf(p) ∗
log|pos(p)|. The top n patterns will be used in the following
sentence selection step.

Step 4: Sentence selection.

PPChecker uses the generated patterns to identify sen-
tences from privacy policies. The matched sentences are re-
garded as useful sentences and others will be discarded. We
use five patterns listed in Tab. II as an example to illustrate
this procedure. P1 is the seed pattern. P2 is the passive voice
version of P1. The other three patterns (i.e., P3, P4, and P5)
are automatically extracted from the corpus.

To find sentences matching patterns P1 and P2, we parse
each sentence’s typed dependency to extract its root word, and
then check whether its root word belongs to the four main verb
categories. If so, we keep the sentence as a useful sentence.
Moreover, if the useful sentence’s root verb has auxpass
relation with other words, this sentence has passive voice (i.e.,
P2). Otherwise, it has active voice (i.e., P1).

The pattern P3 describes that the subject is allowed to do
something. To match it, the root word of a sentence should be
“allowed”. Moreover, its “allowed” should have an auxpass
relation with another word and an xcomp relation with a verb.
The verb in the infinitive phrase should belong to the main
verb categories. The pattern P4 represents that the subject is
able to do something. To match it, the root word of a sentence
should be “able”. Moreover, “able” is modified by an open
clausal complement and should have an xcomp relation with
another verb that belongs to the main verb categories. The
pattern P5 is an adverbial clause. To match it, the root word
of a sentence should belong to the main verb categories and
have an advcl relation with another verb.

Step 5: Negation analysis. PPChecker determines whether
a sentence is negative by checking the existence of negation
words in two places [17]. One is the subject for identifying
sentences like “nothing will be collected”. The other refers to
the words used to modify the root word, such as “we will not
collect information”. We adopt the negation word list from
[32], because it includes the negative verbs (e.g., “prevent”),
negative adverbs (e.g., “hardly”), negative adjectives (e.g.,
“unable”), and negative determiners (e.g., “no”). Step 6:

we would provide your information to third party companies to improve service if you ...

subject

main verb

resource

constraint

Fig. 8. Information elements in sentence: “we will provide your information
to third party companies to improve service if you ...”

Information elements extraction. From each useful sentence,
we look for four elements, including main verb, action execu-
tor, resource, and constraint. For example, Fig. 8 shows the
information elements in the sentence: “we will provide your
information to third party companies to improve service if you
...”, where the main verb is “provide”, the subject is “we”, its
object is “your information”, and its constraint is “if you ...”.
The subject, main verb, and resource are used in the problem
identification module (Section IV-A). The constraint is used
to identify and remove some specific sentences, including (1)
when a user registers an account through a website, although
the website may collect private information, PPChecker does
not consider it; (2) when a user visits the website that will log
the IP address and other information, since the behavior is not
performed by the app, PPChecker ignores it.

The main verb is the key verb of a sentence. In the typed
dependency relation, the main verb is the word that has root
relation with a virtual “ROOT-0” word, such as “provide” in
Fig. 6. The action executor is the entity who conducts the main
verb. In the typed dependency relation, it is the word that has
sbj relation with main verb, such as “we” in Fig. 6.

The resource is the data used by action executor, such
as “information” shown in Fig. 6. If the sentence is active
voice, the resource has dobj relation with the main verb.
Otherwise, the resource is the subject that has nsubjpass
relation with main verb. For instance, in the sample sentence
“your location will be collected by us”, the resource “your
personal information” is the subject of this sentence.

Two kinds of constraints are extracted: pre-condition and
post-condition. Pre-condition starts with “if”, “upon”, “un-



TABLE II. SAMPLE PATTERNS FOR SELECTING SENTENCES

# Pattern Name Semantic Pattern Sample Sentence
P1 Active Voice sbj V P∗ resource We will use your personal information.
P2 Passive Voice resource V Ppassive

∗ Your personal information will be used.
P3 Passive Allow Expression sbj “be allowed to” V P∗ resource We are allowed to access your personal information.
P4 Ability Expression sbj “ able to” V P∗ resource We are able to collect location information.
P5 Purpose Expression sbj V P∗ resource to V P∗ resource We use GPS to get your location.

less”, post-condition starts with “when”, “before”. We collect
the constraints by extracting the sub-tree that starts with these
words from the syntactic tree.

C. Static Analysis Module

Given an app, PPChecker conducts static code analysis on
its dex file to determine the following information: (1) private
information collected by the app (i.e., Collectcodeapp ) and (2)
private information retained by the app (i.e., Retaincode

app ).

1. Conducting the Static Analysis

We develop PPChecker’s static analysis module based on
our static analysis framework, VulHunter [33], and improves
it from several aspects. Given an app, PPChecker extracts
the AndroidManifest.xml and the dex file from the
APK file. If the app is packed, we use our unpacking tool
DexHunter [34] to recover the dex file. By parsing the
AndroidManifest.xml file and the dex file, PPChecker
constructs an Android property graph (APG) [33] that in-
tegrates abstract syntax tree (AST), interprocedure control-
flow graph (ICFG), method call graph (MCG), and system
dependency graph (SDG) of the app, and stores it into a graph
database. By doing so, PPChecker can determine the collected
and retaining information by performing queries.

To enhance the accuracy of static analysis, we employ
IccTA [35] to identify the source and the target of an intent,
and utilize EdgeMiner [36] to determine the implicit callbacks
(e.g., from setOnClickListener() to onClick()). Moreover, to
improve the performance of the static taint analysis, we also
include the source-sink paths identified by FlowDroid [37]
in the graph database. The sources refer to sensitive APIs to
be described in the next sub-section. The sinks refer to APIs
that store information into a log (e.g., Log.d()) or a file (e.g.,
FileOutputStream.write()), or send it out through network (e.g.,
AndroidHttpClient.execute()), SMS(e.g., sendTextMessage()),
or bluetooth (e.g., BluetoothOutputStream.write()).

2. Identifying the Collected Information

An app can collect personal information through two
approaches. One is to invoke sensitive APIs, such as call-
ing getDeviceId() for obtaining device ID. The other one is
to get the information through content provider [38], such
as calling android.content.ContentResolver.query() with con-
tent://com.android.calendar to access calendar information.
We regard invoking such a query function with specific URIs
as calling a sensitive API. We will describe how PPChecker
handles them in the following paragraphs, individually.

PPChecker looks for 68 sensitive APIs covering the infor-
mation about device ID, IP address, cookie, location, account,
contact, account, calendar, telephone number, camera, audio,
and app list. Such information is commonly listed in privacy
policy. We select these APIs from the data sets in [38], [39].

We select 12 URI strings along with 615 URI fields
from the data set in [38]. PPChecker conducts the following
steps to locate the statements calling the query function and
determine the corresponding URIs [40]. First, PPChecker
locates the statements that access the content provider. Then,
it identifies all paths starting from each query statement by
querying the graph database, and collect all statements on
the paths. After that, it inspects these statements’ parameters,
and records used URIs. For example, if a statement calls
Uri.parse(content://com.android.calendar) to get URI object
and the returned URI object is used in ContentResolver.query(),
we record the parameter content://com.android.calendar.

Since some sensitive APIs may not be called by the app
(e.g., infeasible code), we conduct the reachability analysis
from the app’s entry points, including life-cycle callbacks
(e.g., Activity.onCreate()), major components’ entry functions
(e.g., query() in content provider), and UI related callbacks
(e.g., onClick()), to the invocation of each sensitive API
by querying the graph database. We do not consider those
sensitive APIs to which there are not feasible paths from entry
points. For each remaining sensitive API, we check their class
names. If the class name has the same prefix as the package
name of the app, we regard the app as the caller of this API.
To determine the collected information, we map the sensitive

1 package com.android.inputmethod.latin.settings;
2 final class t extends AsyncTask {
3    private Integer a() {
4        try {
            ...
5            Iterator v5 =this.a.getActivity().
  getPackageManager().getInstalledPackages(8192).iterator();
6            while(true) {
                ...
7                Object v0_1 = v5.next();
                ...
8                String v6 = ((PackageInfo)v0_1).packageName;
                ...
9                Log.e("package", v6);
                ...
            }}}} Data dependency between statements

SOURCE

SINK

Fig. 9. Code snippet of com.qisiemoji.inputmethod: get installed
package list and write it to log

APIs and the URI strings to private information by analyzing
their official documents. For example, the API getDeviceId() is
mapped to “device ID” and the URI string content://contacts
is mapped to “contact”. For the URI fields, since PScout
provides the map between URI fields and permissions
[38], we map these fields to the private information
according to the corresponding permissions. For instance,
since PScout maps “<android.provider.Telephony$Sms:
android.net.Uri CONTENT URI>” to permission
android.permission.RECEIVE_SMS, we map this
URI field to “SMS”.

3. Determining the Retained Information



We perform static taint analysis to determine the retained
information. More precisely, if there is an execution path con-
necting a source to a sink, the sensitive information relevant to
the source is retained. For instance, Fig.9 shows a code snippet
of com.qisiemoji.inputmethod. PPChecker traverses
from the sensitive API getInstalledPackages() (Line 5), which
retrieves the list of installed packages device, and ends at a sink
function Log.e() (Line 9). By using the map between API/URI
strings(fields) and private information, PPChecker obtains the
information retained by the app.

D. Description Analysis Module

We use the state-of-art description analysis system, Au-
toCog, to map an app’s description to permissions [41].
Then, we map the permissions to private information by
analyzing the official document. For example, permission
ACCESS_FINE_LOCATION is mapped to “location”, “lati-
tude”, “longitude”. Let Infodesc denote the collected infor-
mation that is inferred from the app’s description.

IV. PROBLEM IDENTIFICATION MODULE

A. Detecting Incomplete Privacy Policy

App privacy policy

 App code

Incomplete privacy policy VS. code Incomplete privacy policy VS. description

 App description

Fig. 10. Model of incomplete privacy policy.

Fig.10 illustrates that the incomplete privacy policy can
be identified by contrasting its information with the app’s
description or bytecode. First, if the information listed in a
privacy policy cannot cover that inferred from the description,
we can detect an incomplete privacy policy. Second, if the
information mentioned in a privacy policy cannot cover the
collected or retained information determined from bytecode,
we can identify an incomplete privacy policy.

Detecting incomplete privacy policy through description.
The description analysis module provides the information to
be used by an app (i.e., Infodesc) while the privacy policy
analysis module lists the information to be used/collected/re-
tained/disclosed by the app (line 1, PPInfos in Alg. 1). We
compare each information in Infodesc with all the information
identified from the privacy policy(line 5-9 in Alg. 1). If no
private information pairs can be matched successfully, then
the Info is missed by the privacy policy (saved in line 10-12
in Alg. 1), and the privacy policy is an incomplete one (return
the missed information in line 14-16 in Alg. 1).

Here, “matching” means that two kinds of information
refer to the same thing. To measure the semantic similarity of
two kinds of information, we use Explicit Semantic Analysis
(ESA) [42]. Given two texts, ESA first maps each of them
to a vector representation by using a knowledge base. Then,
ESA calculates the similarity of these two vectors to get
the semantic similarity of these two texts. If the similarity

reaches a threshold, we regard them as the same thing (line
5 in Algorithm 1). Currently, we adopt 0.67 as the threshold
following [41].

Algorithm 1: Detect Incomplete Privacy Policy through
Description

Input: CollectPP
app, UsePP

app, RetainPP
app, DisclosePP

app: information
collected, used, retained or disclosed by app privacy policy; InfoDesc:
information that app’s description says will use.

Output: ProblemInfos: Return the missed information if the privacy policy
is incomplete; Null: Return null if the privacy policy is not incomplete.

1 PPInfos = CollectPP
app ∪ UsePP

app ∪ RetainPP
app ∪ DisclosePP

app;
2 ProblemInfos = [];
3 for Info in Infodesc do
4 FindSimilarInfo = 0;
5 for PPInfo in PPInfos do
6 if Similarity(Info, PPInfo) > threshold then
7 FindSimilarInfo = 1;
8 end
9 end

10 if FindSimilarInfo == 0 then
11 ProblemInfos.append(Info); //Save the missed Info
12 end
13 end
14 if ProblemInfos.length() > 0 then
15 return ProblemInfos; //Privacy policy is incomplete
16 end
17 return Null; //Privacy policy is not incomplete

Detecting incomplete privacy policy through code.

The code analysis module provides the information col-
lected or retained by analyzing an app’s bytecode. We
compare each information with all the information iden-
tified from the privacy policy. If the privacy policy does
not cover such information, an incomplete privacy policy is
found. The algorithm is shown in Algorithm 2. Note that
some information requires permission (e.g., location requires
ACCESS_COARSE_LOCATION). In this case, we only con-
sider the app that requires the corresponding permissions.

Algorithm 2: Detect Incomplete Privacy Policy through
Code

Input: CollectPP
app, UsePP

app, RetainPP
app, DisclosePP

app: information
collected, used, retained or disclosed by app privacy policy;
Collectcodeapp : information collected in app code. Retaincode

app :
information retained in app code

Output: ProblemInfos: Return the missed information if the privacy policy
is incomplete; Null: Return null if the privacy policy is not incomplete.

1 PPInfos = CollectPP
app ∪ UsePP

app ∪ RetainPP
app ∪ DisclosePP

app;
2 ProblemInfos = [];
3 for CodeInfo in (Collectcodeapp ∪ Retaincode

app ) do
4 FindSimilarInfo = 0;
5 for PPInfo in PPInfos do
6 if Similarity(CodeInfo, PPInfo) > threshold then
7 FindSimilarInfo = 1;
8 end
9 end

10 if FindSimilarInfo == 0 then
11 ProblemInfos.append(CodeInfo); // save the missed CodeInfo
12 end
13 end
14 if ProblemInfos.length() > 0 then
15 return ProblemInfos; //Privacy policy is incomplete
16 end
17 return Null; //Privacy policy is not incomplete

B. Discovering Incorrect Privacy Policy

Fig.11 shows that the incorrect privacy policy can be iden-
tified by contrasting its information with the app’s description
or bytecode. First, if the information mentioned in a privacy



App privacy policy

Third party library
Privacy policy

 App code

Incorrect app privacy policy VS. code
Inconsistency between an app's privacy policy and its third-party libs' privacy policies

Incorrect app privacy policy VS. description

 App description

Fig. 11. Model of incorrect and inconsistent privacy policy.

policy is in conflict with that inferred from the description,
we can detect an incorrect privacy policy. Second, if the
information listed in a privacy policy conflict with the collected
or retained information determined from bytecode, we can
identify an incorrect privacy policy.

It is worth noting that the semantic difference between the
collected resources and the used resources lies in whether
the privacy policy declares the purpose of obtaining such
resources. Since the static code analysis cannot infer such
purpose from bytecode, we contrast both NotCollectPP

app and
∪NotUsePP

app with Collectcodeapp .

Discovering incorrect privacy policy through description.
Algorithm 3 shows how to discover incorrect privacy policy
through description. Similar to Algorithm 1, for each informa-
tion in Infodesc, we compare it with all information that will
not be collected, used, or retained according to the privacy
policy (line 5-9 in Algorithm 3). If there is at least a pair of
similar information, the privacy policy is incorrect (line 10-12
in Algorithm 3).

Algorithm 3: Discover Incorrect Privacy Policy through
Description

Input: NotCollectPP
app, NotUsePP

app, NotRetainPP
app: information not

collected, used, or retained by app privacy policy; Infodesc:
information that app’s description says to use.

Output: ProblemInfos: Return the problem information if the privacy
policy is violative; Null: Return null if the privacy policy is correct.

1 PPInfos = NotCollectPP
app ∪ NotUsePP

app ∪ NotRetainPP
app;

2 ProblemInfos = [];
3 for Info in Infodesc do
4 FindSimilarInfo = 0;
5 for PPInfo in PPInfos do
6 if Similarity(Info, PPInfo) > threshold then
7 FindSimilarInfo = 1;
8 end
9 end

10 if FindSimilarInfo == 1 then
11 ProblemInfos.append(Info); //Save the problem information
12 end
13 end
14 if ProblemInfos.length() > 0 then
15 return ProblemInfos; //Privacy policy is incorrect
16 end
17 return Null; //Privacy policy is correct

Discovering incorrect privacy policy through code. P-
PChecker uses Algorithm 4 to detect incorrect privacy policy
that declares not to retain certain information but the app
does in code. Moreover, it will detect incorrect privacy policy
that declares not to collect or use certain information but the
app does. The corresponding algorithm is similar to Algorith-
m 4. The only difference is that we use NotCollectPP

app ∩

NotUsePP
app to replace NotRetainPP

app and utilize Collectcodeapp

to replace Retaincode
app .

Algorithm 4: Discover Incorrect Privacy Policy through
Code

Input: NotRetainPP
app: information not retained by app privacy policy;

Retaincode
App : information retained in app code

Output: ProblemInfos: Return the problem information if the privacy
policy is incorrect; Null: Return null if the privacy policy is correct.

1 ProblemInfos = [];
2 for CodeInfo in Retaincode

app do
3 FindSimilarInfo = 0;
4 for PPInfo in NotRetainPP

app do
5 if Similarity(CodeInfo, PPInfo) > threshold then
6 FindSimilarInfo = 1;
7 end
8 end
9 if FindSimilarInfo == 1 then

10 ProblemInfos.append(CodeInfo);
11 //Save the problem information
12 end
13 end
14 if ProblemInfos.length() > 0 then
15 return ProblemInfos; //Privacy policy is incorrect
16 end
17 return Null; //Privacy policy is correct

C. Revealing Inconsistent Privacy Policy

Algorithm 5: Reveal Inconsistency between an app’s
privacy policy and its third-party libs’ privacy policies

Input: PPApp: app privacy policy, PPLib: third party library privacy policy
Output: ProblemSents: Return the inconsistent sentences if the privacy

policy is inconsistent; Null: Return null if the privacy policy is not
inconsistent.

1 ProblemSents = [];
2 for i in range (1, m) do
3 for j in range (1, n) do
4 V PCateapp = getV erbCategory(AppSenti);

V PCatelib = getV erbCategory(LibSentj);
5 if (V PCateapp == V PCateapp) ∧

(!IsPositive(AppSenti)) ∧ (IsPositive(LibSentj)) then
6 AppResSet = getRes(AppSenti);
7 LibResSet = getRes(LibSentj);
8 for AppRes in AppResSet do
9 for LibRes in LibResSet do

10 if Similarity(AppRes,LibRes) > threshold then
11 ProblemSents.add([AppSenti, LibSentj ]);

//Save the inconsistent sentences
12 end
13 end
14 end
15 end
16 end
17 end
18 if ProblemSents.length()>0 then
19 return ProblemSents; //Privacy policy is inconsistent
20 end
21 return Null; //Privacy policy is not inconsistent

Fig.11 also depicts how to determine the inconsistency
between an app’s privacy policy and its third-party libs’ privacy
policies. To identify the third-party libs used in app, we
maintain a list of class name prefixes of third-party libs. Then,
the static analysis module goes through all class names to find
the third-party libs integrated in the app. Given an app with m
useful sentences in its privacy policy and n useful sentences
in its third-party libs’ privacy policies, we compare AppSenti
(1 ≤ i ≤ m) with LibSentj (1 ≤ j ≤ n). More precisely,
given AppSenti and LibSentj , if the following requirements
are satisfied, then there exists an inconsistency.



(1) AppSenti’s and LibSentj’s main verbs belong to the
same category (i.e., V Pcollect, V Puse, V Pretain, or
V Pdisclose);

(2) AppSenti is a negative sentence and LibSentj is a
positive sentence;

(3) AppSenti and LibSentj refer to the same resource.

The detailed steps are shown in Algorithm 5. Note that
line 4-5 are related to requirement (1) and (2): Function
getMainV erbCategory() returns the category of a sentence’s
main verb; Function IsPositive() returns true if a sentence
is positive; Function getRes() returns the resources extracted
from a sentence. line 6-14 are related to requirement (3) and
the function Similarity() decides whether two resources refer
to the same resource by using ESA [42].

Disclaimer in privacy policy. Some app privacy
policies declare that they are not responsible
for behaviors of third parties. For example, app
com.shortbreakstudios.HammerTime declares
“We encourage you to review the privacy practices of these
third parties before disclosing any personally identifiable
information, as we are not responsible for the privacy
practices of those sites” in its privacy policy. In this case,
if the app privacy policy is inconsistent with third party lib
privacy policy, such inconsistency is ignored.

V. EXPERIMENTAL RESULT

A. Data Set

We downloaded top 500 apps from each category in Goolge
Play store and then randomly selected 1,197 apps that have
descriptions and privacy policies in English. We examined the
privacy policies of three kinds of third-party libs, including:
(1) Ad libs. 52 out of top 90 popular Ad libs in [43] were
selected because they have privacy policies in English.
(2) Social libs. 9 out of 18 most popular social network libs
in [44] were chosen because they offer privacy policies in
English.
(3) Development tools. We picked 20 most commonly used
development tools with privacy policies in English from [45]
because the majority of other tools do not have websites
showing their privacy policies.
We found that 879 apps (73%) under examination employ at
least one of the above third-party libs.

B. Pattern Selection

The number of selected patterns (i.e., n) affects the perfor-
mance of PPChecker. If a useful sentence cannot be matched
by any selected patterns, then a false negative (FN) is gen-
erated. If an irrelevant sentence is matched by one selected
pattern, then a false positive (FP) is raised.

To select a proper number of patterns, we created a positive
sentence set and a negative sentence set, each of which
contains 250 sentences selected from 100 privacy policies. All
of them have been verified manually. Fig.12 shows the false
positive rate and the false negative rate when n increases. We
set n to the value that leads to the minimal summation of the
false positive rate and the false negative rate. Therefore, n is
set to 230 with detecting rate 88.0% (i.e., false negative rate is
12%) and false positive rate 2.8%. Note that users can adopt
other strategies (e.g., constant false alarm rate) to select n.
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Fig. 12. False positive rate and false negative rate with different n.

C. Detecting Incomplete Privacy Policy

Detecting incomplete privacy policy through description.
Contrasting an app’s description and its privacy policy, P-
PChecker found 64 questionable apps. Tab. III lists the per-
missions that lead to the incompleteness and the corresponding
number of suspicious apps. In other words, these permissions
can be inferred from those apps’ descriptions whereas their
privacy policies do not cover them. We can see that the loca-
tion related permissions (i.e.,ACCESS_COARSE_LOCATION
and ACCESS_FINE_LOCATION) affect more apps. Many of
these apps belong to the category of weather and the category
of map, whose apps need the location information to provide
services. Moreover, the permissions READ_CONTACTS and
GET_ACCOUNTS also affect many apps.

Permission Num. of Questionable apps
ACCESS COARSE LOCATION 14

ACCESS FINE LOCATION 19
CAMERA 6

GET ACCOUNTS 11
READ CALENDAR 2
READ CONTACTS 12
WRITE CONTACTS 1

TABLE III. PERMISSIONS LEADING TO INCOMPLETE PRIVACY POLICY
AND THE NUMBER OF CORRESPONDING APPS.
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Fig. 13. Distribution of private information collected or retained by apps
with incomplete privacy policies.

Detecting incomplete privacy policy through code. By
analyzing apps’ bytecode, PPChecker found 195 incomplete
privacy policies. After manually checking the code and the



privacy policy of these apps, we found that 180 apps do have
the problem whereas 15 apps are false positives.

Within these 180 incomplete privacy policies, PPChecker
found 234 records of missed information, among which 32
records of missed information are retained. Fig. 13 lists the
distribution of missed information. We can observe that the
location information is the most common information missed
in incomplete privacy policies. This result is consistent with the
result described in Tab.III. We also checked the corresponding
APIs used by those apps with incomplete privacy policy and
found that for the location, getLongitude(), getLatitude(), and
getLastKnownLocation(java.lang.String) are the three most
commonly invoked APIs.

False positives. After inspecting the result, we found that the
false positives are caused by errors in extracting private in-
formation from some sentences. For example, for the sentence
“in addition to your device identifiers, we may also collect: the
name you have associated with your device”, we only extracted
“name” since it is the object of the action “collect”, but failed
to extract “device identifier”. As mentioned in Section VI, we
will deal with such constraints in future work.

False negatives. Since checking false negatives requires a lot
of manual effort, we randomly selected 20 apps to determine
whether PPChecker results in false negatives. The result shows
that PPChecker identifies all incomplete privacy policies.

D. Discovering Incorrect Privacy Policy

Discovering incorrect privacy policy through
description. PPChecker found 2 suspicious apps:
“com.marcow.birthdaylist” and “com.herman.ringtone”.
For example, the privacy policy of “com.marcow.birthdaylist”
says “we are not collecting your data of birth, phone number,
name or other personal information, nor those of your
contact.”. But its description describes the use of contact,
“This app synchronizes all birthdays with your contacts list
and facebook.”

Discovering incorrect privacy policy through code. P-
PChecker found the same two apps with incorrect privacy
policies by comparing NotCollectPP

app and Collectcodeapp . Both
“com.marcow.birthdaylist” and “com.herman.ringtone” declare
not to collect contact information in their privacy policies, but
they do query the corresponding URIs in the code.

By comparing NotRetainPP
app and Retaincode

app , PPCheck-
er found another two apps with incorrect privacy policies.
One is “com.easyxapp.secret”. Its privacy policy contain-
s a sentence “we will not store your real phone num-
ber , name and contacts”, but PPChecker identified a path
between <android.provider.ContactsContract$Contacts: an-
droid.net.Uri CONTENT URI> and Log.i(), indicating that the
contact information will be stored in the log file. Another app is
“hko.MyObservatory v1 0”. Its privacy policy declares “Users
locations would not be transmitted out from the app”. How-
ever, PPChecker found a path from getLatitude() to Log.i(),
meaning that the location information will be stored in log.

False positives. We observed two false positives due to the
lack of consideration the context. For example, PPChecker
found from the code of “com.zoho.mail” that it will access
the account information. However, it correlated this behavior

with the sentence “We also do not process the contents of your
user account for serving targeted advertisements” mistakenly,
and thus raised an alert of incorrect privacy policy. Actually,
there is another sentence in this app’s privacy policy saying
“We may need to provide access to your Personal Information
and the contents of your user account to our employees”. In
other words, this app does access the account information and
its privacy policy has correctly declared such behavior.

False negatives. We randomly selected 20 apps to check
whether PPChecker causes false negatives. The negative sen-
tences in privacy policies, the permissions inferred from de-
scriptions, and the information collected/retained in code were
inspected at the same time. We did not find any false negative.

E. Revealing Inconsistent Privacy Policy

We used three performance metrics to evaluate PPCheck-
er’s performance in revealing inconsistent privacy policy, in-
cluding Precision, Recall, and F1-Score [46].

TABLE IV. PPChecker’S PERFORMANCE OF DETECTING
INCONSISTENT PRIVACY POLICY

Sentence Category TP FP Precision Recall F1-Score
Sentscollect,use,retain 41 5 89.1% 91.7% 90.4%

Sentsdisclose 39 4 90.6% 92.3% 91.4%

Table IV shows the performance of PPChecker when
detecting the inconsistency between app’s privacy policy and
third-party lib’s privacy policy. The questionable apps caused
by Sentdisclose are on a separate row because we observed
that nearly half of inconsistent statements use V Pdisclose as
their main verbs. Through manual verification, we found that
there are in total 75 questionable apps.

For the inconsistencies in Sentscollect, Sentsuse, and
Sentsretain, PPChecker found 46 apps whose privacy policies
are inconsistent with their third-party libs’ privacy policies.
Manual checking shows that 41 apps really contain such
inconsistencies, and therefore the precision is 89.1%. For the
inconsistencies in Sentsdisclose, PPChecker found privacy
policies of 43 apps are inconsistent with third party lib privacy
policies. We manually inspected those apps and found that only
4 apps are false alerts. Therefore the precision is 90.7%.

False positives. We found that the false positive is due
to ESA that may incorrectly regard two different texts as
the same thing. For example, the privacy policy of app
com.StaffMark has the sentence “do not transmit that
information over the internet”, and the privacy policy of lib
Admob(google) contains the sentence “We will share personal
information with companies”. ESA matches the “information”
in former to the “personal information” in latter, and regards
them as the same thing by mistake.

False negatives. To check false negative, we randomly
select 200 app from the data set. We first extract all negative
sentences that involve private information from each app pri-
vacy policy, and list all positive sentences that involve private
information from each third-party lib privacy policy. Then, we
manually inspect these sentences. For Sentscollect, Sentsuse,
and Sentsretain, 12 out of 200 apps have inconsistent privacy
policies and PPChecker detects 11 apps. Hence, the recall rate
is 91.7%. Moreover, for Sentsdisclose, we found that 13 apps



have inconsistent privacy policies and PPChecker detects 12
apps. Therefore, the recall rate is 92.3%.

The false negative is due to the incomplete-
ness of our verb set. For instance, the app
com.starlitt.disableddating declares the sentence
“we will not display any of your personal information”.
PPChecker fails to match such sentence since “display” is not
included in our extracted patterns. We will use the synonyms
of major verbs to tackle this issue in future work.

F. Summary of the experimental result

For 1,197 apps in our dataset, PPChecker found 282 apps
(23.6%) that has at least one problem. More precisely, 222 apps
have incomplete privacy policies where 64 apps were detected
through descriptions and 180 apps were detected through code.
Moreover, PPChecker identified 4 apps with incorrect privacy
policies where 2 apps were discovered through descriptions
and 4 apps were discovered through code. PPChecker also
revealed 75 apps having inconsistent privacy policies.

VI. DISCUSSION

Being the first step towards assessing the trustworthiness
of apps’ privacy policies, PPChecker has successfully revealed
many questionable privacy policies by using the state-of-the-
art NLP and static code analysis techniques. The accuracy of
PPChecker can be further improved from two aspects.

First, employing advanced approaches to understand com-
plex sentences. For example, the constraints in complex sen-
tences, such as “without your consent”, “if you do not allow
us to”, etc., may affect the actual meaning of the sentence.
We will create models for these constraints and then adjust
the meaning of the corresponding sentence if necessary in
future work. Moreover, we will take into account the context
information of a privacy policy. Second, due to the limitation of
static code analysis, PPChecker may miss some source-to-sink
paths. For example, if a URI string is involved in a complicated
string process, PPChecker cannot determine whether it is a
sensitive one or not. One potential approach is to conduct
dynamic analysis for verifying the result of static analysis.

VII. RELATED WORK

A. Privacy policy analysis

Existing studies usually use a small number of pre-defined
patterns to analyze privacy policy. Brodie et al. created a set
of grammars and used NLP to identify the rule elements in
privacy policy [29]. Costante et al. defined five patterns and
employed the information extraction techniques to discover
the information to be collected by websites [18]. Text2Policy
used pre-defined patterns to extract access control policies
from natural-language software documents and resource-access
information from functional requirements [17]. It is worth
noting that PPChecker employs the enhanced bootstrapping
algorithm to identify new patterns automatically.

Breaux et al. defined a formal language to find conflicts be-
tween privacy policies manually [22], [23]. Moreover, Yamada
et al. manually looked for conflicts among the privacy policy
of a few online social networks [47]. The major difference
between this paper and theirs is that PPChecker automatically

discovers the inconsistencies to avoid time-consuming and
error-prone manual inspection. Zimmeck et al. Privee com-
bines crowdsourcing and binary classification techniques to
examine web privacy policies [48]. Note that although Privee
can determine whether a privacy policy contains statements
related to information collection, it cannot find out which
information will be collected.

Slavin et al. propose a semi-automatic method to find the
information which is retained in an app’s bytecode but missed
in its privacy policy (i.e., incomplete privacy policy) [49]. The
major differences between PPChecker and [49] include: 1)
[49] manually selects information collection related sentences
from privacy policy while PPChecker accomplishes this task
automatically. 2) When analyzing an app’s bytecode, [49] only
considers APIs, but PPChecker takes into account both APIs
and URIs. Moreover, PPChecker uses the reachability analysis
to avoid infeasible code whereas [49] does not do it.

B. Android app analysis

A number of static analysis research has been done on
Android apps. FlowDroid [37] is a precise context, flow, field,
object-sensitive and lifecycle-aware static taint analysis system
for Android apps. Lu et al. [40] analysed both used APIs
and content providers, and conducted the joint flow analysis
technique to find more privacy disclosures. EdgeMiner [36]
conducts static analysis on Android framework to determine
implicit control flow transition. AsDroid matches the static
analysis result with text extracted from UI components to
detect stealthy behaviors in Android apps [50]. Whyper adopts
NLP techniques to process an app’s description to find out
suspicious permissions [51]. AutoCog creates a semantic mod-
el for Android permissions and uses this model to locate
permissions that can not be matched by descriptions [41].
CHABADA [52] utilizes topic model to process descriptions
and group apps, and then identify apps that use abnormal APIs
in the same group. We proposed and developed AutoPPG to
automatically generate privacy policies for Android apps [53].

VIII. CONCLUSION

To determine whether apps’ privacy policies are trustwor-
thy or not, we propose and develop PPChecker, the first
system for automatically identifying three kinds of problems
in privacy policy after tackling several challenging issues in
understanding privacy policy and contrasting the meaning of
an app’s privacy policy and its behaviors. We have evaluated
PPChecker with real apps and privacy policies and found that
PPChecker can effectively detect questionable privacy policies
with high precision. Moreover, the experimental results show
that 282 of 1,197 popular apps (i.e., 23.6%) contain at least
one kind of problem. This research sheds light on the research
of improving and regulating apps’ privacy policies.

ACKNOWLEDGMENT

We thank the anonymous reviewers for their quality re-
views and suggestions. This work is supported in part by the
HKPolyU Research Grant (No. G-UA3X), the Hong Kong
GRF/ECS (No. PolyU 5389/13E), the National Natural Science
Foundation of China (No. 61202396), the Hong Kong ITF
(No. UIM/285), Shenzhen City Science and Technology R&D



Fund (No. JCYJ20150630115257892), and China Postdoctoral
Science Foundation (No. 2015M582663).

REFERENCES

[1] C. Voskoglou, “Sizing the app economy,” http://www.
developereconomics.com/report/sizing-the-app-economy/, 2013.

[2] FireEye Inc., “Out of pocket: A comprehensive mobile threat assessment
of 7 million ios and android apps,” http://goo.gl/p6uzdD, 2015.

[3] C. Gibler, J. Crussell, J. Erickson, and H. Chen, “Androidleaks: Auto-
matically detecting potential privacy leaks in android applications on a
large scale,” in Proc. TRUST, 2012.

[4] M. Egele, C. Kruegel, E. Kirda, and G. Vigna, “Pios: Detecting privacy
leaks in ios applications.” in NDSS, 2011.

[5] A. Felt, E. Ha, S. Egelman, A. Haney, E. Chin, and D. Wagner, “Android
permissions: User attention, comprehension, and behavior,” in Proc.
ACM SOUPS, 2012.

[6] Google, “Developer privacy policy,” https://goo.gl/IiuWEH.
[7] “The need for privacy policies in mobile apps c an overview,”

http://goo.gl/DtAQts, 2013.
[8] M. Brennan, “California ag sends enforcement letter to developers of

popular mobile apps,” http://goo.gl/2VQeB5, 2012.
[9] “The California Online Privacy Protection Act (CalOPPA),”

http://goo.gl/6HtB4N, 2004.
[10] “Directive 95/46/ec of the european parliament and of the council of

24 october 1995 on the protection of individuals with regard to the
processing of personal data and on the free movement of such data,”
http://goo.gl/Qgwtle.

[11] FTC, “Mobile privacy disclosures: Building trust through transparency,”
https://goo.gl/h1gVXQ, 2013.

[12] C. Meyer, E. Broeker, A. Pierce, and J. Gatto, “Ftc issues new
guidance for mobile app developers that collect location data,”
http://goo.gl/FxHuj1, 2015.

[13] R. Balebako and L. Cranor, “Improving app privacy: Nudging app
developers to protect user privacy,” Security Privacy, IEEE, vol. 12,
no. 4, 2014.

[14] F. Schaub, R. Balebako, A. Durity, and L. Cranor, “A design space for
effective privacy notices,” in Proc. SOUPS, 2015.

[15] R. Balebako, A. Marsh, J. Lin, J. Hong, and L. Cranor, “The privacy
and security behaviors of smartphone app developers,” in Proc. USEC,
2014.

[16] “Ftc path case helps app developers stay on the right, er, path,”
https://goo.gl/JKgJT4, 2013.

[17] X. Xiao, A. Paradkar, S. Thummalapenta, and T. Xie, “Automated ex-
traction of security policies from natural language software documents,”
in Proc. FSE, 2012.

[18] E. Costante, J. Hartog, and M. Petkovic, “What websites know about
you,” in Proc. DPM, 2012.

[19] C. Manning and H. Schutze, Foundations of Statistical Natural Lan-
guage Processing. The MIT Press, 1999.

[20] F. Nielson, H. Nielson, and C. Hankin, Principles of Program Analysis.
Springer, 2010.

[21] W. Zhou, Y. Zhou, X. Jiang, and P. Ning, “Detecting repackaged
smartphone applications in third-party android marketplaces,” in Proc.
ACM CODASPY, 2012.

[22] T. Breaux, H. Hibshi, and A. Rao, “Eddy, a formal language for
specifying and analyzing data flow specifications for conflicting privacy
requirements,” Requirements Engineering, vol. 19, no. 3, 2014.

[23] T. Breaux and A. Rao, “Formal analysis of privacy requirements
specifications for multi-tier applications,” in IEEE RE, 2013.

[24] L. Yu, X. Luo, C. Qian, and S. Wang, “Revisiting the description-to-
behavior fidelity in android applications,” in Proc. IEEE SANER, 2016.

[25] “Beautiful soup,” http://goo.gl/0Lh7Dk.
[26] “Natural language toolkit,” http://www.nltk.org/.
[27] D. Cer, M. Marneffe, D. Jurafsky, and C. Manning, “Parsing to stanford

dependencies: Trade-offs between speed and accuracy,” in Proc. LREC,
2010.

[28] Stanford Parser, “Stanford typed dependencies manual,” http://nlp.
stanford.edu/software/dependencies manual.pdf.

[29] C. Brodie, C.-M. Karat, and J. Karat, “An empirical study of natural
language parsing of privacy policy rules using the sparcle policy
workbench,” in Proc. SOUPS, 2006.

[30] J. Slankas, X. Xiao, L. Williams, and T. Xie, “Relation extraction for
inferring access control rules from natural language artifacts,” in Proc.
ACSAC, 2014.

[31] J. R. Curran, T. Murphy, and B. Scholz, “Minimising semantic drift
with mutual exclusion bootstrapping,” in Proc. ACL, 2007.

[32] “Negative vocabulary word list,” http://goo.gl/qX7UtK.
[33] C. Qian, X. Luo, Y. Le, and G. Gu, “Vulhunter: toward discovering

vulnerabilities in android applications,” IEEE Micro, vol. 35, no. 1,
2015.

[34] Y. Zhang, X. Luo, and H. Yin, “Dexhunter: Toward extracting hidden
code from packed android applications,” in Proc. ESORICS, 2015.

[35] L. Li, A. Bartel, T. Bissyande, J. Klein, Y. Traon, S. Arzt, R. Siegfried,
E. Bodden, D. Octeau, and P. Mcdaniel, “Iccta: Detecting inter-
component privacy leaks in android apps,” in Proc. ICSE, 2015.

[36] Y. Cao, Y. Fratantonio, A. Bianchi, M. Egele, C. Kruegel, G. Vigna, and
Y. Chen, “EdgeMiner: Automatically Detecting Implicit Control Flow
Transitions through the Android Framework,” in Proc. NDSS, 2015.

[37] S. Arzt, S. Rasthofer, C. Fritz, E. Bodden, A. Bartel, J. Klein,
Y. Le Traon, D. Octeau, and P. McDaniel, “Flowdroid: Precise context,
flow, field, object-sensitive and lifecycle-aware taint analysis for android
apps,” in Proc. PLDI, 2014.

[38] K. Au, Y. Zhou, Z. Huang, and D. Lie, “Pscout: analyzing the android
permission specification,” in Proc. CCS, 2012.

[39] S. Rasthofer, S. Arzt, and E. Bodden, “A machine-learning approach
for classifying and categorizing android sources and sinks,” in Proc.
NDSS, 2014.

[40] K. Lu, Z. Li, V. Kemerlis, Z. Wu, L. Lu, C. Zheng, Z. Qian, W. Lee, and
G. Jiang, “Checking more and alerting less: Detecting privacy leakages
via enhanced data-flow analysis and peer voting,” in Proc. NDSS, 2015.

[41] Z. Qu, V. Rastogi, X. Zhang, Y. Chen, T. Zhu, and Z. Chen, “Autocog:
Measuring the description to permission fidelity in android application-
s,” in Proc. ACM CCS, 2014.

[42] E. Gabrilovich and S. Markovitch, “Computing semantic relatedness
using wikipedia-based explicit semantic analysis.” in Proc. IJCAI, 2007.

[43] “Top 90 popular ad libraries,” http://goo.gl/GBhXOi, 2015.
[44] “Top 18 popular social libraries,”

http://www.appbrain.com/stats/libraries/social, 2015.
[45] “The most popular develop tools,”

http://www.appbrain.com/stats/libraries/dev, 2015.
[46] M. Bramer, Principles of Data Mining, 2nd ed. Springer, 2013.
[47] A. Yamada, T. H.-J. Kim, and A. Perrig, “Exploiting privacy policy

conflicts in online social networks,” CMU-CyLab-12-005, 2012.
[48] S. Zimmeck and S. M. Bellovin, “Privee: An architecture for automati-

cally analyzing web privacy policies,” in Proc. USENIX Security, 2014.
[49] R. Slavin, X. Wang, M. B. Hosseini, W. Hester, R. Krishnan, J. Bhatia,

T. D. Breaux, and J. Niu, “Toward a framework for detecting privacy
policy violation in android application code,” in Proc. ICSE, 2016.

[50] J. Huang, X. Zhang, L. Tan, P. Wang, and B. Liang, “Asdroid: Detecting
stealthy behaviors in android applications by user interface and program
behavior contradiction,” in Proc. ICSE, 2014.

[51] R. Pandita, X. Xiao, W. Yang, W. Enck, and T. Xie, “Whyper: Towards
automating risk assessment of mobile applications,” in Proc. USENIX
Security, 2013.

[52] A. Gorla, I. Tavecchia, F. Gross, and A. Zeller, “Checking app behavior
against app descriptions,” in Proc. ICSE, 2014.

[53] L. Yu, T. Zhang, X. Luo, and L. Xue, “Autoppg: Towards automatic
generation of privacy policy for android applications,” in Proc. ACM
SPSM, 2015.




