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Abstract—Indoor subarea localization remains an open prob-
lem due to existing studies face two main bottlenecks, one is
fingerprint-based methods require time-consuming site survey
and another is triangulation-based methods is lack of scalability
in large-scale environment. In this paper, we aim to present
a graph-based method for indoor subarea localization with
zero-configuration, which can be directly employed without
offline manually constructing fingerprint map or pre-installing
additional infrastructure. To accomplish this, we first utilize
two unexploited characteristics of WiFi radio signal strength to
generate logical floor graph, and then formulate the problem of
constructing fingerprint map in terms of a graph isomorphism
problem between logical floor graph and physical floor graph.
Then, a Bayesian-based approach is utilized to estimate the
unknown subarea in online localization. The proposed method
has been implemented in a real-world shopping mall and ex-
tensive experimental results show that our method can achieve
competitive performance comparing with existing methods.

I. INTRODUCTION

Recent years have witnessed an increasing attempt on
indoor subarea localization in view of its importance to many
location-based services, such as indoor advertising [1], patient
activity monitoring [2] and indoor check-in services [3]. Since
traditional GPS positioning technique is infeasible in indoor
environment and the positioning accuracy of cellular-based
method is not enough, localization methods based on radio
signal strength (RSS) has attracted enormous research from
both academia and industry. Existing RSS-based localization
methods either require time-consuming site survey or huge
costs for deploying additional hardware. Therefore, indoor
subarea localization remains an unsolved problem according
to the report from Microsoft indoor localization competition
[4]. In general, existing RSS-based localization methods can
be divided into two categories: infrastructure-based methods
and infrastructure-free methods.

Infrastructure-based methods require pre-installed hardware
for localization, such as UWB [5], ZigBee [6] or wearable
sensor [7], [8], which make this kind of system unsalable
to large-scale environment. To address this drawback, many
infrastructure-free localization systems [9]–[11] without re-
quiring additional hardware have been proposed. One of
the most promising methods is using WiFi RSS, which is

mainly attributed to the widespread deployment of WLAN
infrastructure.

Previous localization methods using WiFi RSS in-
clude geometric-based scheme and fingerprint-based scheme.
Geometric-based scheme utilizes geometry relation between
the unknown location and more than two reference locations
for localization, such as TOA [12], TDOA [13] and AOA [14].
Geometric-based scheme requires prior knowledge of WiFi
access point (AP) and radio signal propagation model in indoor
environment. However, there is not a ubiquitous radio signal
propagation model due to complex phenomena (e.g., multi-
path fading, shadowing, etc.) in indoor environment. More-
over, the performance of geometric-based scheme is vulnerable
to be influenced by many factors, such as layout changes or
people walking. On the contrary, fingerprinting-based scheme
is more robust since it does not depend on radio signal propa-
gation model. Typically, fingerprinting-based scheme consists
of two phases: (1) construct fingerprint map, which firstly
divides indoor space into a few cells and manually associates
each cell with the scanned RSS values from surrounding APs;
(2) online localization, which estimates the unknown location
by matching the scanned RSS values with the fingerprinting
map. The main bottleneck of fingerprint-based scheme is that
manually constructing fingerprint map is time-consuming and
labor intensive. For instance, the deployment overhead for a
300m2 environment is more than 7 hours [4]. Additionally,
the fingerprinting map needs to be updated dynamically for
maintaining localization accuracy.

For a practical subarea localization system, we argue several
requirements are necessary: reasonable localization accuracy;
no additional hardware components on user’s side; scalable
to large-scale deployment. On these basis, we propose a
graph-based indoor subarea localization method with zero-
configuration, which is infrastructure-free and constructing
fingerprint map by passive crowdsourcing. Specifically, we
firstly generate logical floor graph by utilizing two inherent
characteristics of WiFi RSS in indoor environment, and then
we formulate the problem of constructing fingerprinting map
as a graph mapping problem between logical floor graph
and physical floor graph. Finally, we utilize a Bayesian-based
approach to estimate the unknown location.
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The rest of this paper is structured as follows. Section 2
surveys related studies on indoor subarea localization. Section
3 describes our proposed method in detail. Section 4 reports
and discusses our experimental results. Finally, we present our
conclusion and future work in Section 5.

II. RELATED WORK

In this section, we survey previous related works about
indoor subarea localization and discuss how these works differ
from our work. In general, existing studies on this topic can
be divided into two categories:

A. Infrastructure-based Localization System

Infrastructure-based localization systems estimate unknown
location based on the information from additional infrastruc-
ture or external equipment, such as WiFi signals, Bluetooth
signals and ZigBee signals. For instance, the beacon frames
from multiple Bluetooth APs [15] are used to localization the
room, ZigBee interface [6] is used to collect WiFi RSS for
room localization, wearable wrist sensors [7] is used to detect
a person. The main drawback of infrastructure-based system is
lack of scalability since costly infrastructure pre-deployment is
necessary. Moreover, the performance of infrastructure-based
systems is limited by disturbances and errors caused by indoor
obstacles (e.g. walls, ceiling and furniture, etc.). Another
challenge of infrastructure-based systems is how to design
optimal configurations with trade-off the deployment cost
and localization performance. [16] analyzed the localization
performance and deployment issues by revealing localization
error trends with geometric configurations, and concluded the
optimal configuration is regular polygon where the vertices
represent the RSS APs.

B. Infrastructure-free Localization System

In contrast, infrastructure-free localization systems utilize
existing infrastructure (e.g., WiFi [10], [11], [17]–[19], mag-
netic field [20], etc.) to estimate an unknown location without
deploying additional hardware.

Typically, localization methods for infrastructure-free sys-
tem consist of geometric-based method and fingerprint-based
method. Geometric-based method utilizes triangulation princi-
ple to estimate the unknown location based on radio propa-
gation model, such as TOA [12], TDOA [13] and AOA [14].
However, there is not a ubiquitous radio propagation model
in indoor environment, since the radio signal propagation
would be strongly affected by multipath effect. In addition,
specific devices for measuring TOA or AOA are costly.
Fingerprint-based method utilizes the RSS values collected
from a specific location as its fingerprint for labelling location.
The localization process of this scheme includes two phases:
construct fingerprint map and online localization. For example,
[21] utilized fingerprint-based method with WiFi RSS to
obtain room-level localization for visualizing indoor energy
consumption. [22] proposed an subarea detection method using
WiFi RSS. [23] proposed a more robust location fingerprint
for localization using the RSS relative ordering of each pair

TABLE I: Notations used in indoor subarea localization

Symbol Description

N,K,M the num of subareas, WiFi APs, RSS traces
S,D,H the set of subareas, WiFi RSS traces, Histogram bins
ri, R the RSS value from api,the RSS values from all WiFi APs
o(u, t, R) the RSS record collected by user u at time t
Li, traj(Li) a WiFi RSS trace, a virtual trajectory
si, fsi an indoor subarea,the fingerprint of subarea
νi virtual subarea with high similarity fingerprint
Y the fingerprint map
Gp, Gf the physical floor graph, logical floor graph
τ time windows size for identifying boundary points
σ user-specific threshold for removing false identification

of APs. For reducing erroneous estimation, [9] utilized the
RSS characteristics when passing through a boundary point
to calibration. However, previous fingerprinting-based method
is infeasible because constructing fingerprint map is time-
consuming and labor intensive [4].

Recently, some studies have been proposed to automat-
ically construct fingerprinting map without time-consuming
site survey. For instance, [18] proposed an indoor floor plan
construction method with leveraging WiFi RSS and user
motion information, which can be utilized to automatically
construct fingerprinting map. WILL [10] automatically con-
struct fingerprint map by utilizing RSS characteristics and user
motions to . WicLoc [19] records user motions as well as
WiFi signals for constructing fingerprint map. However, these
methods need user’s active participation when constructing
fingerprint map. In contrast, our proposed method only utilize
WiFi RSS to automatically construct fingerprint map, which
can be done by passive crowdsourcing.

III. GRAPH-BASED LOCALIZATION METHOD

In this section, we first introduce the key data structures and
notations used in our proposed subarea localization method,
and then present the problem definition and solution.

A. Problem Definition

For ease of the following presentation, we define the key
notations used in the proposed method. Table I lists the
relevant notations used in this paper.

Definition 1: RSS Record. A RSS record is a triple
o(u, t, R) that means the collected WiFi RSS values by user
u at time t. R is a K dimensional vector and denote by
(r1, ..., ri, ..., rK), ri means the scanned WiFi RSS value from
AP api, K is the num of WiFi APs in indoor space and
1 6 i 6 K.

Definition 2: WiFi RSS Trace. We define a WiFI RSS trace
as a set of RSS records and denote by L = {o1, ..., oi, ..., oT },
oi represents the collected RSS record at time ti, 1 6 i 6 T .

Definition 3: Indoor Subarea. S = {s1, s2, ..., sN} denotes
the set of subareas, N is the num of subareas and a subarea si
refers to a region that makes up part of indoor space. Typically,
subareas are rectangle, such as rooms and corridors, but not
necessary.



Definition 4: Subarea Fingerprint. The feature of subarea
si is defined as a H ×K matrix fsi = {p1, p2, ..., pK}, H is
the histogram bins and pj represents the histogram of scanned
RSS values from apj in si, 1 6 i 6 N and 1 6 j 6 K.

We split the RSS values range into H bins and then pj
denote by a H dimensional vector, a bin-based method is used
to calculate the pj of subarea si, as shown in Equation. 1.

pj =

H∏
h=1

∑K
j=1 C

h
ij

Ci
(1)

Where
∑K
j=1 C

h
ij is the num of collected RSS values from

apj belongs to the h-th bin in total collected RSS values, Ci
means the total collected RSS values in subarea si.

Definition 5: Fingerprint Similarity. The fingerprint simi-
larity of subarea si and sj is calculated by cosine similarity,
as shown in Equation. 2.

Sim(fsi, fsj) =
1

K

K∑
n=1

Rown(fsi) ·Rown(fsj)

||Rown(fsi)|| × ||Rown(fsj)||
(2)

Where Rown(fsi) and Rown(fsj) represent the n-th row
vector of fsi and fsj , respectively.

Definition 6: Fingerprint Map. The fingerprint map is a set
of tuples by associating physical subarea and its fingerprint and
denote by Y = {(s1, fs1, ..., (si, fsi), ..., (sN , fsN ))}.

Definition 7: Physical Floor Graph. We denote the physical
floor graph by Gp =< Vp, Ep >, where Vp = {v1, v2, ..., vN}
and vi represents subarea si, Ep ⊆ V × V correspond to the
directly reachable of subareas in indoor space.

Based on the above definitions, we formulate the prob-
lem of indoor subarea localization as: Given: 1) indoor
subarea set S = {s1, s2, ..., sN}. 2) WiFi RSS Trace set
D = {L1, L2, ..., LM} collected by passive crowdsourcing. 3)
physical floor graph Gp =< Vp, Ep >. 4) a user localization
request o?(u, t, R); Objective: find the correspond subarea si
when scanning RSS record o?(u, t, R).

Our solution for this problem consists of two phases: (1)
construct fingerprint map by graph mapping; (2) estimate the
unknown subarea with a Bayesian approach.

B. Construct Fingerprint Map

In this subsection, we first give an high-level overview of
our graph-based method for constructing fingerprint map, and
then present the details of the method.

Unlike existing fingerprint-based methods, our method au-
tomatically constructs fingerprint map without manual site
survey. First, we collect RSS traces by crowdsourcing (e.g.,
when participants go shopping, drink a coffee or relaxing).
Then, after obtaining enormous RSS traces, the fingerprint
map is constructed by the following three steps: modeling
physical floor plan to an undirected graph, generate logical
floor graph, and mapping logical floor graph to physical floor
graph.

Identify  Physical 
Boundary Point 

Construct   Virtual 
Trajectory 

Merge  Virtual 
Trajectories 

Indoor Floor Plan 

Physical Floor Graph 
Graph 

Mapping 
Generate Subarea  
Fingerprint Map 

Collect RSS Records Generate Logical Fingerprint Graph 

Modeling Indoor Floor Graph 

Fig. 1: High-level overview of constructing fingerprint map

1) Modeling Physical Floor Plan: Motivated by indoor
robots pursuit/evasion research [24], we model the indoor
floor plan with a undirected graph Gp =< Vp, Ep > by
decomposing the indoor floor plan into a collection of convex
subareas, and further reduce the indoor space to a graph
by discretization. Specifically, the discretization includes two
steps:

• Step1: decomposing the indoor floor plan into a set of
convex subareas based on critical visibility events and
association vertex vi to subarea si;

• Step2: adding edges between vertices which are directly
connected in the original indoor floor plan.

For example, the indoor floor plan of our experimental
environment is shown in 2a, which consisting of 27 rooms
and covering over 2000m2. Then, we decompose the floor
plan into a set of subareas and add edges between directly
connected vertices, and finally model the indoor floor plan as
a undirected graph as shown in Figure 2b.

2) Generate Logical Floor Graph: A few factors can in-
fluence the propagation of radio signal in indoor environment,
such as multiple diffraction, reflection of scattered signals from
adjacent walls and crowd walking. By investigating spatial-
temporal characteristics of indoor radio signal propagation,
we observe two valuable characteristics can be exploited to
subarea localization.

The first observation is physical obstacles, such as walls
and stairs, will make WiFi RSS values jump dramatically. In
order to investigate the physical obstacles effect on radio signal
propagation, we collected 200 RSS records from three APs in
room 1 and room 2, where AP1 and AP2 are located in room
1 and AP3 is located in room 2. The statistical information of
RSS values is shown in Table II, and we can observe that the
range of RSS values from the same AP significantly differ in
different rooms.

Therefore, this characteristic can reflect the indoor floor
plan to a certain degree and can be used to distinguish two
subareas, which is also demonstrated in [25]. Based on this
characteristic, we design a robust subarea fingerprint using
RSS histogram as shown in Definition 4. In order to distinguish
different subareas, we further define the similarity of Subarea
Fingerprint as shown in Definition 5.
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Fig. 2: Modeling physical floor plan as a undirected graph

TABLE II: The RSS values scanned from three WiFi APs at different rooms

Range AP1 at Room 1 AP1 at Room 2 AP2 at Room 1 AP2 at Room 2 AP3 at Room 1 AP3 at Room 2

[−55,−40] 115 0 93 1 0 120
[−70,−55) 72 3 81 5 4 63
[−85,−70) 10 11 21 17 21 15
[−100,−85) 3 23 5 39 42 2
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Fig. 3: The ”jump” characteristic when passing physical boundary points

Take RSS values of Table II as an example,
split the range of RSS values into 4 bins:
{(−40,−55], (−55,−70], (−70,−85], (−85,−100]}, the
fingerprint of room 1 and room 2 can be calculated as fs1
and fs2, respectively.

fs1 =

0.575 0.36 0.05 0.015
0.465 0.405 0.105 0.025

0 0.0597 0.3134 0.6269

 (3)

fs2 =

 0 0.0811 0.2973 0.6216
0.0161 0.0806 0.2742 0.629

0.6 0.315 0.075 0.01

 (4)

The second observation is the WiFi RSS values will jump
dramatically when passing a physical boundary point, such
as room entrances and corners. For example, we collect a
sequence of RSS values from three APs when walking from
room 1 to room 2, as shown in Figure. 3a. Specifically,
{t1, t2, t3, t4, t5} are collected in room 1, {t6, t7, t8} are
collected when passing the entrance, {t9, t10, t11, t12} are
collected in room 2, as shown in Figure. 3b. We find that the
”jump” range can reach 15dBm-30dBm. However, the RSS
values should change smoothly in a small continuous area
according to indoor empirical propagation model [26]. There-
fore, the RSS ”jump” characteristic when passing boundary
points can be utilized to identify subarea entrance.

Based on the two spatial-temporal characteristics of radio
signal propagation in indoor environment, we generate logical
floor graph by three stages, as shown in Figure 4. Specifically,
we first identify all physical boundary points based on the
RSS ”jump” characteristic when passing a physical boundary
point, and remove false identification using subarea fingerprint
similarity. Then, we partition a WiFi RSS trace into a virtual
trajectory according to physical boundary points, as shown in
Figure. 4. Finally, we merge all virtual trajectories to generate
logical floor graph, as shown in Figure. 5.

Identify Physical Boundary Points. Based on the obser-
vation that the WiFi RSS values jump significantly when
walking through a physical boundary point, we utilize the
fluctuation of RSS values in a small time window to identify
physical boundary points. Formally, given a WiFi RSS trace
L =< o1, ..., oi, ..., oT >, we define V ar(ti, τ) to represent
the RSS fluctuation in time window (ti − τ/2, ti + τ/2), as
shown in Equation. 5.

V ar(ti, τ) =
1

K

K∑
i=1

V ar(api) (5)

Where K is the number of WiFi APs, V ar(api) is the
variation of RSS values from api during the time window,
as calculated in Equation. 6.
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Fig. 4: Construct virtual trajectory of WiFi RSS trace

TABLE III: The variation of RSS values from three WiFi APs

time window (t1, t5) (t2, t6) (t3, t7) (t4, t8) (t5, t9) (t6, t10) (t7, t11) (t8, t12)

AP1 46.5 31.8 42.3 137.5 162.7 143.5 80.8 18.7
AP2 14.7 10.3 36.7 40.3 48.7 20.2 11.7 42.3
AP3 49.7 61.7 66.3 58.2 77.8 96.7 55.3 31.3

V ar(api) =
1

τ − 1

ti+τ/2∑
j=ti−τ/2

(rij − ri)2 (6)

Where ri is the average RSS values from api in time
window (ti − τ/2, ti + τ/2) , rij is the RSS value from api
at time tj .

If the RSS fluctuation in time window (ti − τ/2, ti + τ/2)
is significantly higher than average, we can infer the user
is walking through a physical boundary point at time ti.
Formally, we use variation coefficient α to quantify the degree
of RSS ”jump”, as shown in Equation. 7.

α =
τ × V ar(ti, τ)∑ti+τ/2
j=ti−τ/2 V ar(tj , τ)

(7)

For example, set time window size τ = 5 and varia-
tion coefficient as α = 1.3, the variation of RSS values
from three APs in Figure 3b is calculated as shown in
Table III. We further calculate the RSS fluctuation: V =
{36.97, 34.6, 48.4, 78.67, 96.4, 86.8, 49.27, 30.77} as shown
in Figure 3c, and infer the user is passing a physical boundary
point in time {t6, t7, t8}.

Remove False Identification. As mentioned above, we
identify physical boundary points according to the RSS ”jump”
characteristic. However, this method may bring some false
positives, since other factors (e.g., crowd passing and furniture
layout change, etc.) may create similar RSS ”jump”. However,
subarea fingerprint using RSS histogram is stable and robust
according to the first observation. On the basis, we remove
false positives based on the similarity of subarea fingerprint.

Formally, after obtaining time set Ω = {tp, tp+1, ..., tq} that
users may walk through physical boundary points according
to RSS ”jump” characteristic, we partition RSS trace L into
a subsequence set L = {o(t1 : tp), o(tp : tp+1), ..., o(tq−1 :
tq), o(tq : tT )}, o(tp : tp+1) is the RSS subsequence collected
from tp to tp+1. Then, we calculate the fingerprint of each
RSS subsequence as denote by F = {fp, fp+1, ..., fq}, fp
represents the fingerprint of RSS subsequence o(t1 : tp).
Finally, we use a threshold-based approach to remove false

positives, which means tp+1 is a false positive if the fingerprint
similarity between fp and fp+1 is greater than a threshold δ,
as shown in Equation. 8.

Sim(fp, fp+1) > δ (8)

Construct Virtual Trajectory. After removing false iden-
tification of physical boundary points, we repartition the RSS
trace L into a subsequence set L = {o(t1 : tp), o(tp :
tp+1), ...} and map each RSS subsequence o(tp : tp+1)
to a virtual subarea νp+1. A virtual subarea is a container
which consists of fingerprint with high similarity. Finally, we
construct the virtual trajectory of RSS trace L as traj(L) =<
νp → νp+1 → ... >, as shown in Figure. 4.

Generate Logical Floor Graph. After constructing vir-
tual trajectory for each RSS trace, we generate logical
floor graph Gf (Vf , Ef ) by merging all virtual trajectories
{traj(L1), traj(L2), ..., traj(LM )}. Specifically, the merge
process consists of two steps:

• Step1: using K-means to cluster virtual trajectories
{traj(L1), traj(L2), ..., traj(LM )} into P clusters, and
mapping cluster center πi of cluster Pi to vertex vi
of logical floor graph, as shown in Figure. 5b. In the
clustering process, using fingerprint similarity (See in
Definition 5) to measure the closeness of two virtual
subareas.

• Step2: adding an edge between vi and vj if cluster Pi
and cluster Pj is reachable, which means that there is at
least one pair of adjacent virtual subareas < νi → νj >
for ∀νi ∈ Pi and ∀νj ∈ Pj , as shown in Figure. 5c.

3) Mapping Logical Floor Graph to Physical Floor Graph:
For automatically constructing fingerprint map, we need to
associate virtual subarea νi to the corresponding subarea sj by
mapping logical floor graph to physical floor graph. Formally,
given logical floor graph Gf =< Vf , Ef > and physical floor
graph Gp =< Vp, Ep >, find a mapping function τ : Vf → Vp
for ∀e(u, v) ∈ Ef , e(τ(u), τ(v)) ∈ Ep. Obviously, this is a
subgraph isomorphism problem and can be solved by Ullmann
algorithm [27].
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Ullmann algorithm utilizes a depth-first search strategy to
enumerate all sub-graphs of Gf that matching Gp. For ease
of understanding, Figure 6c is the search tree for mapping Gf
(Figure 6a) to Gp (Figure 6b), the i-th layer of search tree
represents mapping ui of Gf to each node of Gp, a path from
root node to leaf node represents a subgraph matching between
Gp and Gf . A subgraph matching is correct if the adjacency
relationship of ui in Gf is the same as its mapping node vj
in Gp.

Since we have mapped each virtual subarea νi to the
corresponding physical subarea sj , we further compute the
fingerprint of sj according to Equation. 1. Then, we construct
subarea fingerprint map with associating sj to the calculated
fingerprint.

C. Online Localization

At the online localization part, user sends localization
request with submitting the scanned RSS record o(u, t, R),
R = {r1, r2, ..., rK}, our method estimates the subarea of
his/her current location using a Bayesian approach. According
to Bayesian inference, the posterior probability P (si|R) can
be calculated as Equation. 9.

P (si|R) =
P (R|si)P (si)

P (R)
(9)

Since the prior probability that user is located in each
subarea is equal and the RSS values from different WiFi APs

are independent, the posterior probability P (si|R) can further
be simplified as Equation. 10.

P (si|R) ∝
K∏
j=1

P (rj |si) (10)

For a given subarea si, the prior probability P (rj |si) can
be calculated by the normalized histogram of apj in this
subarea. We partioned the RSS values range into H bins when
constructing fingerprint map, suppose rj belongs to the h-
th bin, P (rj |si) is equal to fsi(h, j). Then, the localization
result for RSS record o(u, t, R), R = {r1, r2, ..., rK} can be
estimated by Equation. 11.

ŝ = argMax
si∈S

K∏
j=1

fsi(h, j) (11)

Algorithm 1 formally describes the framework of our pro-
posed method for indoor subarea localization. First, as shown
in Lines 2 ∼ 7, we generate the logical floor graph based
on two unexploited RSS characteristics in indoor space. Then,
as depicted in Line 8 ∼ 9, we construct subarea fingerprint
map by mapping logical floor graph to physical floor graph.
At the online localization part, we calculate the posterior
probability for each subarea based by Bayesian inference, as
shown in Line 11 ∼ 14. Finally, we select the subarea with
the maximum posterior probability as the localization result.

Algorithm 1 Graph-based method for indoor subarea local-
ization
Require: 1) The RSS traces set D = {L1, L2, ..., LM}; 2)

Subarea set S = {s1, s2, ..., sN}; 3) Physical floor graph
Gp; 5) user-specific threshold: τ, α, δ; 4)The RSS record
of user’s localization request: o < u, t, R > and R =
{r1, r2, ..., rK}.

Ensure: The subarea su of user’s current location
1: ∗ ∗ ∗Phase 1: Construct Fingerprint Map∗ ∗ ∗
2: for ∀Li ∈ D do
3: Identify physical boundary points according to Equa-

tion. 7.
4: Remove false identification according to Equation. 8.
5: Construct virtual trajectory traj(Li).
6: end for
7: Generate logical floor graph Gf by merging virtual tra-

jectories {traj(L1), traj(L2), ..., traj(LM )}.
8: Map logical floor graph Gf to physical floor graph Gp.
9: Construct subarea fingerprint map Y =
{(s1, fs1, ..., (si, fsi), ..., (sN , fsN ))}.

10: ∗ ∗ ∗Phase 2: online localization∗ ∗ ∗
11: for ∀(si, fsi) ∈ Y do
12: Otain the histogram bin h that rj belongs to.
13: Calculate the probability P (si|R) =

∏K
j=1 fsi(h, j)

14: end for
15: return su=arg Max

si∈S
P (si|R).



TABLE IV: The RSS sample format

001-123 124 125 126 127

RSS values timestamp phone ID boundary point flag subarea ID

TABLE V: One example of RSS sample

[001] ... [123] [124] [125] [126] [127]

-73 ... -87 2015-12-07 15:28:15 1 0 1

IV. EXPERIMENT EVALUATION

In this section, we first describe the experimental setting and
dataset for evaluation. Then, we report the results of a series
of experiments conducted to evaluate the performance of our
proposed method for indoor subarea localization, follow by
discussions.

A. Experimental Setup

Our experimental environment is a large indoor shopping
mall with 26 shops and 7 corridors. Each shop is regarded
as a subarea and corridors are partitioned to 16 subareas, so
there are 42 subareas in total. The floor plan and subarea
partition are shown in Figure 2. To evaluate our subarea
localization method, we need to record two labeled infor-
mation: the subarea and whether the location is a physical
boundary point of each WiFi RSS record. We develop a mobile
application to collect WiFi RSS samples with a sampling rate
of 1 Hz, each sample is represented by a tuple: < L, o >.
Specifically, L = {si, 0|1} is the label information of subarea
and whether is a physical boundary point, o is the scanned
RSS record from surround WiFi APs and represented by a
triple (M, t,< r1, r2, ..., rK >), M is the MAC address
of collection device and t is the collection time, r1 is the
scanned RSS values from AP1. Note that we collect RSS
information with a sampling rate of 1 Hz at the offline phase
for constructing fingerprint map, users only need to submit the
single RSS sample in online localization without continuously
collecting RSS information.

B. Experimental Datasets

We collect 117 WiFi RSS traces for experiment evaluation
by 25 participants (including students and shop workers) over
33 days, in which one RSS trace includes an average of 10
subareas and 1532 RSS records, and each subarea has been
visited by at least three participants. Statistically, there are 123
different WiFi APs and 179241 WiFi records in this dataset.
For constructing subarea fingerprint and calculating fingerprint
similarity, we extent each RSS sample to a 128 dimensional
vector, as shown in Table IV. For WiFi AP without collecting
RSS values, we set -110 dBm as default value, one example
of RSS samples is shown in Table V.

C. Experimental results

1) Identify Physical Boundary Points: Three parameters in
our algorithm need to be determined for identifying physical

TABLE VI: The accuracy of identifying physical boundary
points with different time window sizes and variation coeffi-
cients

τ
α 1.1 1.2 1.3 1.4 1.5 1.6 1.7 1.8 1.9

3 0.23 0.37 0.44 0.47 0.52 0.37 0.29 0.24 0.19
4 0.29 0.48 0.51 0.59 0.71 0.64 0.48 0.41 0.21
5 0.43 0.56 0.61 0.75 0.83 0.76 0.70 0.63 0.53
6 0.37 0.45 0.51 0.70 0.79 0.57 0.46 0.47 0.33
7 0.30 0.37 0.44 0.59 0.67 0.55 0.39 0.35 0.20
8 0.24 0.29 0.32 0.48 0.54 0.38 0.31 0.21 0.16

boundary points: time windows size τ , variation coefficient α
for recognition boundary points, user-specific threshold δ for
removing false identification. The three parameters directly
impact the accuracy of identifying physical boundary Points.
We use a cluster-based method to select δ. Specifically, we first
cluster all WiFi RSS records to N classes by KNN, N is the
num of subareas. Then, we calculate fingerprint of each class
and further obtain the similarity for each pair of fingerprints.
Finally, we select the average similarity as δ for removing
false identification.

For calculating the subarea fingerprint, we partition the
range of RSS values into 4 bins which is in line with typical
RSS quality partition [28], [29]: (1) bin-1, which represents
WiFi signal is excellent and the RSS values are in range [-
55,0]; (2) bin-2, which represents WiFi signal is good and the
RSS values are in range [-70,-55); (3) bin-3, which represents
WiFi signal is poor and the RSS values are in range [-85,-70);
(4) bin-4, which represents WiFi signal is bad and the RSS
values are in range [-100,-85).

Table VI shows the accuracy of identifying physical bound-
ary points with time window size τ and variation coefficient
α. From this table, we observe: 1) the accuracy drops sharply
when the user-specific threshold of variation coefficient α is
lower than 1.2 or greater than 1.5; 2) Set α = 1.3, the accuracy
increases with time window size increasing from 1 to 5, and
slightly decrease when the time window size is larger than 5
due to the RSS fluctuation between physical boundary point
and other location will be smaller for a large time window
size. Finally, the best performance (83%) is achieved when
α = 1.3 and τ = 5.
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Fig. 7: Parameter tuning for identifying physical boundary
points
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Fig. 8: Parameter tuning for mapping accuracy

Figure 7a and Figure 7b show the identification accuracy
as a function of variation coefficient and time window size,
respectively. From the two figures, we observe: 1) the method
using subarea fingerprint similarity can effectively remove
false recognition; 2) Set the time window size τ = 5, the ac-
curacy declines sharply when variation coefficient α is greater
than 1.6 or lower than 1.4, and achieve the best accuracy when
α = 1.5; 3) Set α = 1.5, the identification accuracy increases
with the increasing number of time window size between 3 and
5, and slightly decrease when the time window size is larger
than 5; 4) the performance of removing false identification
decreases slightly with increasing time window size, due to
the difference of RSS fluctuation between physical boundary
point and normal location will be smaller with increasing time
window size.

2) Construct Fingerprint Map: We utilize mapping accu-
racy to evaluate the performance for constructing fingerprint
map. The mapping accuracy (MA) is defined in Equation 12.
We define si as the ground truth subarea label of record oi,
ŝi is the mapping subarea label.

MA =

∑Te
i=1 I(si, ŝi)

Te
(12)

Where I(si, ŝi) is an indicator function that return 1 if ŝi =
si, Te is the test RSS records for evaluation.

Figure 8a reports the performance of constructing finger-
print map with different parameter settings. One parameter
need to be determined for constructing fingerprint map: the
cluster number Kf for generating logical floor graph. As
shown in Figure 8a, we show the performance where Kf is
in the range [30,33,...51]. From this figure, we can see that
the mapping accuracy increases gradually when Kf increases
from 30 to 42 and then drops when Kf is greater than 42,
the highest mapping accuracy is 92.3% when Kf equals to
42 (the number of physical subareas). Another observation
is the mapping accuracy for subareas located in corridor is
lower about 20 percent than rooms, which shows there no
obvious RSS ”jump” characteristic for two connected subareas
in corridor because there are no walls or physical boundary
points can significantly weakened the radio signal strength.

Figure 8b reports the performance of constructing finger-
print map as a function of number of WiFi RSS records per
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Fig. 9: The subarea localization accuracy

subarea. We can see that the mapping accuracy is relatively
stable when RSS records of each subarea is more than 500,
which shows our algorithm for constructing the fingerprint
map will converge quickly and has a low crowdsourcing
data requirement. Moreover, the performance of constructing
fingerprint map will improve with increasing collected data.

3) Localization Accuracy: We evaluate the performance of
the proposed localization method by comparing with two well-
known subarea localization methods. We first introduce the
experimental dataset and parameters setting, then detail the
comparative localization techniques. Finally, we report and
discuss the experimental results.

Dataset. We randomly select 70% RSS records of each
subarea as training dataset to construct fingerprint map, and the
rest 30% as testing dataset for evaluation localization accuracy.

Parameters Setting. Tuning algorithm parameters, such as
the time window size for identification physical boundary
points and the clusters for constructing logical floor map,
are critical to the performance of localization. According
to the experience of previous experiments, our algorithm
empirically set parameters as: {τ = 5, α = 1.5,Kf = 42},
for constructing fingerprint map.

Comparative Methods. We compare our method with the
following two methods that have been widely used in subarea
localization: (1) RSS-NN [17], which constructs fingerprint
map by manual site survey and estimates subarea using KNN
classification; (2) RSS-Bayesian [9], which also constructs
fingerprint map by site survey and estimates subarea using
Bayesian inference.

Results and Analysis. Figure 9 shows the localization accu-
racy of the three methods. It can be seen that the performance
for open subarea (subareas in the corridor) and closed subarea
(room) are significantly different for all methods. As shown
in Figure 9, the localization accuracy of rooms are more than
87% for the three methods, but lower than 85% for open
subareas in corridor, which shows RSS values of two con-
nected open subareas are too similar to distinguish. RSS-NN
achieves the best performance for both closed subarea(92%)
and open subarea(83%). Another observation is the average
localization accuracy rate is 85% for our method, which is
4% less than RSS-NN. Therefore, our method can obtain
considerable performance compared with previous methods
with labor intensive and time-consuming site survey.



V. CONCLUSION

Indoor subarea localization has attracted a few research
efforts from both academia and industry in recent years .
This paper has proposed a ready-to-deploy method for in-
door subarea localization with zero-configuration, since the
proposed method is infrastructure-free and does not need
time-consuming site survey. The main idea is to generate
logical floor graph based on two characteristics of WiFi RSS
in indoor space, and automatically construct fingerprint map
by mapping logical floor graph to physical floor graph. The
proposed method has been implemented and deployed in a
real-world shopping mall with 25 users over 33 days with an
average localization accuracy of 85%, which is competitive
to traditional approaches. The advantages on infrastructure-
free and automatically constructing fingerprint map, make our
method can be widely used in indoor environment.
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