
Smartphone-Assisted Smooth Live Video Broadcast
on Wearable Cameras

Jiwei Li, Zhe Peng, Bin Xiao
The Hong Kong Polytechnic University

Abstract—Wearable cameras require connecting to cellular-
capable devices (e.g., smartphones) so as to provide live broadcast
services for worldwide users when Wi-Fi is unavailable. However,
the constantly changing cellular network conditions may substan-
tially slow down the upload of recorded videos. In this paper, we
consider the scenario where wearable cameras upload live videos
to remote distribution servers under cellular networks, aiming
at maximizing the quality of uploaded videos while meeting the
delay requirements. To attain the goal, we propose a dynamic
video coding approach that utilizes dynamic video recording
resolution adjustment on wearable cameras and Lyapunov based
video preprocessing on smartphones. Our proposed resolution
adjustment algorithm adapts to network condition changes,
and reduces the overheads of video preprocessing. Due to the
property of Lyapunov optimization framework, our proposed
video preprocessing algorithm delivers near-optimal video quality
while meeting the upload delay requirements. Our evaluation
results show that our approach achieves up to 50% reduction in
power consumption on smartphones and up to 60% reduction in
average delay, at the cost of slightly compromised video quality.

I. INTRODUCTION

Wearable cameras are becoming increasingly popular
among people due to their portability and video recording
capability [1]. GoPro, a leading company in the area of
wearable cameras, has released a series of products that are
equipped with Wi-Fi modules and support HTTP Live Stream-
ing Protocol [2]. Thus, these GoPro cameras allow people
to conveniently live broadcast what they see to the world,
when Wi-Fi is available. In fact, wearable cameras are often
used at outdoor environments where Wi-Fi is unavailable, thus
requiring cellular-capable devices (e.g., smartphones) to gain
network access. For example, the Livestream app for iOS
has just announced its latest update that allows people to
broadcast live using GoPro Hero R© as a camera source for
outdoor events [3].

Live broadcast audience usually expects little to no buffering
while watching, and expects the video quality to be as high
as possible [4]. However, our motivation experiment results
show that cellular network bandwidth is constantly changing,
and therefore existing approaches that set video recording
resolution to a fixed value either deliver undesirably low
video quality, or cause substantially long buffering. On the
other hand, according to the commonly adopted HTTP live
streaming protocol, recorded videos are divided into small
segments in order to facilitate their delivery via HTTP [2].
This inspires a solution that video recording resolution for
each video segment can be set separately based on available
network bandwidth. To our knowledge, how to set the video

recording resolution and whether it improves user experience
remain unexplored.

In this paper, we consider the scenario where wearable
cameras upload live videos to remote distribution servers via
smartphones under cellular networks. We aim at maximizing
the quality of uploaded videos while meeting the delay re-
quirements of their arrivals on servers, which we mathemati-
cally formulate as an online non-linear integer optimization
problem. Yet, there exist mainly two challenges. First, as
smartphones are used to assist wearable cameras to upload
videos, the incurred power consumption may greatly shorten
the battery life of smartphones, which is highly undesirable in
reality. How to minimize the incurred power consumption on
smartphones remains a difficult challenge. Second, unexpected
network condition deterioration [5] may cause severe time drift
issue where previously recorded video segments fail to be
uploaded and the transmission queue starts to grow, as new
video segments are recorded. As future network conditions
are unknown, adjusting video recording resolution alone may
not be able to mitigate the time drift issue.

To this end, we propose a dynamic video coding approach
that utilizes dynamic video recording resolution adjustment on
wearable cameras and Lyapunov based video preprocessing on
smartphones. First, we devise a resolution-maximizing algo-
rithm to guide the resolution adjustment decisions on wearable
cameras. It monitors the video transmission queue and histori-
cal upload speeds. In order to maximize the video quality, the
algorithm does not adjust the video recording resolution, until
historical upload speeds are consistently greater (or smaller)
than the bit rate of current recorded videos. Second, we
utilize the computing power of smartphones to preprocess
(transcode) untransmitted video segments in case of network
condition deterioration [6]. Based on Lyapunov optimization
framework [7], untransmitted video segments are preprocessed
so that they can be uploaded before their specified deadline
under current network bandwidth. Due to the property of the
framework, this preprocessing based approach can achieve an
optimal tradeoff between video quality and upload delays.

These two techniques applied on wearable cameras and
smartphones well complement each other towards two goals,
namely maximizing video quality while meeting delay con-
straints, and minimizing energy consumption on smartphones.
On the one hand, the resolution-maximization algorithm ad-
justs the video recording bit rate to an appropriate value, as
realtime network bandwidth changes. This ensures the maxi-
mum possible video quality under the network conditions, and

The following publication J. Li, Z. Peng and B. Xiao, "Smartphone-assisted smooth live video broadcast on wearable cameras," 2016 IEEE/ACM 24th
International Symposium on Quality of Service (IWQoS), Beijing, China, 2016, pp. 1-6 is available at https://doi.org/10.1109/IWQoS.2016.7590439.

This is the Pre-Published Version.

© 2016 IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for all other uses, in any current or future media,
including reprinting/republishing this material for advertising or promotional purposes, creating new collective works, for resale or redistribution to
servers or lists, or reuse of any copyrighted component of this work in other works.

also lowers the chances of preprocessing video segments on
smartphones. Without the resolution-maximization algorithm,
most video segments may have a high bit rate that cannot be
accommodated by current network bandwidth, thus requiring
being preprocessed. On the other hand, preprocessing video
segments on smartphones can well resolve the time drift
issue so as to meet the delay time requirements. Without us-
ing preprocessing, the resolution-maximization algorithm may
cause substantial delays on video segments under deteriorated
networks, which may lead to frequent playback pauses on
audience side.

We evaluate our proposed approaches in real-world ex-
periments. Results show that resolution adjustment can sub-
stantially lower the overheads of video preprocessing on
smartphones due to reduced invocation times, compared to
approaches that preprocess videos but do not adjust recording
resolution. The preprocessing technique is also shown to
effectively help reduce the live broadcast delay, compared to
approaches that do not preprocess videos. Specifically, our
approach achieves up to 50% reduction in power consumption
on smartphones and up to 60% reduction in average delay, at
the cost of slightly compromised video quality.

The rest of the paper is organized as follows. First, we
formulate the problem in Section II. Then, we present our
dynamic video recording algorithms and the preprocessing
technique in Section III. Real-world evaluations can be found
in Section IV, respectively. We review recent work in Sec-
tion V. Finally, we conclude the paper in Section VI.

II. MOTIVATION & PROBLEM FORMULATION

A. Motivation

To motivate our work, we conducted a real-world evaluation
of existing approaches for live broadcast under cellular net-
works. We used a GoPro camera and an Android developer
phone named Nexus 6 to carry out the experiments on our
university campus. The GoPro camera was set up to record
videos, and was connected with Nexus 6 via Wi-Fi. Since the
GoPro camera used HTTP Live Streaming Protocol, recorded
videos were divided into five-second segments, and were
uploaded to remote servers via Nexus 6’s cellular module.
In existing approaches, the video recording resolution for
each video segment is set to a fixed value, regardless of
network conditions. In our experiments, we set the recording
resolution to 144p, 360p, 480p, 720p and 1080p, respectively,
for each live broadcast session. We recorded down the cellular
bandwidth and the transmission time for each video segment.

To save space, we only show the experiment results of the
existing approach that sets video recording resolution to 480p
in Figure 1. The recorded realtime bandwidth as shown in
Figure 1a shows that cellular network bandwidth is constantly
changing, which leads to distinctly different transmission times
of video segments as shown in Figure 1b. The horizonal line
in Figure 1b represents the maximum allowable transmission
time (five seconds) under which no buffering is caused. We
observe that video segments No. 5-11, 13, and 20-24 caused
buffering on audience side due to their long transmission time.

0

50

100

150

200

250

300

350

Time

R
e

a
lt
im

e
 B

a
n

d
w

id
th

 (
u

n
it
:

K
B

/s
)

(a) Recorded Realtime
Bandwidth

0 5 10 15 20 25
0

5

10

15

20

25

30

Video Segment No.

T
ra

n
s
m

is
s
io

n
 T

im
e
 (

u
n
it
:
s
e
c
o
n
d
)

(b) Recorded Transmission
Time

Figure 1: Motivation experiment results. In the existing approach
that sets video recording resolution to 480p, almost half of video

segments were observed to cause buffering on audience side.

Combining other experiment results, we argue that existing
approaches that set video recording resolution to a fixed
value either deliver undesirably low video quality, or cause
substantially long buffering.

B. System Model

We consider a scenario where wearable cameras serve as the
source of video recording and recorded videos are broadcast
live to clients under the assistance of connected smartphones
and remote servers. Specifically, recorded videos are encoded
and encapsulated for transmission on wearable cameras. Then,
they are broken into a series of media files, which are trans-
ferred from wearable cameras to smartphones via their Wi-Fi
connections, and then to remote servers via smartphones’ cel-
lular interface. Remote servers broadcast these media files to
subscribed clients. The goal is to optimize the user experience
of watching live streaming in terms of video quality and delay.
Figure 2 depicts a simple illustration of our system model.

1) Video quality: How videos are recorded can significantly
affect the video quality in live streaming. Since recorded
videos are encoded and broken into small media files, the
video recording parameters (resolution and frame rate) can
be dynamically adjusted on wearable cameras for each media
file, which we rename as unit video. We define that a unit
video is the smallest unit for recording and transmission in
live streaming, and has the same durance Tunit as all other
unit videos.

We assume that there are totally n unit videos in the entire
live streaming. Let (t1, t2, . . . , tn) denote the beginning time
of recording each unit video. Since all unit videos have equal
duration, we have ti − ti−1 = Tunit, for i = 2, . . . , n. To
simplify the model, we do not consider the frame rate when
evaluating the video quality, and assume that it is constantly
30 fps. Let qi denote the video recording resolution for each
unit video. Then, we have the average resolution q =

∑n
i qi
n

in live streaming. Setting unit videos to different resolutions
results in different file sizes, denoted by (S1, S2, . . . , Sn). For
simplicity, the same resolution for different unit videos is
assumed to yield the same file size for each, and the relation
between file size and resolution is simplified as quadratic.
Based on file size for each unit video, we also define the
average throughput S =

∑n
i Si

n .

Cellular Networks Wi-Fi

Figure 2: System Model

2) Unit video delay: Delay in live streaming can signifi-
cantly affect the user experience. Recall that recorded videos
must be transferred from wearable cameras to remote servers
via smartphones’ cellular interface. It is thus likely that delay
occurs during live streaming due to overlarge video recording
resolution or suddenly worsened network conditions. As a
consequence, clients may be forced to wait for the transmission
of at least one complete unit video before resuming watching
live streaming.

We define the unit video delay as the time gap between the
actual arrival time and the expected arrival time of a unit video.
Let (tend1 , tend2 , . . . , tendn) and (texp1 , texp2 , . . . , texpn) denote the
actual and the expected arrival time of each video unit on
remote servers, respectively. We say that the expected arrival
time of the first unit video texp1 marks the expected starting
time of live streaming, which is usually given in advance.
Except the first unit video, the expected arrival time of a unit
video is dependent on that of its previous unit video as well as
its actual arrival time, i.e., texpi = texpi−1+Tunit+max(0, tendi−1−
texpi−1), for i = 2, . . . , n. The addition of max(0, tendi−1 − t

exp
i−1)

takes into account, if any, the delays caused by previous unit
videos. Now, we are in a position to calculate the unit video
delay for each unit video, i.e., Ti = max(0, tendi − texpi), for
i = 1, . . . , n. We also define the average unit video delay
T =

∑n
i Ti

n that reflects the overall performance in terms of
delays.

C. Problem Formulation

Based on the above model, we formulate the problem of
maximizing the average video resolution of live streaming
subject to delay constraints as follows,

maximize
{q1,q2,...,qn}

∑n
i qi
n

subject to T ≤ Tm1
,

Ti ≤ Tm2
, for i = 1, . . . , n,

qi ∈ Φ, for i = 1, . . . , n,

where Tm1
is the maximum tolerable average delay, and

Tm2
is the maximum tolerable unit video delay. Accord-

ing to settings in common video streaming, we have Φ =
{144p, 240p, 360p, 480p, 720p, 1080p}. In other words, the
video recording resolution must be chosen from the resolution
set Φ. Note that we do not know how the cellular network
bandwidth will change in the future. In other words, the entire
inputs are not available from the start. Thus, the formulated
problem is an online nonlinear integer optimization problem,
which is very difficult to solve in practice.

III. DYNAMIC VIDEO RECORDING & VIDEO
PREPROCESSING

In this section, we present the two techniques applied in
our live broadcast system, i.e., dynamic video recording on
wearable cameras, and Lyapunov based video preprocessing
on smartphones. These two techniques combine to achieve
two goals, namely maximizing video quality while meeting
delay constraints, and minimizing energy consumption on
smartphones.

A. Dynamic Video Recording on Wearable Cameras

One viable solution to the formulated problem is to dy-
namically adjust the video recording resolution on wear-
able cameras in order to adapt to unstable network condi-
tions. To adapt to network condition changes, we propose
a resolution-maximizing algorithm that gradually adjusts the
video recording resolution. It does not change the video
recording resolution until a predefined number of consecutive
resolution estimates are consistently larger or smaller than the
current recording resolution. When necessary, the resolution-
maximizing algorithm only changes the current resolution to
either its next higher level or lower level. As a result, the
resolution-maximizing algorithm can fully utilize the available
network bandwidth without incurring too much delay time.

Alg. 1 formally presents our resolution-maximizing al-
gorithm when the estimate q̂i|max is higher than current
recording resolution. The estimate q̂i|max is obtained based
on historical upload speeds and accumulated delay time. To
save space, the derivation of q̂i|max is not shown, and the other
half of the algorithm is not presented when q̂i|max is lower
than current recording resolution. We explain some lines of
the algorithm as follows.

To satisfy the condition (line 2), the estimated maximum
resolution must be larger than or equal to the weighted
current resolution, and the current resolution setting is not
1080p. Note that wH is a predefined parameter. We define a
variable named lastTimeHigh to record the last time (line
8) when the condition (line 2) is satisfied. Only consecutive
estimates that are higher than current resolution can trigger the
change of the recording resolution. Thus, we define a variable
named countHigh to track the number of such consecutive
estimates. Only when countHigh is larger than or equal to a
predefined parameter cH , is the current resolution changed to
its next higher level; otherwise, the current resolution remains
(line 10-16).

Time drift issue. The inherent limitation that exists in the
above proposed algorithm is the time drift issue caused by
the constantly changing network bandwidth. When recorders
are mobile, recorded videos may not be transmitted at the
supposed time, because unexpected network bandwidth deteri-
oration extends the necessary transmission time for previously
recorded videos. At such a situation, delays may still keep
increasing even if our algorithm lowers the resolution for
current and subsequent unit videos. Adjusting video recording
resolution can adapt to network condition changes, but may
still fail to resolve the time drift issue.

Algorithm 1: Resolution-maximizing Algorithm
Input : The estimation q̂i|max, current resolution qi−1

Output: The next resolution decision qi
1 lastT imeHigh = −1, countHigh = 0;
2 if (q̂i|max ≥ qi−1 ∗ wH) && (qi−1 6= 1080) then
3 if (currentT ime− lastT imeHigh ≤

10) || (lastT imeHigh == −1) then
4 countHigh+ +;
5 else
6 countHigh = 1;
7 end
8 lastT imeHigh = currentT ime;
9 end

10 if countHigh ≥ cH then
11 qi = qi−1’s next higher level;
12 countHigh = 0;
13 lastT imeHigh = −1;
14 else
15 qi = qi−1;
16 end

B. Lyapunov Based Video Preprocessing on Smartphones

The increasingly powerful capabilities of smartphones make
it possible to perform compute intensive tasks for wearable
cameras. For live broadcast from wearable cameras, smart-
phones not only serve as a bridge connecting wearable cameras
and remote servers, but also can be used to preprocess videos
for wearable cameras. As videos are queued on smartphones
for transmission, it is possible to preprocess them so that
the preprocessed videos can still be uploaded smoothly under
worsened network bandwidth. A simple preprocessing tech-
nique is video transcoding, which converts the resolution of a
unit video to another, resulting in a substantial change of its
file size.

In order to overcome the time drift issue, we introduce the
preprocessing technique to live broadcast, and propose a Lya-
punov based algorithm to optimize the use of preprocessing.
This algorithm helps determine whether it is necessary to pre-
process unit videos in the transmission queue on smartphones,
as well as how to preprocess them if necessary. It adopts
the Lyapunov optimization framework that achieves some
optimization objective by minimizing the Lyapunov drift-plus-
penalty.

1) Derivation of Lyapunov Based Algorithm: In the fol-
lowing, we present the Lyapunov based video preprocessing
algorithm. Let Ai denote the amount of data that arrive in the
timeslot (ti, ti+1). Data are generated only during the process
of video recording, which starts at time t1 and ends at time
tn+1. We model Ai as the output of a function, i.e.,

Ai =

{
Si if 1 ≤ i ≤ n,
0 otherwise,

where Si is the file size of the ith unit video. Let Ci
denote the reduced data size in the timeslot (ti, ti+1) due to

preprocessing. Let Qi denote the queue backlog (number of
bits in queue) at time ti. Then, we model Ci as the output of
a function, i.e.,

Ci , G(σi, Bi, Qi, φi),

where σi represents the preprocessing method used in the
timeslot (ti, ti+1), Bi is the average bandwidth achieved in
the timeslot (ti, ti+1), and φi is the reduced resolution due
to preprocessing in the timeslot (ti, ti+1). We define that a
specific preprocessing method targets at unit videos of certain
resolution, and transcodes them into a certain resolution.

Over time, the queue backlog evolves as follows:

Qi+1 = min(Qi −BiTunit − Ci, 0) +Ai, (1)

where Tunit is the duration of a timeslot. To remove the
nonlinear operator in (1), we define a variable:

βi =

{
BiTunit if BiTunit ≤ Qi − Ci,
Qi − Ci otherwise.

Now, the equation (1) becomes

Qi+1 = Qi − βi − Ci +Ai. (2)

The queue backlog Qm at time tm must be equal to zero in
order to satisfy the overall delay constraint, where tm refers
to the maximum tolerable deadline for live streaming.

According to the Lyapunov optimization framework, we
define the Lyapunov function as:

L(Qi) ,
1

2
Q2
i ,

and the one-step Lyapunov drift as:

∆(Qi) , E{L(Qi+1)− L(Qi)|Qi}.

From (2), we have

1

2
Q2
i+1 ≤

1

2
(Q2

i + β2
i + C2

i +A2
i)

−Qi(βi + Ci −Ai) + βiCi,
(3)

since Ai, βi and Ci are non-negative. Take expectation with
respect to Qi on both sides of (3), and then we have

∆(Qi) =Di −QiE{βi −Ai|Qi} −QiE{Ci|Qi}+
E{βiCi|Qi},

(4)

where Di = 1
2E{β

2
i + C2

i +A2
i |Qi}.

By adding a penalty, the Lyapunov framework is able to
minimize the objective specified in the penalty while keeping
the queue length finite. Since preprocessing lowers the res-
olution of unit videos, we aim at minimizing the reduction
in average resolution due to preprocessing while keeping the
average delay low. Hence, we add a weighted conditional
expectation of reduced resolution to both sides of (4), which
now becomes

∆(Qi) + V E{φi|Qi} ≤ Di −QiE{βi −Ai|Qi}
− E{(Qi − βi)E{Ci|σ, βi, φi} − V φi|Qi},

(5)

where the weight V is a predefined parameter. Based on the
property of Lyapunov optimization framework, V can affect
the tradeoff between the length of the transmission queue Q
and the reduced resolution φ.

To minimize the the left-hand-side of (5), it is equivalent of
maximizing the negative terms on the right-hand-side. Since
we can only manipulate the preprocessing method σ, we
attempt to maximize the following:

E{(Qi − βi)E{Ci|σ, βi, φi} − V φi|Qi}.

Therefore, the suggested preprocessing method σi in the
timeslot (ti, ti+1) can be obtained as follows:

σi = arg max
σ∈Ω

{
(Qi − βi)E{Ci|σ, βi, φi} − V φi|Qi

}
,

where Ω is the set of preprocessing methods that can be used
on unit videos, which includes a preprocessing method that
does nothing.

2) Video Selection: Once a preprocessing method is sug-
gested, we adopt a deadline-based selection criteria to decide
which unit video in the transmission queue gets checked first.
Normally, unit videos that arrive earliest are checked first. The
checking procedures include two steps. In Step 1, qualified
unit videos must have the required resolution as specified by
the suggested preprocessing method. In Step 2, the estimated
preprocessing time on chosen unit videos should be less than
the estimated transmission time of unit videos ahead of them
in the queue.

It is likely that the first suggested preprocessing method fails
to find a unit video of required resolution in the transmission
queue. In such a case, the next suggested preprocessing
method is considered, and will be chosen if a unit video of
requirement resolution is found in the transmission queue.
If the next suggested is the preprocessing method that does
nothing, then it is confirmed that no preprocessing is applied
for the timeslot concerned.

IV. REAL-WORLD EXPERIMENTS

A. Implementation

To validate our proposed approaches, we implemented our
resolution-maximization algorithm and the Lyapunov based
video preprocessing algorithm on the Android platform. We
adopted an Android developer phone (Nexus 5) as the wear-
able camera, since it allows us to specify which video en-
coding profile to use in video recording. We adopted another
Android developer phone (Nexus 6) as the smartphone that
is responsible for forwarding and, if needed, preprocessing
videos. Nexus 5 was configured to connect to Nexus 6 via
the Wi-Fi access point provided by the latter. Nexus 6 was
equipped with cellular interface that supports 2G, 3G and 4G
networks. We used a quad-core workstation that runs Windows
Server 2012 to host uploaded video files. It supports 100
Mbits/second wired network connection.

To enable HTTP live broadcasting on Nexus 5, we used
a third-party library named Android-eye [8] that can generate
.M3U8 playlists for subscribed users to download the video

files specified in the playlists. Videos were transmitted from
Nexus 5 to Nexus 6 via Wi-Fi, and were temporarily stored in
a transmission queue (device memory or SD card). On Nexus
6, videos in the transmission queue were not eliminated from
the queue until being successfully received by the workstation.
To preprocess videos on Nexus 6, we used another third-party
library named Android-transcoder [9] that utilizes hardware
acceleration to boost video transcoding. On the workstation,
we wrote some PHP programs that receive uploaded video
files, and send back the finishing time of video uploading.

We monitored the realtime cellular bandwidth by tracking
the amount of transmitted bytes and the actual transmission
time for every interval of time. We run a background thread on
Nexus 6 to periodically generate the video resolution adjusting
decisions and the preprocessing decisions based on specific
algorithms. The video resolution adjusting decision was sent
from Nexus 6 to Nexus 5 as a HTTP request, which, if different
from previous one, resulted in the change of video recording
resolution on Nexus 5.

B. Experiment Setup & Results

We compared the performance of three approaches, namely
the fixed 480p approach, the fixed 480p approach that adopts
preprocessing, and our approach. In the experiments, we
walked around our campus while carrying both Nexus 5 and
Nexus 6, and enabled one approach for each live broadcast
session (120 seconds). The initialization delay was set to be 20
seconds, the average delay constraint was set to be 2 seconds,
and the preprocessing parameter V was set to be 10,000. Each
approach was evaluated on multiple sessions, and results were
averaged as shown in Figure 3.

Figure 3a shows that the fixed 480p approach achieves
the highest average resolution (480p), while the other two
approaches only achieve an average resolution of around 450p
due to the adoption of video preprocessing. This suggests that
the network conditions could not smoothly upload videos of
480p. On the other hand, Figure 3b shows that the fixed 480p
approach incurs an average delay time of around 4.9 seconds,
whereas the other two approaches only incur an average delay
time of around 1.9 seconds. Although the adoption of video
processing reduces the achieved average resolution, it shortens
the average delay time. By selecting another value for the
preprocessing parameter V , we can further tune the tradeoff
between the average resolution and the average delay time.

In order to demonstrate the benefits of our resolution-
maximizing algorithm, we also measured the energy consump-
tion of each approach on Nexus 6 (as shown in Figure 3c) via
a battery statistics tool provided by Android. The main sources
of energy consumption come from the data transmission and,
if any, video preprocessing. Comparing the 480p approach and
the 480p approach with preprocessing, we observe that video
preprocessing can effectively reduce the energy consumption
of data transmission by reducing the amount of transmitted
data. Furthermore, our approach incurs even lower energy
consumption on Nexus 6, because its resolution-maximization
algorithm adjusts the video recording resolution based on

480p 480p Preprocess ResoMax Preprocess
400

420

440

460

480

500

A
v
e
ra

g
e
 R

e
s
o
lu

ti
o
n
 (

u
n
it
:
p
)

(a) The Average Resolution

480p 480p Preprocess ResoMax Preprocess
0

1

2

3

4

5

A
v
e
ra

g
e
 D

e
la

y
 T

im
e
 (

u
n
it
:
s
e
c
o
n
d
)

(b) The Average Delay Time

480p 480p Preprocess ResoMax Preprocess
60

70

80

90

100

110

120

130

140

150

A
v
e
ra

g
e
 E

n
e
rg

y
 C

o
n
s
u
m

p
ti
o
n
 (

u
n
it
:
m

A
h
)

(c) Energy Consumption on Nexus 6

Figure 3: Real-world Experiment Results

monitored network bandwidths, which reduces the invocation
times of video preprocessing.

V. RELATED WORK

The HTTP Live Streaming (HLS) protocol [2] has be-
come the de-facto solution for video streaming on mobile
devices. Much work [10–12] has been done to improve the
performance of this protocol. In [10], adynamic scheduling
methodology is proposed to enable fast video transcoding for
MPEG DASH (Dynamic Adaptive Streaming over HTTP) in
a cloud environment. To avoid wasting transcoding resources,
the authors propose several online transcoding policies that
only segments that are actually requested are transcoded
[11]. However, these techniques cannot be directly used on
live broadcast from wearable cameras, since these devices
(including smartphones) do not provide enough computing
power to transcode videos to various dimensions in realtime.

In the area of client-to-server video upload, a more widely
studied topic is about the uploading of stored videos. Movi-
sode [13] is an event-centric system that supports on-demand
uploading of videos from multiple mobile devices based on
specific user queries. In Movisode, however, videos are already
recorded and stored on mobile devices, and no preprocessing
methods are done before they are uploaded. QuiltView [14] is
a crowdsourced system based on wearable devices that sends
back live video snippets of surroundings upon other users’
queries. It emphasizes the searchability of video contents
based on their geolocation, instead of optimizing the video
transmission. Our work emphasizes the timely delivery of
recorded videos, and adopts dynamic resolution adjustment
and video preprocessing to counteract the adverse effect of
suddenly worsened network conditions.

VI. CONCLUSION

Live broadcast from wearable cameras facilitates the sharing
of individuals’ views of the world, and allows people to gain
similar experience without actually being present. However,
constantly changing network conditions pose a great challenge
to smooth live broadcast in places where Wi-Fi is unavailable.
Our proposed dynamic coding approach that utilizes reso-
lution adjust on wearable cameras and video preprocessing
on smartphones has proved its effectiveness in improving
the smoothness of live broadcast under cellular networks.

Our experiment results show that our proposed resolution-
maximizing algorithm can substantially lower the overheads
of video preprocessing on smartphones, whereas our proposed
Lyapunov based video proprocessing algorithm can greatly
reduce the average delay time for live broadcast, at the cost
of slightly compromised video quality. Our future work will
be focused on extending the application of our proposed
approach to other areas, such as realtime object detection and
identification from wearable cameras.

ACKNOWLEDGEMENT

This work is supported by HK PolyU G-YBJV and G-
YBAD.

REFERENCES

[1] The rise of GoPro: why wearable cameras make us film everything.
[Online]. Available: http://goo.gl/eKWZrH

[2] R. Pantos, “HTTP Live Streaming,” 2015.
[3] Broadcast live from your GoPro Hero R©. [Online]. Available:

http://goo.gl/e6X7w4
[4] O. Oyman and S. Singh, “Quality of Experience for Http Adaptive

Streaming Services,” Communications Magazine, IEEE, vol. 50, no. 4,
pp. 20–27, 2012.

[5] J. Li, K. Bu, X. Liu, and B. Xiao, “ENDA: Embracing Network
Inconsistency for Dynamic Application Offloading in Mobile Cloud
Computing,” in Proceedings of the second ACM SIGCOMM workshop
on Mobile cloud computing. ACM, 2013, pp. 39–44.

[6] J. Li, Z. Peng, B. Xiao, and Y. Hua, “Make Smartphones Last A
Day: Pre-Processing Based Computer Vision Application Offloading,”
in Proceedings of the 12th IEEE SECON, June 2015, pp. 462–470.

[7] M. J. Neely, Stochastic Network Optimization with Application to Com-
munication and Queueing Systems. Morgan and Claypool Publishers,
2010.

[8] Android Eye. [Online]. Available: https://github.com/Teaonly/
android-eye

[9] Android Transcoder. [Online]. Available: https://github.com/ypresto/
android-transcoder

[10] H. Ma, B. Seo, and R. Zimmermann, “Dynamic Scheduling on Video
Transcoding for Mpeg Dash in the Cloud Environment,” in Proceedings
of the 5th ACM Multimedia Systems Conference. ACM, 2014.

[11] D. K. Krishnappa, M. Zink, and R. K. Sitaraman, “Optimizing the Video
Transcoding Workflow in Content Delivery Networks,” in Proceedings
of the 6th ACM Multimedia Systems Conference, 2015, pp. 37–48.

[12] F. Chen, C. Zhang, F. Wang, J. Liu, X. Wang, and Y. Liu, “Cloud-
Assisted Live Streaming for Crowdsourced Multimedia Content,” Mul-
timedia, IEEE Transactions on, vol. 17, no. 9, pp. 1471–1483, 2015.

[13] S. P. Venkatagiri, M. C. Chan, W. T. Ooi, and J. H. Chiam, “On
Demand Retrieval of Crowdsourced Mobile Video,” Sensors Journal,
IEEE, vol. 15, no. 5, pp. 2632–2642, 2015.

[14] Z. Chen, W. Hu, K. Ha, J. Harkes, B. Gilbert, J. Hong, A. Smailagic,
D. Siewiorek, and M. Satyanarayanan, “QuiltView: a Crowd-Sourced
Video Response System,” in Proceedings of the 15th Workshop on
Mobile Computing Systems and Applications. ACM, 2014, p. 13.

