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ABSTRACT
Link Prediction has been an important task for social and informa-
tion networks. Existing approaches usually assume the complete-
ness of network structure. However, in many real-world networks,
the links and node attributes can usually be partially observable.
In this paper, we study the problem of Cross View Link Predic-
tion (CVLP) on partially observable networks, where the focus is
to recommend nodes with only links to nodes with only attributes
(or vice versa). We aim to bridge the information gap by learning a
robust consensus for link-based and attribute-based representations
so that nodes become comparable in the latent space. Also, the link-
based and attribute-based representations can lend strength to each
other via this consensus learning. Moreover, attribute selection is
performed jointly with the representation learning to alleviate the
effect of noisy high-dimensional attributes. We present two instan-
tiations of this framework with different loss functions and develop
an alternating optimization framework to solve the problem. Ex-
perimental results on four real-world datasets show the proposed
algorithm outperforms the baseline methods significantly for cross-
view link prediction.

1. INTRODUCTION
In the past decade, there have been an increasing number of in-

formation networks from a wide range of domains. Study on com-
puter networks, biological and social networks has attracted great
attention from the research community [7] [4] [26]. Link predic-
tion [1, 2], which aims at recommending potential links between
network nodes, is an important step to understand and study the
characteristics of these networks. For instance, in bioinformatics,
by predicting protein interaction links, one does not need to conduct
expensive experiments on all possible pairs and can spend the re-
source wisely on the most likely interaction. For social media web-
sites, such as Facebook and Twitter, it is fundamental to grow the
user base and enhance user engagement with link prediction tech-
niques. For security analysts/agencies, predicting (currently unob-
served) links can reveal hidden but important relationship among
terrorists and provides additional insights for understanding orga-
nizational structures of terrorist-attack activities.
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Figure 1: An example of networks with partially observable links
and attributes

Many methods have been proposed for the task of link prediction
[11, 1, 9, 2]. However, in various social and information networks,
it is common that certain nodes do not have any link information
revealed [25] and make these methods not applicable:

• In real-world social networks (e.g., Twitter, Facebook and
LinkedIn), link prediction for new users usually has the chal-
lenge of cold start problem, since these users do not have any
connection. Besides, some users may choose a strict privacy
setting that restricts the visibility of their connections, per-
sonal information or posts12. Recommending links in such a
partially observable setting could enhance user experience.

• In bioinformatics information networks, for example, study-
ing protein interaction could help researchers better under-
stand many biological processes. However, it is infeasible to
collect all the experimental data for all the possible pairs of
protein.

• In terrorist-attack networks, nodes represent terrorist activ-
ities and links represent terrorist attacks in which the same
terrorist group is involved. Detecting hidden links in these
networks is useful for understanding the underlying structure
of terrorist-attack activities. However, the complete linkages
between attacks are highly difficult to resolve [13].

Nonetheless, nodes in many social/information networks are of-
ten equipped with features/attributes, such as user attributes in so-
1https://www.facebook.com/help/
325807937506242/
2https://help.linkedin.com/app/answers/
detail/a_id/52
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cial networks, paper content in co-authorship networks and gene
properties in biological networks. These node attributes can help
when the link information is not observable. For example, for a
new user joining a social network with few friendship/following
connections (i.e., links), we can leverage his/her user profile (i.e.,
node attributes) filled out in the registration process to suggest po-
tential links to such a new user, based on the profile similarity.

However, due to the difficulty in data collection, the node at-
tributes of real-world networks also tend to be partially observable
in a variety of scenarios and this poses additional challenges for
link prediction.

• In online social networks, some users might not fill up pro-
file information when registering or have not yet started to
write posts. Besides, a user might choose a privacy level
with which no one or only friends could view his/her posts
and profile information.

• For information networks in domain of bioinformatics, it can
be costly to obtain features for certain genes or proteins.

• In terrorist network, the difficulty of collecting attributes/profiles
for different terrorists varies. For example, the information
of terrorists with higher ranks is often protected better than
that of an ordinary terrorist. Also, it is usually difficult to ob-
tain all the necessary attributes for a newly joined terrorist.

Hence, for real-world networks, assuming partially observable
networks is a more realistic setting, in which only a certain fraction
of nodes have both connections and node attributes, whereas the
other nodes have either links or attributes unobservable. Consider
the example in Figure 1. The network has 5 nodes with both link
and attribute information and other nodes are partially observable.
While the link information of node v6 is missing, we could recom-
mend potential friends from the candidate pool {v2, v3, v5, v9, v10, v11}
based on their attribute similarity. However, it would be more chal-
lenging to recommend from the candidates {v1, v4, v7, v8} which
only have link information. We refer to such problem as Cross
View Link Prediction (CVLP), in which we recommend nodes
with only attributes to nodes with only links (or vice versa).

The CVLP task can be even more challenging in many real-
world social/information networks, as node attributes are usually
characterized by high dimensionality and contain certain amount of
noisy/irrelevant attributes. For example, in Facebook network, one
could extract millions of (sparse) features for user profiling, such
as the groups a user has joined, the web pages he has liked, the
content of posts, and the user’s demographic features. Such high-
dimensional features pose additional challenges to link prediction
task. These features have different importances in predicting the
links and some features might even have negative effect on the pre-
diction. So it is critical to select only the relevant features for link
prediction.

In this paper, we study the novel problem of CVLP, and pro-
pose an effective approach, Noise-resilient Representation Consen-
sus Learning (NRCL), to address these challenges of cross view
link prediction. Since nodes with only observable links and nodes
with only observable attributes are not directly comparable in their
original form, we propose to learn a common subspace in which
nodes with incomplete information become comparable to each
other. We utilize link-based representations and content-based rep-
resentations of fully observable nodes to form a co-regularization
consensus. Experimental results on real-world datasets demon-
strate that NRCL outperforms baseline methods significantly. The
contribution of the paper can be summarized as follows:

• To our best knowledge, we are the first to formulate and in-
vestigate the problem of cross-view link prediction on net-
works with partially observable links and node attributes.

• We propose to learn representation consensus so that nodes
with either link information or node attributes could become
comparable in the latent space. Two instantiations of the pro-
posed framework, based on log loss and Huber loss, are de-
veloped and compared, with the latter being more robust to
noisy link structure.

• Considering that many node attributes in real-world networks
tend to be noisy/irrelevant, we perform joint feature selection
in our framework to alleviate the issue of noisy attributes. To
our knowledge, no prior work on node representation learn-
ing selects features jointly.

• We conduct experiments on four real-world networks and
show the effectiveness of the proposed method on the task
of cross-view link prediction.

The rest of the paper is organized as follows. In section 2, we
briefly review related work on link prediction. In section 3, we pro-
vide some preliminary definitions for our framework. We present
the robust framework for learning representation consensus in sec-
tion 4 and 5. An alternating optimization framework for the pro-
posed model is developed in section 6. Experimental results are
shown in section 7.

2. RELATED WORK
The link prediction problem has been studied extensively in the

data mining and machine learning community [1] [5] [29]. Vari-
ous scoring methods have been proposed based on the topology of
graphs: 1) Common Neighbor based methods: Adamic/Adar [1]
assigns weight to each common neighbor based on the degree of
the neighbors; 2) Path based methods such as Katz [9] and Local
Path and Random Walk with Restart [14]. Katz [9] is a path based
method which sums over all paths between two nodes.

Some link prediction methods [12] [2] formulate link prediction
as a supervised task where the existence of link is used as supervi-
sion. For example, Lichtenwalter et al. studied how to ensemble
different measures for link prediction [12]. Supervised Random
Walk [2] is a random walk based approach to combine different
similarity scores. It attempts to learn a weight for different features
to make the transition probability between linked nodes larger than
that of unlinked nodes.

Some work investigates the low rank approximation methods by
generating a low rank matrix to approximate the adjacency ma-
trix of network structure [24] [15]. Besides, various latent variable
models [3] [29] [17] have been proposed to model the relationship
between nodes. For example, WTFW [3], a topic model-based ap-
proach, can perform link prediction as well as providing explana-
tion to support the prediction. Recently, embedding methods, such
as DeepWalk [19], LINE [23] and node2vec [6], are developed to
learn representations for network nodes based on the link structure.
They employ similar objective function as the popular word em-
bedding method Word2Vec [16] and the derived node embedding
can be used for link prediction [6].

Recently, researchers study how to perform link prediction for
the heterogeneous information network [22] [30] [28], where mul-
tiple types of nodes and links exist in the network.

However, existing methods usually assume the network structure
is complete. No previous research studies cross-view link predic-
tion on partially observable networks.
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3. FORMULATIONS
In this section, we present a few preliminary definitions that will

be used in the rest of this paper.

DEFINITION 1. Information Network An information network
G = (V,E,X) consists of V , the set of nodes,E ⊆ V ×V , the set
of links, and the feature matrix X = [x1,x2, . . . ,xn]T (n = |V |),
where xi ∈ RD (i = 1 . . . n) is the attribute vector of node vi.

Since many real-world social/information networks have partially
observable links and node attributes, we study link prediction on
such networks defined as follows.

DEFINITION 2. Partially Observable Information Network
In a partially observable information network G = (V,E,X),
each node can belong to one or two of the following (overlapping)
sets: the set of nodes Og with observable links and nodes Oa with
observable attributes. We also use Os = Og ∩ Oa to denote the
set of nodes with both observable links and attributes .

Note that V = Og ∪ Oa since we assume each node has at least
one source of information. While it is possible that certain nodes
have disclosed neither links nor attributes, we do not consider such
nodes since no information can be used to suggest link to them
in that case. In a partially observable information network G =
(V,E,X), many nodes have only one view of information, i.e.,
link or node attributes. We refer to nodes with only links (Og\Os)
as link-only nodes and nodes with only attributes (Oa\Os) as
attribute-only nodes. In this paper, we study how to recommend
link-only nodes to attribute-only nodes, or vice versa. We refer to
such task as Cross View Link Prediction (CVLP).

Let the number of nodes with links, nodes with attributes and
nodes with both links and attributes be ng = |Og|, na = |Oa| and
ns = |Os|, respectively.

4. LINK-BASED REPRESENTATION LEARN-
ING

We aim to learn representations for the network nodes by pre-
serving structural information. For a node vi, other nodes can be
divided into to two classes, neighbors and non-neighbors. Hence,
we can derive triplets (i, j, k) from the network structure, where vi
and vj are neighbors while vi and vk are non-neighbors. We denote
the set of all such triplets (i, j, k) as Ω.

Let us denote the representation learned from links as Ug ∈
Rng×m, where m is the number of dimensions in the representa-
tion. The affinity sij between two nodes vi and vj can be calculated
as the inner product of the representations sij = Ug

i (Ug
j )T . To

make the representation appropriate for link prediction, it is desir-
able to make the affinity between neighbors larger than the affinity
between non-neighbors. So we aim to optimize the following ob-
jective.

min
Ug
||Ug||2F

s.t. sij ≥ sik, ∀(i, j, k) ∈ Ω
(1)

This objective function minimizes the complexity of representa-
tion while keeping neighbors and non-neighbors separable. Since it
might not be possible to satisfy all the hard constraint on all triplets
(i, j, k), we minimize the number of mis-ordered ranking triplets.
Let us denote sijk = sij − sik and the objective function is the
following.

min
Ug

∑
(i,j,k)∈Ω

I(sijk < 0) + λg||Ug||2F (2)

where I(·) is an indicator function which returns 1 if (·) is true and
0 otherwise. The 0/1 loss function is not smooth and is computa-
tionally intractable to optimize. So we replace it with a continuous
convex surrogate loss l(·) in the objective function.

min
Ug

∑
(i,j,k)∈Ω

l(sijk) + λg||Ug||2F (3)

AUC (Area Under ROC Curve) is a widely used metric for evalu-
ating binary prediction problem such as recommender system and
link prediction [12]. It can be shown that optimizing the objec-
tive in Eq (2) is related to optimizing the AUC [20] [27]. Hence,
learning the representation under such objective is a good choice
for link prediction. There can be different options for the loss func-
tion l(sijk), such as log-loss, exponential loss and hinge loss. In
the following subsection, we develop two instantiations of NRCL
with different loss functions.

4.1 Probabilistic Representation Learning (P-
RL)

From a generative point of view, one can assume all the triplets
(i, j, k) ∈ Ω are generated from the node representation Ug . More
specifically, we model the probability of preserving ranking order
sij > sik using the sigmoid function σ(x) = 1/(1 + e−x).

P (sij > sik |Ug) = σ(sijk) (4)

The larger sijk is, the more likely ranking order sij > sik is pre-
served. By assuming the ranking orders to be independent, the
probability P (> |Ug) of all the ranking orders being preserved
given Ug is the following.

P (> |Ug) =
∏

(i,j,k)∈Ω

P (sij > sik|Ug)

=
∏

(i,j,k)∈Ω

σ(sijk)
(5)

So, the goal is to find the latent representation Ug for network
nodes which maximizesP (> |Ug) (i.e., to make preserving the ag-
gregated ranking orders have maximum probability). It can be per-
formed by minimizing the following sum of negative log-likelihood:

min
Ug

Lg = − logP (> |Ug) + λg||Ug||2F

= −
∑

(i,j,k)∈Ω

logP (sij > sik|Ug) + λg||Ug||2F

= −
∑

(i,j,k)∈Ω

log σ(sijk) + λg||Ug||2F

(6)

The connection between Eq (6) and Eq (3) is easy to see: log loss
is used as the loss function l(·). Such a formulation provides a
probabilistic interpretation for the ranking order preserving princi-
ple. Such a loss function is similar in spirit to the Bayesian Per-
sonalized Ranking [20], which attempts to predict the interaction
between users and items.

4.2 Max Margin Representation Learning (MM-
RL)

One can also employ a structural learning framework with max
margin formulation as follows.

min
Ug

∑
(i,j,k)∈Ω

µijk + λg||Ug||2F

s.t. sijk ≥ 1− µijk,∀(i, j, k) ∈ Ω

(7)
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where µijk is a slack variable to impose soft margin. Such a for-
mulation is similar to Structural SVM [8]. To make clear its con-
nection to the Eq. (3) in the general framework, we can write it in
the following form.

min
Ug

∑
(i,j,k)∈Ω

max(0, 1− sijk) + λg||Ug||F (8)

So, Eq. (8) is equivalent to using hinge loss as l(·) in Eq. (3).
The hinge loss is not differentiable at 0 and therefore poses diffi-

culty for gradient-based optimization. We use a differentiable loss
defined as follows.

l(x) =

 0 if x ≥ 2
1
4
(x− 2)2 if 2 > x > 0
1− x if x ≤ 0

(9)

This loss function, which is also referred to as Huber loss, is a
combination of L1 loss (when 2 > x > 1) and L2 loss (when
x < 0). In the link structure of many networks, there is often cer-
tain amount of noisy information. For example, it is not rare that
a Facebook user may accept a connection invitation from some-
one he/she actually does not know (i.e., false positive), or two new
users have not connected even if they know each other (i.e., false
negative). Besides, the interaction between two proteins may have
not been discovered due to the difficulty in the study of certain bi-
ological process (i.e., false negative). Such pairs might form noisy
ranking triplets (i, j, k), which could potentially hamper the perfor-
mance of link prediction models. Such noisy triplets might cause
sijk to become negative. Rather than using L2 loss on the whole
range, Huber loss uses L1 loss for x < 0 because L1 loss penalizes
the error less harshly than L2 loss and hence more robust to noisy
triplets.

Hence, the optimization problem becomes the following:

min
Ug

Lg =
∑

(i,j,k)∈Ω

l(sijk) + λg||Ug||2F (10)

where l(·) is the Huber loss defined in Eq (9).

5. NOISE-RESILIENT REPRESENTATION
CONSENSUS LEARNING (NRCL)

We have discussed how to learn ranking-based representation
from network links with P-RL and MM-RL. In this section, we
describe the framework of NRCL based on learning representation
consensus. Linkage information alone might not be sufficient for
learning node representation, since network links are often sparse
and noisy. Also, the node features can be of high dimensionality
and contain many irrelevant features. Since links and attributes
provide complementary information on the network nodes, it is
desirable to learn a consensus from the link-based representation
and attribute-based representation. Also, the consensus learning
enables link-only nodes and attribute-only nodes to be comparable
in the latent space. Therefore, the similarity between the represen-
tations of two nodes can be used for cross view link prediction.

For the attribute-based representation, we learn a linear projec-
tion under the guidance of Ug .

min
W

∑
i∈Os

||Ug
i − xiW||2F (11)

If we represent all the Ug
i and xi in i ∈ Os as Us and Xs, respec-

tively, we can write the objective function in the following form.

min
W
||Us −XsW||2F (12)

Different features usually have different importances for predicting
the links. For example, in the Facebook social network, "went to
the same college" could be a more informative feature than "live
in the same country" for link prediction. The projection matrix W
can encode such knowledge by optimizing the objective in Eq (12)
and useful features tend to have large (absolute value of) weights
in the matrix W.

Besides, node features could contain many irrelevant ones which
could even harm the representation learning. To address this chal-
lenge, we propose to perform joint feature selection when learn-
ing the projection. We use a feature selection indicator vector s ∈
{0, 1}D where sp = 1 indicates the p-th feature is selected and
sp = 0 indicates the feature is not selected.

min
W,s

||Us −Xs diag(s)W||2F

s.t. sp ∈ {0, 1}, ∀p = 1, . . . , D

D∑
p=1

sp = d

(13)

where diag(s) is the diagonal matrix with s as the diagonal ele-
ments. The constraint

∑D
p=1 sp = d means that we aim to select

d (d < D) high quality features for the attribute-based represen-
tation. diag(s)W is a matrix with d non-zero rows and hence it
achieves feature selection. We combine s and W together, and
employ L2,0 norm to achieve the effect of feature selection:

min
W
||Us −XsW||2F

s.t. ||W||2,0 ≤ d
(14)

The L2,0 norm ||W||2,0 is the number of rows in W with non-zero
value. If ||Wi·||F = 0, i-th feature is not selected. The feasible
region defined by ||W||2,0 < d is not convex and we relax ||W||2,0
to its convex hull:

min
W
||Us −XsW||2F

s.t. ||W||2,1 ≤ d
(15)

where theL2,1 norm ||W||2,1 =
∑D

i=1 ||Wi·||F could also achieve
row sparsity. We further write the constraint in the form of La-
grangian as follows:

min
W

La = ||Us −XsW||2F + λa||W||2,1 (16)

where λa is the regularization parameter on L2,1 norm [18] [10].
We combine the link-based loss and attribute-based loss together

and the objective function becomes the following:

min
Ug,W

L = Lg + La

=
∑

(i,j,k)∈Ω

l(sijk) + λg||Ug||2F +

α||Us −XsW||2F + λa||W||2,1

(17)

where α is the parameter that controls the relative importance of
consensus learning. We refer to the instantiations of NRCL with
Lg in Eq (6) and Eq (10) as P-NRCL and MM-RNCL, respectively.

Figure 2 summarizes the NRCL framework: 1) Representation
Ug learned on linkage information might not be sufficiently good,
as network links could be sparse and noisy. The consensus con-
straint ||Ug

i−U
a
i ||2F (where the attribute-based representation Ua

i =
xiW ) serves as additional regularization on Ug , which enables
link-based representation to incorporate information from node at-
tributes. This can be especially useful when a node has very few
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Figure 2: Representation consensus learning on partially observable networks

Algorithm 1 Alternating Optimization for NRCL

Initialize: Ug
i = rand(0, 1), W = 0D×m, t = 1.

while not converged do
Fixing W, find the optimal Ug by L-BFGS with Eq (25)
Fixing Ug , find the optimal W with Algorithm 2
t = t+ 1

end while
Ua

i = xiW, ∀i ∈ Oa

or no links. 2) On the other hand, node attributes are not equally
important for link prediction. The consensus constraint ||Ug

i −
Ua

i ||2F can guide the learning of attribute-based representation by
jointly selecting node attributes. By learning the consensus be-
tween Ug and Ua, link information and attribute information could
lend strength to each other for learning more noise-resilient repre-
sentation. Also, the representations learned from network struc-
ture and node attributes become comparable in the latent space. To
perform cross view link prediction, we can calculate the similar-
ity sij = Ug

i (Ua
j )T in the latent space for link-only node vi and

attribute-only node vj .

6. OPTIMIZATION
In this section, we discuss how to solve the optimization problem

for P-NRCL and MM-NRCL.

6.1 Alternating Optimization
For both instantiations, we need to optimize over Ug and W.

We decompose it to two sub-problems and develop an alternating
optimization approach to solve the problem.

6.1.1 Fixing W, update Ug

Now we derive the gradient for optimizing the objective function
in Eq (6) and Eq (10). For P-NRCL, the gradient for one triplet is
calculated as follows:

∂l(sijk)

∂Ug
i

=
e−sijk

1 + e−sijk
· ∂

∂Ug
i

sijk (18)

For Max Margin NRCL (MM-NRCL), the gradient is the follow-
ing:

∂l(sijk)

∂Ug
i

=


0 if sijk ≥ 2

1
2
(sijk − 2) · ∂

∂U
g
i
sijk if 2 > sijk > 0

− ∂
∂U

g
i
sijk if sijk ≤ 0

(19)

The gradients on sijk w.r.t. Ug
i , Ug

j and Ug
k are the following:

∂

∂Ug
i

sijk = Ug
j −Ug

k (20)

∂

∂Ug
j

sijk = Ug
i (21)

∂

∂Ug
k

sijk = −Ug
i (22)

So, the gradient on Lg w.r.t Ug
i is as follows:

∂Lg

∂Ug
i

=
∑

(i,j,k)∈Ω

e−sijk

1 + e−sijk
· ∂

∂Ug
i

sijk+

∑
(j,i,k)∈Ω

e−sjik

1 + e−sjik
· ∂

∂Ug
i

sjik+

∑
(j,k,i)∈Ω

e−sjki

1 + e−sjki
· ∂

∂Ug
i

sjki

(23)

We can also derive the following gradient on La w.r.t Ug
i :

∂La

∂Ug
i

= 2α(Ug
i −Ua

i ) (24)

where Ua
i = xiW. To sum up, the gradient of the objective func-

tion in Eq (17) w.r.t Ug
i is as follows:

∂L

∂Ug
i

=

{
∂Lg

∂U
g
i

for φ(i) ∈ Og\Os

∂Lg

∂U
g
i

+ ∂La

∂U
g
i

for φ(i) ∈ Os (25)

We can use gradient-based method (e.g., steepest descent or L-
BFGS) to solve this subproblem.

6.1.2 Fixing Ug, update W
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With fixed Ug , we find the optimal W for the following convex
sub-problem.

min
W
L = ||Us −XsW||2F + λ′a||W||2,1 (26)

where λ′a = λa/α. To solve this subspace learning with L2,1 reg-
ularization, we develop Algorithm 2 inspired by the iterative ap-
proach used in [18].

By setting ∂L(W)
∂W

= 0, we have the following:

∂L(W)

∂W
= (Xs)T (XsW −Us) + λ′aEW = 0⇒

W = ((Xs)TXs + λ′aE)−1(Xs)TUs
(27)

where E is a diagonal matrix with diagonal elements Eii = 1
2||Wi||F

and Wi is the i-th row of W.

THEOREM 6.1. For the optimization problem in Eq (26), Algo-
rithm 2 would converge.

Proof: It is easy to see that Eq (27) is a solution of the problem:

min
W
||XsW −Us||2F + λ′a Tr(WTEW) (28)

where Tr(·) is the trace of matrix (·). So, from the t-th to (t+1)-th
iteration,

||XsWt+1 −Us||2F + λ′a Tr((Wt+1)TEt+1Wt+1)

≤ ||XsWt −Us||2F + λ′a Tr((Wt)TEtWt)⇒

||XsWt+1 −Us||2F + λ′a
∑
i

||Wt+1
i ||2F

2||Wt
i ||F

≤ ||XsWt −Us||2F + λ′a
∑
i

||Wt
i ||2F

2||Wt
i ||F

(29)

Equivalently,

||XsWt+1 −Us||2F + λ′a||Wt+1||2,1−

λ′a(||Wt+1||2,1 −
∑
i

||Wt+1
i ||2F

2||Wt
i ||F

)

≤ ||XsWt −Us||2F + λ′a||Wt||2,1−

λ′a(||Wt||2,1 −
∑
i

||Wt
i ||2F

2||Wt
i ||F

)

(30)

Note that ||Wt+1||2,1−
∑

i

||Wt+1
i ||2F

2||Wt
i ||F

≤ ||Wt||2,1−
∑

i

||Wt
i ||

2
F

2||Wt
i ||F

(because
√
a− a

2
√
b
≤
√
b− b

2
√

b
, a, b > 0). So,

L(Wt+1) = ||XsWt+1 −Us||2F + λ′a||Wt+1||2,1
≤ ||XsWt −Us||2F + λ′a||W||2,1 = L(Wt)

(31)

The objective function L(W) decreases in each iteration and it is
lower bounded, so the convergence of Algorithm 2 is guaranteed.
In our experiments, we observe it converges usually in less than 10
iterations.

Algorithm 1 summarizes the optimization methods for NRCL.
The following theorem shows the convergence of this algorithm.

THEOREM 6.2. The alternating optimization framework in Al-
gorithm 1 would converge.

Proof: The objective function for each subproblem decreases in
each iteration. The objective function in Eq (17) is hence guaran-
teed to decrease and it is lower-bounded. So the alternating opti-
mization algorithm 1 would converge.

Algorithm 2 Algorithm for Learning Projection with L2,1 norm

1: Input: Xs ∈ Rns×D , projection target Us ∈ Rns×m, λ′a
2: Initialize: E = ID
3: while not converged do
4: W = ((Xs)TX + λ′aE)−1(Xs)TUs

5: E =

 1
2||W1||F

. . .
1

2||WD||F


6: end while
7: Output: W ∈ RD×m

Table 1: Statistics of datasets

Statistics Blogcatalog Facebook Wiki Pubmed
# of instances 3192 1045 3363 19717
Avg. degree 8.87 51.19 19.76 4.50
# of attributes 3221 576 4973 500

6.2 Sampling ranking triplets
One can derive O(|E||V |) triplets from the network structure.

Such large amount of triplets is computationally expensive to opti-
mize on. Rather than using all the potential triplets, we only sample
a portion of them as follows: for each link (vi, vj) in the network,
we randomly sample nk (nk � |V |) negative pairs to form triplets
with (vi, vj). Hence, a total of |E|nk triplets (i.e, |Ω| = |E|nk)
is used in the optimization. In our preliminary experiments, we
found nk = 2 or nk = 3 is usually sufficient to achieve decent
performance, so we use nk = 2 in our experiments.

7. EXPERIMENTS
In this section, we perform cross-view link prediction on four

real-world networks with partially observable links and node at-
tributes.

7.1 Datasets
We use four publicly available social/information network datasets

in our experiments:

• Facebook Dataset3: The whole dataset consists of ten ego-
networks of facebook users. We use the network with largest
number of nodes, which has 1045 users, 576 user profile fea-
tures (e.g., education, work and location) and 53498 links.

• BlogCatalog Dataset4: We extract users who have blog posts
in the category of {Music, Finance, Health, Computers, En-
tertainment}. The friendship connection between blog users
establishes the network links and the word occurrence in the
blogs is used as user features.

• Wikipedia Dataset5 [21]: Wikipedia articles from 19 cat-
egories and the hyperlinks establish the network structure.
The original hyperlinks are directed and we symmetrize the
network to make it undirected.

3https://snap.stanford.edu/data/
egonets-Facebook.html
4http://dmml.asu.edu/users/xufei/datasets.
html
5http://linqs.cs.umd.edu/projects//projects/
lbc/index.html
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• PubMed Dataset5 [21]: It consists of 19717 scientific pub-
lications about diabetes from PubMed database, which are
classified into one of three classes. The word occurrence in
the paper is used as the node features.

The statistics of these datasets are shown in Table 1.

7.2 Experimental Setting

7.2.1 Baselines
Existing methods usually assume the completeness of links and

are not directly applicable for our problem setting. We create con-
tent links for each node in Oa (that has attributes) by connect-
ing them with k other nodes with largest similarity w.r.t attributes,
where k is the average degree of the network. Then we construct a
combined network by connecting two nodes when they have either
a structural link or content link between them. We use the following
methods on this combined network:

• Probabilistic Representation Learning (P-RL): P-RL learns
the repsentation of nodes by optimizing the objective func-
tion Lg in Eq. (6), which is similar to the triple loss based
link prediction [15] [20].

• Max Margin Representation Learning(MM-RL): MM-RL learns
the representation by optimizing the objective function Lg in
Eq. (10).

• LINE: An efficient embedding learning approach for net-
work nodes [23] and the similarity between node embed-
dings can be used for link prediction.

• DeepWalk: It learns node representations that encode struc-
tural information by using truncated random walk as input
[19]. Recent work shows that it has state-of-the-art perfor-
mance for link prediction [6].

7.2.2 Evaluation Metrics
We use the widely adopted metrics Precision, Recall to evaluate

the performance of different link prediction approaches.

• Precision@N =
|CRN

∩Cadopted|
N

• Recall@N =
|CRN

∩Cadopted|
|Cadopted|

where CRN is the set of top N nodes in the recommendation and
Cadopted is the set of links that actually exist in the network. The
precision and recall averaged over all the nodes are reported to re-
flect performance of each link prediction approaches.

7.2.3 Generating Partially Observable Networks
To create partially observable networks, we randomly select a

few nodes (the number of these nodes is denoted as m1) and re-
move their links. After removing these links, we denote the num-
ber of nodes without any links as m2. Typically m2 is larger than
m1 since removing the links for them1 nodes may also make some
other nodes become isolated. Then we pick another m2 nodes ran-
domly which have links and remove their attributes. Hence, only
|Os| = n − 2m2 nodes have both links and attributes. For rec-
ommending attribute-only nodes to link-only nodes (or link-only
to attribute-only), 20% of the link-only (or attribute-only) nodes is
used for validation and the rest is used for testing.

We set the dimension sizes (i.e., m) of P-NRCL, MM-NRCL, P-
RL, MM-RL to 50 and that of LINE and DeepWalk to their default

setting. For the regularization parameters in P-NRCL, MM-NRCL,
P-RL and MM-RL, we perform grid search on the validation set in
the following ranges: α = {0.01, 0.1, 1, 10}, λa = {10, 20, 30}×
α, λg = {5, 10, 15, 20}.

7.3 Comparison on Cross View Link Predic-
tion

We report the link prediction performance with different per-
centages (|Os|/n) of fully observable nodes in Table 2 by setting
m1 = {0.2, 0.3} × n. On most of the datasets, NRCL methods
(especially MM-NRCL) outperform the baseline methods signifi-
cantly. For example, on Wiki dataset, P-NRCL and MM-NRCL im-
prove over the best baseline method MM-RL by 29.1% and 44.8%,
respectively, in terms of precision@5. When the fully observable
rate goes to as low as 20% ∼ 40%, MM-NRCL still performs very
well for cross view link prediction. Though MM-RL and P-RL
employ the same objective function Lg on the link-based repre-
sentation learning as MM-NRCL and P-NRCL, the content links
created from potentially noisy feature space make them unable to
learn high quality representation. This indicates the importance of
selecting the most informative features for representation learning
on partially observable networks, in order to achieve decent link
prediction performance. In comparison, the representation learned
by MM-NRCL and P-NRCL could be more resilient to irrelevant
features, as NRCL performs joint feature selection and only use the
high-quality features to learn the representation.

When comparing P-NRCL with MM-NRCL, we observe that
MM-NRCL performs better than P-NRCL in most cases. Simi-
larly, MM-RL often outperforms P-RL as well. This suggests that
Huber loss, which is more robust to noisy links, tends to be a better
choice for learning node representations than log loss.

7.4 Case Study on Joint Feature Selection
Since we perform joint feature selection in our NRCL frame-

work, the utility of feature i (i = 1, 2, . . . , D) can be ranked by
their coefficients

∑m
j=1 W

2
ij . For useless features,

∑m
j=1 W

2
ij tends

to shrink towards zero under the effect of L2,1 norm, while impor-
tant features tend to have large values of

∑m
j=1 W

2
ij . As a case

study, we show the feature importance for Facebook dataset in Ta-
ble 3. The specific value and meaning of features are anonymized
for privacy concern. Features in the same category (e.g., education)
can be encoded into multiple binary features and they may have
different importance for representation learning. For instance, ed-
ucation features 538 and 237 are highly important while education
feature 459 is considered useless. By examining the features with
large scores (

∑m
j=1 W

2
ij), one could have a deeper understanding

about the roles of different features in the formation of network
links.

7.5 Sensitivity Analysis
In this subsection, we study the effect of dimension size m and

consensus regularization parameter α only for MM-NRCL, since
previous results show that MM-NRCL is more promising than P-
NRCL. The precision results w.r.t different parameter values on
Facebook and Wiki datasets are shown in Figure 3.

Effect of latent dimension size For m, we can observe that
MM-NRCL is not very sensitive to the parameter value and per-
forms consistently well when it is not too small (e.g., m ≤ 20).

Effect of regularization controlling consensus strength For
the co-regularization parameter α, MM-NRCL can achieve good
performance as long as α is not too large (e.g., α ≥ 10).
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Table 2: Link prediction with different observable rates

Dataset |Os|/n Metric Recommend AO to LO Recommend LO to AO

Facebook

0.5770
PNRCL MMNRCL PRL MMRL LINE DeepWalk PNRCL MMNRCL PRL MMRL LINE DeepWalk

Precision@5 (%) 39.47 44.87 34.34 41.58 27.24 8.68 21.53 23.57 16.69 17.71 11.85 8.79
Recall@5 (%) 16.33 20.09 13.62 19.94 7.92 4.92 10.62 12.41 7.82 8.53 5.25 4.15

0.3703
PNRCL MMNRCL PRL MMRL LINE DeepWalk PNRCL MMNRCL PRL MMRL LINE DeepWalk

Precision@5 (%) 38.45 39.48 32.96 32.10 30.47 11.33 20.24 22.51 16.76 17.33 14.09 8.91
Recall@5 (%) 10.26 10.86 8.03 9.66 6.65 3.31 6.63 8.35 4.59 5.52 3.84 4.13

BlogCatalog

0.5081
PNRCL MMNRCL PRL MMRL LINE DeepWalk PNRCL MMNRCL PRL MMRL LINE DeepWalk

Precision@5 (%) 14.65 13.74 0.90 2.19 7.23 0.65 1.18 1.12 0.11 0.28 0.06 0.45
Recall@5 (%) 33.27 30.82 2.12 4.68 15.08 1.59 2.86 1.93 0.23 0.66 0.14 1.01

0.2701
PNRCL MMNRCL PRL MMRL LINE DeepWalk PNRCL MMNRCL PRL MMRL LINE DeepWalk

Precision@5 (%) 13.43 13.51 0.41 1.45 8.24 0.74 0.66 0.44 0.09 0.13 0.06 0.63
Recall@5 (%) 24.61 24.83 0.79 1.97 15.58 1.38 0.58 0.59 0.10 0.10 0.01 1.11

Wiki

0.5332
PNRCL MMNRCL PRL MMRL LINE DeepWalk PNRCL MMNRCL PRL MMRL LINE DeepWalk

Precision@5 (%) 21.77 24.42 13.05 16.86 10.18 3.58 11.49 14.12 6.59 10.33 2.81 2.94
Recall@5 (%) 25.91 29.28 11.50 16.52 11.31 4.49 14.78 18.46 7.75 12.51 3.11 2.58

0.3417
PNRCL MMNRCL PRL MMRL LINE DeepWalk PNRCL MMNRCL PRL MMRL LINE DeepWalk

Precision@5 (%) 21.01 24.31 13.23 17.83 9.90 3.59 11.05 13.61 3.96 7.87 1.09 3.51
Recall@5 (%) 20.42 25.48 10.48 16.13 9.98 3.02 11.20 14.18 3.42 6.72 0.89 3.22

PubMed

0.4521
PNRCL MMNRCL PRL MMRL LINE DeepWalk PNRCL MMNRCL PRL MMRL LINE DeepWalk

Precision@5 (%) 3.18 4.90 0.89 1.50 0.02 0.98 0.69 1.03 0.17 0.28 0.05 1.44
Recall@5 (%) 7.92 12.60 1.61 2.93 0.03 2.31 1.57 2.63 0.22 0.57 0.18 3.43

0.1847
PNRCL MMNRCL PRL MMRL LINE DeepWalk PNRCL MMNRCL PRL MMRL LINE DeepWalk

Precision@5 (%) 2.57 4.34 0.41 1.08 0.03 0.82 0.44 0.69 0.10 0.19 0.02 1.05
Recall@5 (%) 4.77 9.66 0.55 1.30 0.06 1.94 0.85 1.38 0.19 0.28 0.03 2.38

Table 3: Feature importance on Facebook dataset

Feature Name Feature Score
Top ranked features

education;school;id;anonymized feature 538 1.1095
education;school;id;anonymized feature 237 0.4649
work;employer;id;anonymized feature 151 0.4579
education;school;id;anonymized feature 52 0.3724

education;concentration;id;anonymized feature 14 0.3499
Examples of unselected features

last_name;anonymized feature 592 0
work;employer;id;anonymized feature 648 0
work;position;id;anonymized feature 697 0
work;end_date;anonymized feature 674 0

education;school;id;anonymized feature 459 0

8. CONCLUSION
In many real-world networks, the links and node attributes are of-

ten partially observable. In this paper, we study how to recommend
link-only nodes to attribute-only nodes (or vice versa). To perform
such cross-view link prediction, we propose to learn a representa-
tion consensus between links and attributes. Two instantiations that
employ different ranking-based loss are presented for the represen-
tation learning. Considering high-dimensional node attributes are
potentially noisy, we perform joint feature selection in the repre-
sentation learning process. The link-based representation and the
attribute-based representation could lend strength to each other and
make the representation more resilient to link and attribute noise.
Experimental results shows that the proposed P-NRCL and MM-
NRCL are able to learn high-quality representations, which can ef-
fectively perform cross-view link prediction.
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