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Abstract
In multi-label learning, each instance is associated
with a set of class labels simultaneously. This is
a prevalent problem in data analysis. Existing ap-
proaches learn from multi-label data by employing
original feature space in the discrimination process
of all class labels. However, this traditional strategy
might be suboptimal as the original feature space
exists redundant and irrelevant information, which
reduce the performance of classification. In this pa-
per, another strategy to learn from multi-label data
is studied, where reconstructed feature space is ex-
ploited to boost the classification performance. Ac-
cordingly, an intuitive yet effective algorithm named
ATOM, i.e. multi-label learning with global density
fusion mapping features, is proposed. ATOM firstly
reconstructs feature spaces specific to each and no
label by conducting clustering analysis on its be-
longing instances, and then utilizes density fusion
to excavate optimum centers from the cluster center
union, at last performs classification by querying
the reconstructed feature spaces. Comprehensive
experiments on a total of 12 benchmark data sets
clearly validate the superiority of ATOM against
other competitors.

1 Introduction
Multi-label learning is a prevalent problem in many applica-
tions of data analysis, where each data instance is assigned
with multiple class labels [Tsoumakas et al., 2009]. For exam-
ple, in image annotation [Cabral et al., 2011], [Cabral et al.,
2015], each image may contains multiple classes’ objects. In
document categorization [Rubin et al., 2012], [Schapire and
Singer, 2000], each document may belong to multiple topics.
In gene or protein function prediction [Cesa-Bianchi et al.,
2012], [Wang and Li, 2013], [Wang et al., 2015], each gene or
protein may associated with multiple functions. Multi-label
learning aims to build classifiers to handle the complex nature
of multi-label objects. Although many multi-label algorithms
have well explored the label space structure to improve the
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classification performance, only focusing on output space, it is
not satisfied. To move forward, learning effective multi-label
classifiers from feature space is important to be investigated.

During the past decades, many significant multi-label learn-
ing approaches have been proposed [Zhang and Zhou, 2014].
One straightforward strategy for multi-label learning is utiliz-
ing original feature representation of the instances to discrimi-
nated all the class labels by exploring the label space structure
(label correlations). Although this strategy has successfully de-
signed many multi-label algorithms [Zhang and Zhou, 2014],
it might be straightforward and monotonous. In other words,
it might be suboptimal as the original feature space may have
redundant or irrelevant information to disturb the classification
performance.

In this paper, we propose a novel algorithm named ATOM,
i.e. multi-label learning with global density fusion mapping
features. Briefly, ATOM learns from multi-label data with
three intuitive simplified steps. Firstly, for each and no class
label, clustering analysis is performed on its training instances,
and then we combine all the cluster centers as a union. Sec-
ondly, aimed at efficiently excavating cluster centers reducing
redundant and irrelevant information, density fusion technique
is employed to update the cluster center union. Thirdly, recon-
structed feature spaces based on distance mapping and linear
embedding is constructed by querying the final cluster center
union. Fourthly, a family of classifiers are induced where each
of them is derived from the reconstructed feature space other
than the original one.

To well evaluate the performance of the proposed approach,
comparative studies over twelve regular-scale and large-scale
data sets and six evaluation criteria have been employed in this
paper. Experimental results show that: (a) ATOM achieves su-
perior performance against several competitors of multi-label
learning algorithms; (b) ATOM’s global density fusion map-
ping features have the potential of being a general strategy to
improve multi-label learning algorithms comprising a number
of binary classifiers.

The remainder of this paper is organized as follows. We
reviews some existing approaches to multi-label learning in
Section 2. The proposed multi-label algorithm ATOM is pre-
sented in Section 3. We then report the experimental design
and results analysis in Section 4. At last, we conclude and
discusses several issues for future work in Section 5.
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2 Related Work

Recently, multi-label learning has received rapidly increased
attention from machine learning community, due to its widely
existing applications in real world. There is a rich body of
work on the research of multi-label learning. Generally, we
provide a review to the existing approaches, which can be cat-
egorized into two classes: problem transformation approaches
and algorithm adaptation approaches.

Problem transformation approaches tackle multi-label learn-
ing problems into one or more single-label learning problems
and ignore the correlations of labels. Thus, many conventional
widely existing single-label algorithms can be employed in
this area, such as such as support vector machines (SVM)
[Boutell et al., 2004], k nearest neighbor (kNN) [Zhang and
Zhou, 2007] and decision trees [Clare and King, 2001], etc.
For an unseen instance, the final prediction result is derived
from the combination of all single-label classifiers’ predic-
tions. The major merit of problem transformation approaches
lies in their operational flexibility which is combining existing
single-label algorithms and conceptual simplicity which can
boost the algorithm design. However, due to their ignorance of
label correlations, the effectiveness of these approaches might
be suboptimal.

Algorithm adaptation approaches tackle multi-label learn-
ing directly, which adapt single-label algorithms to multi-label
cases. The process of training classifiers and predicting a un-
seen instance in this kind of algorithms is similar to traditional
single-label algorithms. The major merit of algorithm adap-
tation approaches is that they can utilize the characteristics
of a multi-label learning problem in a more concise and el-
egant way. Specially, these approaches exploiting pairwise
(second-order) relationships between labels or high-order rela-
tionships among labels. For second-order approaches, they can
utilize the ranking criterion, such as support vector machines
[Elisseeff and Weston, 2001], neural networks [Loza Mencı́a
and Fürnkranz, 2008], or the co-occurrence patterns, such as
[Fürnkranz et al., 2008], [Madjarov et al., 2011]. For high
order approaches, they can impose all other class labels in-
fluences on each label or part of class labels, label subsets,
such as utilizing hypothesis of linear combination [Cheng
and Hüllermeier, 2009], nonlinear mapping [Montañés et al.,
2014], shared subspace [Ji et al., 2010], randomly selecting
the label subsets [Kumar et al., 2012], imposing graph struc-
ture to determine the specific label subsets [Zhang and Zhang,
2010], [Guo and Gu, 2011]. Obviously, algorithm adaptation
approaches could address strong label correlation to certain
extent and thus are more relatively effective than problem
transformation approaches, while would be high computation-
al complexities.

A common property of existing approaches is that they han-
dle multi-label learning problem mainly focusing on the per-
spective of output space, except LIFT [Zhang, 2011], [Zhang
and Wu, 2015], where label-specific feature are exploited to
benefit the discrimination of different class labels. For most
of them, it is unsatisfactory to utilize original feature space to
discriminate all the labels. In the next section, we will present
the ATOM algorithm which handles multi-label data by re-
constructing feature space via global density fusion mapping

Algorithm 1 The ATOM Algorithm
Inputs:
D: multi-label training set {(xi, Yi)|1 ≤ i ≤ m}
(xi ∈ X , Yi ⊂ Y,X = Rd,Y = {l1, l2, . . . , lq})

β: ratio parameter as used in Eq. (2)
L: binary learner for classifier induction
u: unseen instance (u ∈ X )

Outputs:
Y : predicted label set for u (Y ⊂ Y)

1: for t = 0 to q do
2: Form Gt based on D according to Eq. (1)
3: Perform k-means clustering on Gt, each with mt clus-

ters as defined in Eq. (2)
4: end for
5: Generate final cluster center union with Eq. (3) and Eq.

(4)
6: Create the mapping φ

′
according to Eq. (5)

7: Create the mapping φ
′′

according to Eq. (6)
8: Generate the mapping φ according to Eq. (8)
9: for k = 1 to q do

10: Form Bk according to Eq. (9)
11: Induce ck by invoking L on Bk, i.e. ck ← L(Bk)
12: end for
13: Return Y according to Eq. (10)

features.

3 The ATOM Algorithm
Given a training set D = {(xi, Yi)|1 ≤ i ≤ m} with m multi-
label training examples, where xi ∈ X is a d-dimensional
feature vector and Yi ⊆ Y is the set of relevant labels asso-
ciated with xi. Then, ATOM learns from D by taking five
elementary detailed steps, i.e. global information extraction,
distance mapping features construction, linear representation
features construction, fisher’s density fusion analysis of recon-
structed feature spaces and classification models induction.

3.1 Global Information Extraction
In the first step, ATOM aims to extract global information
which could effectively capture the specific characteristics
of each and no label, so as to facilitate its discrimination
process. Global information means information from inherent
properties of the training set with respect to each and no class
label. More specifically, for each class label lk ∈ Y and no
class label, we divide the training set with reposition into
(q + 1) parts: q positive instances sets Gk (1 ≤ k ≤ q) and
one negative instances set G0, which correspond to:

Gk = {xi|(xi, Yi) ∈ D, lk ∈ Yi}
G0 = {xi|(xi, Yi) ∈ D, Yi = ∅}

(1)

Intuitively, Gt (0 ≤ t ≤ q), defined as globality for each
label, consist of training instances with and without label lk
respectively.

To extract global information from Gt, ATOM chooses to
employ partitions of Gt, respectively, as the foundation of



reconstructed feature space. Therefore, suppose Gt is parti-
tioned into mt disjoint partitions whose centers are denoted
as Ct = {c1t , c2t , . . . , c

mt
t } (Ct ∈ Rd×mt , ct ∈ Rd). To gain

these appropriate partitions, we consider optimizing recon-
struction error, respectively, as follows:

minimize
mt∑
i=1

‖Ctsti − xt
i‖22

subject to ‖sti‖0,1 = 1,∀i = 1, . . . ,mg
t

Here, sti ∈ Rmt , xt
i ∈ Gt, and mg

t = |Gt| is the number of
positive instances for each and no class label. Here, | · | returns
the set cardinality.

However, to gain the centers of partitions, it is hard to be op-
timized due to the condition ‖s‖0,1 = 1 (0−norm, 1−norm).
As a compromise, the popular k-means clustering algorithm
is employed to handle this [Jain et al., 1999]. Although it
might be suboptimal due to the centers of initialization and
the number of iteration, but it is effective and simple. To miti-
gate potential risks brought by the class distribution problem,
ATOM sets adaptive number of clusters for Gt. In this way,
clustering information gained from instances in Gt are treated
with corresponding importance.

Specifically, the number of clusters retained for Gt is set as
follows:

mt = dβ ·mg
t e (0 ≤ t ≤ q) (2)

Here, d·e denotes the retained integer and β ∈ [0, 1] is a ratio
parameter controlling the number of clusters being retained.

3.2 Density Fusion for Centers Reduction
In the second step, ATOM aims to implement density fusion
for centers reduction. Form the above, we can define the
cluster center union C = {c1, c2, . . . , cTo} (C ∈ Rd×To , c ∈
Rd). Here, the total number of cluster centers To is computed
as follows:

To =

p∑
t=0

mt

Due to the data distribution of the training set and the con-
struction way of Gt, the centers union may exist pairwise
centers with no significant difference. Specially, this can af-
fect the performance of utilizing the centers union in the next
steps. A good approach which can drop out or fuse some
redundant centers is based on the assumptions that significant
cluster centers are surrounded by more neighbors and that
they are at a relatively large distance from any other cluster
centers. For each center, we compute two quantities: its lo-
cal density pi with instances and its fused center ci, which
replaces the center i, with any other centers. These quantities
depend on the distances d

′

ij1
(1 ≤ j1 ≤ m) between center i

and instances and distances d
′′

ij2
(1 ≤ j2 ≤ To) with density

between center i and any other centers, respectively, which are
assumed to satisfy the triangular inequality. The local density
pi of center i is defined as follows:

pi =

m∑
j1=1

χ(d
′

ij1 − dc1) (3)

Here, χ(x) = 1 if x ≤ 0 and χ(x) = 0 otherwise, and dc1 is a
cutoff distances. Basically, pi is equal to the number of points
that are closer than dc1 to center i.

To compute the fused center ci for center i, first of all, we
define the minimize density pmz

i for center i as follows:

pmz
i = min{pmz

j2 · χ(d
′′

ij2 − dc2) · χ(pj2 − pi)} (4)

And then we regard the center cj2 according to pmz
i as the

temporary fused center to replace center i. Finally, iteration for
previous step until to the convergence, we obtain the final fused
center ci for each center. We gain the updated final cluster
center union C = {c1, c2, . . . , cT

′
o} (C ∈ Rd×T

′
o , c ∈ Rd).

3.3 Distance Mapping
In the third step, ATOM aims to construct distance mapping
features. Intuitively, cluster center union generated by the
k-means algorithm and density fusion method characterize
the underlying structure of the original feature space, which
can be served as appropriate building blocks (prototypes) for
the construction of global features. Here, a mapping φ

′
:

X → Z ′
from the original d-dimensional input space X to

the T
′

o-dimensional distance mapping feature space is created
as follows:

φ
′T (x) = [d1, d2, . . . , dT

′
o ] (5)

Where
di = ‖x− ci‖2 (1 ≤ i ≤ T

′

o)

Here, we employ the Euclidean distance (2− norm) as the
metric to measure two vectors in this paper.

3.4 Linear Embedding
In the forth step, ATOM aims to construct linear embedding
features. Conceptually, the retained cluster centers can also
be utilized as the basis of linear reconstructed feature space.
Specifically, each instance can be represented as the linear
weighted each center in the cluster center union. Here, a
mapping φ

′′
: X → Z ′′

from the original d-dimensional input
space X to the T

′

o-dimensional linear representation feature
space is created as follows:

φ
′′T (x) = [w1, w2, . . . , wT

′
o ] (6)

Here, wi
k (1 ≤ i ≤ T

′

o) is the reconstructed weight for each
center in the cluster center union.

Accordingly, the problem above can be defined as a solution
problem as follows:

minimize
m∑
i=1

‖xi −
T

′
o∑

j=1

wj
i c

j‖22

subject to
T

′
o∑
j

wj
i = 1,∀j = 1, . . . , T

′

o

(7)

Here, cj is the j-th column of cluster center union C.



Table 1: Characteristics of The Experimental Data Sets

Data set |S| dim(S) L(S) F (S) LCard(S) LDen(S) DL(S) PDL(S) Domain URL?

emotions 593 72 6 numeric 1.869 0.311 27 0.046 music URL 1
genbase 662 1185 27 nominal 1.252 0.046 32 0.048 biology URL 1
image 2000 294 5 numeric 1.236 0.247 20 0.010 images URL 3
scene 2407 294 6 numeric 1.074 0.179 15 0.006 images URL 1
yeast 2417 103 14 numeric 4.237 0.303 198 0.082 biology URL 3
slashdot 3782 1079 22 nominal 1.181 0.054 156 0.041 text URL 2

corel5k 5000 499 374 nominal 3.522 0.009 3175 0.635 images URL 1
rcv1(subset1) 6000 944 101 numeric 2.880 0.029 1028 0.171 text URL 1
rcv1(subset2) 6000 944 101 numeric 2.634 0.026 954 0.159 text URL 1
corel16k(sample1) 13766 500 153 nominal 2.859 0.019 4803 0.349 images URL 1
corel16k(sample2) 13761 500 164 nominal 2.882 0.018 4868 0.354 images URL 1
mediamill 43907 120 101 numeric 4.376 0.043 6555 0.149 video URL 1
? URL 1: http://mulan.sourceforge.net/datasets.html

URL 2: http://meka.sourceforge.net/#datasets
URL 3: http://cse.seu.edu.cn/people/zhangml/Resources.htm#data

3.5 Models of Inducing
In the fifth step, ATOM aims to induce a family of q classi-
fiers {c1, c2, . . . , cq} with the generated global density fusion
mapping features. From the above, a mapping φ : X → Z
from the original d-dimensional input space X to the 2T

′

o-
dimensional reconstructed feature space is created as follows:

φT (x) = [φ
′T (x), φ

′′T (x)] (8)

Here, φ(x) is the global density fusion mapping features for
each instances which is the coalition of distance mapping and
linear embedding features.

For each class label lk ∈ Y , a new binary training set Bk
withm examples is reconstructed from the original multi-label
training set D and the identical mapping φ as follows:

Bk = {(φ(xi), Yi(k)|(xi, Yi) ∈ D)} (9)

Here, Yi(k) = +1 if lk ∈ Yi; Otherwise, Yi(k) = −1. Based
on Bk any binary learner L can be applied to induce a classifier
ck : Z → R for lk.

Give an unseen instance u ∈ X , its associated label set is
predicted as

Y = {lk|ck(φ(u)) > 0, 1 ≤ k ≤ q} (10)

In other words, classification model fk corresponding to each
label lk can be viewed as the composition of ck and φ, i.e.
fk(u) = [ck ◦ φ](u) = ck(φ(u)).

3.6 Illustration
Algorithm 1 illustrates the complete description of ATOM.
Given the multi-label training examples, ATOM firstly con-
structs global density fusion mapping features (steps 1 to 8);
After that, a family of q binary classifiers are induced based on
the constructed features successively (steps 9 to 12); Finally,
the unseen instance is fed to the learned models for prediction
(step 13).

In terms of constructing global density fusion mapping
features, the process shown in Algorithm 1 (steps 1 to 8)
only represents an intuitive high-efficient implementation and
does not mean it’s the unique possible way to construct them.

Actually, the mapping φ can be implemented in numerous
alternative ways, such as setting different values of β, dc1
and dc2, utilizing distance of other types for d(·, ·) instead of
the Euclidean metric, etc. In terms of classifiers induction,
the process shown in Algorithm 1 (steps 9 to 12) is a typical
binary relevance approach. The major difference lies that
ATOM induces the classifiers with the reconstructed feature
space instead of the original feature space.

4 Experiments
4.1 Experimental Data Sets
For the experimental part, we have chosen twelve well-known
multi-label data sets. These data sets are from various appli-
cation domains and provided with multiple characteristics of
multi-label. Table 1 summarizes detailed description of all
multi-label data sets used in the experiments. Simply ordered
by the number of example, six regular-scale data sets (first
part, less than 5000) as well as six large-scale data sets (second
part, equal to or more then 5000) are included. Furthermore,
dimensionality reduction is performed on two text data sets
with huge number of features which is more than 47000, in-
cluding rcv1(subset 1) and rcv1(subset 2). Specifically, the
top 2% features with highest document frequency are retained.
Due to the diversity and characteristics of the employed da-
ta sets, experimental result analysis reported in this paper is
quite comprehensive which aims at providing a solid basis for
assessing the ATOM’s effectiveness.

For each data set S = {(xi, Yi)|1 ≤ i ≤ p}, we use |S|,
dim(S), L(S) and F (S) to denote the number of examples,
number of features, number of possible class labels, and fea-
ture type for S respectively. In addition, several other multi-
label properties [Tsoumakas et al., 2009], [Read et al., 2011]
are denoted as:

• LCard(S) = 1
p

∑p
i=1 |Yi| : label cardinality which mea-

sures the average number of labels per example;

• LDen(S) = LCard(S)
L(S) : label density which normalizes

LDen(S) by the number of possible labels;



Table 2: Predictive Performance of Each Comparing Algo-
rithm (mean ± std. Deviation) on the Six Regular-Scale Data
Sets

Comparing
algorithm

Average precision↑
emotions genbase image scene yeast slashdot

ATOM 0.8311±0.0298 0.9983±0.0031 0.8309±0.0163 0.8931±0.0153 0.7742±0.0128 0.7079±0.0180
LIFT 0.8237±0.0285 0.9985±0.0027 0.8248±0.0164 0.8869±0.0171 0.7693±0.0112 0.6957±0.0146
BR 0.8182±0.0306 0.9983±0.0030 0.7983±0.0169 0.8463±0.0180 0.7596±0.0127 0.6832±0.0162
MLkNN 0.8009±0.0274 0.9910±0.0055 0.7902±0.0131 0.8669±0.0152 0.7632±0.0171 0.5004±0.0166
ECC 0.8213±0.0300 0.9979±0.0041 0.7922±0.0198 0.8564±0.0115 0.7525±0.0122 0.6686±0.0199
Comparing
algorithm

Macro-averaging AUC↑
emotions genbase image scene yeast slashdot

ATOM 0.8639±0.0320 0.8694±0.1132 0.8654±0.0186 0.9503±0.0096 0.6998±0.0166 0.7236±0.0278
LIFT 0.8535±0.0339 0.8684±0.1122 0.8597±0.0195 0.9488±0.0094 0.6913±0.0112 0.7558±0.0397
BR 0.8421±0.0296 0.8692±0.1125 0.8316±0.0195 0.9157±0.0110 0.6437±0.0114 0.7433±0.0434
MLkNN 0.8443±0.0261 0.8647±0.1099 0.8309±0.0177 0.9337±0.0087 0.6845±0.0152 0.5306±0.0222
ECC 0.8361±0.0251 0.8656±0.1136 0.8318±0.0181 0.9337±0.0089 0.6700±0.0119 0.7436±0.0436
Comparing
algorithm

Hamming loss↓
emotions genbase image scene yeast slashdot

ATOM 0.1748±0.0159 0.0015±0.0009 0.1524±0.0095 0.0755±0.0056 0.1879±0.0060 0.0387±0.0020
LIFT 0.1849±0.0154 0.0024±0.0015 0.1550±0.0095 0.0782±0.0055 0.1909±0.0060 0.0387±0.0010
BR 0.1922±0.0153 0.0005±0.0004 0.1768±0.0095 0.1038±0.0078 0.1990±0.0050 0.0399±0.0007
MLkNN 0.1920±0.0241 0.0051±0.0023 0.1706±0.0070 0.0850±0.0073 0.1931±0.0079 0.0519±0.0005
ECC 0.1874±0.0226 0.0005±0.0004 0.1783±0.0174 0.0942±0.0064 0.2002±0.0068 0.0413±0.0025
Comparing
algorithm

Coverage↓
emotions genbase image scene yeast slashdot

ATOM 0.2765±0.0306 0.0130±0.0048 0.1635±0.0100 0.0625±0.0077 0.4457±0.0102 0.1031±0.0085
LIFT 0.2805±0.0467 0.0135±0.0007 0.1684±0.0337 0.0647±0.0108 0.4538±0.0324 0.1048±0.0048
BR 0.2849±0.0475 0.0129±0.0006 0.1877±0.0375 0.0888±0.0148 0.4588±0.0328 0.1094±0.0050
MLkNN 0.2965±0.0494 0.0162±0.0008 0.1952±0.0390 0.0785±0.0131 0.4456±0.0318 0.1873±0.0085
ECC 0.2789±0.0466 0.0132±0.0007 0.1940±0.0388 0.0816±0.0136 0.4568±0.0326 0.1244±0.0057
Comparing
algorithm

One-error↓
emotions genbase image scene yeast slashdot

ATOM 0.2226±0.0484 0.0000±0.0000 0.2580±0.0334 0.1828±0.0252 0.2168±0.0180 0.3815±0.0221
LIFT 0.2310±0.0489 0.0000±0.0000 0.2680±0.0323 0.1940±0.0277 0.2226±0.0125 0.4016±0.0159
BR 0.2377±0.0552 0.0015±0.0047 0.3085±0.0293 0.2551±0.0289 0.2226±0.0122 0.4170±0.0212
MLkNN 0.2766±0.0470 0.0121±0.0119 0.3205±0.0215 0.2239±0.0302 0.2400±0.0178 0.6386±0.0202
ECC 0.2478±0.0535 0.0015±0.0047 0.3175±0.0337 0.2426±0.0235 0.2191±0.0102 0.4268±0.0257
Comparing
algorithm

Ranking loss↓
emotions genbase image scene yeast slashdot

ATOM 0.1357±0.0313 0.0008±0.0015 0.1373±0.0118 0.0584±0.0100 0.1607±0.0093 0.0883±0.0084
LIFT 0.1412±0.0289 0.0011±0.0022 0.1424±0.0144 0.0611±0.0107 0.1649±0.0093 0.0897±0.0070
BR 0.1453±0.0281 0.0008±0.0020 0.1660±0.0157 0.0897±0.0105 0.1715±0.0082 0.0932±0.0067
MLkNN 0.1599±0.0294 0.0028±0.0039 0.1774±0.0162 0.0769±0.0078 0.1654±0.0096 0.1727±0.0097
ECC 0.1415±0.0319 0.0010±0.0022 0.1735±0.0196 0.0807±0.0056 0.1758±0.0080 0.1072±0.0098

Table 3: Predictive Performance of Each Comparing Algo-
rithm (mean ± std. Deviation) on the Six Large-Scale Data
Sets

Comparing
algorithm

Average precision↑
corel5k rcv1-s1 rcv1-s2 corel16k-s1 corel16k-s2 mediamill

ATOM 0.2910±0.0065 0.6054±0.0044 0.6331±0.0032 0.3049±0.0015 0.2998±0.0041 0.7044±0.0008
LIFT 0.2880±0.0048 0.5918±0.0049 0.6180±0.0047 0.3083±0.0024 0.3076±0.0020 0.7000±0.0021
BR 0.2789±0.0038 0.5511±0.0035 0.5857±0.0024 0.2827±0.0052 0.2766±0.0022 0.5089±0.0020
MLkNN 0.2437±0.0038 0.4502±0.0143 0.4772±0.0083 0.2803±0.0023 0.2727±0.0040 0.6757±0.0018
ECC 0.2528±0.0048 0.5601±0.0052 0.5965±0.0038 0.2925±0.0033 0.2883±0.0026 0.6155±0.0177
Comparing
algorithm

Macro-averaging AUC↑
corel5k rcv1-s1 rcv1-s2 corel16k-s1 corel16k-s2 mediamill

ATOM 0.5765±0.0069 0.8977±0.0081 0.8954±0.0090 0.6858±0.0029 0.7000±0.0084 0.7093±0.0201
LIFT 0.6058±0.0168 0.9018±0.0109 0.8937±0.0130 0.6966±0.0048 0.7116±0.0033 0.6395±0.0002
BR 0.5333±0.0180 0.8732±0.0143 0.8803±0.0065 0.6527±0.0034 0.6669±0.0083 0.5085±0.0001
MLkNN 0.4629±0.0069 0.6713±0.0079 0.6779±0.0189 0.5637±0.0027 0.5711±0.0053 0.5097±0.0001
ECC 0.5517±0.0153 0.8607±0.0145 0.8705±0.0097 0.6548±0.0041 0.6648±0.0039 0.5237±0.0002
Comparing
algorithm

Hamming loss↓
corel5k rcv1-s1 rcv1-s2 corel16k-s1 corel16k-s2 mediamill

ATOM 0.0093±0.0000 0.0255±0.0001 0.0223±0.0002 0.0187±0.0000 0.0175±0.0000 0.0313±0.0004
LIFT 0.0095±0.0001 0.0261±0.0002 0.0228±0.0002 0.0188±0.0000 0.0176±0.0000 0.0308±0.0003
BR 0.0123±0.0001 0.0266±0.0002 0.0233±0.0002 0.0187±0.0000 0.0175±0.0000 0.0311±0.0003
MLkNN 0.0096±0.0000 0.0276±0.0005 0.0244±0.0002 0.0188±0.0000 0.0176±0.0000 0.0332±0.0003
ECC 0.0145±0.0001 0.0269±0.0002 0.0240±0.0002 0.0188±0.0000 0.0177±0.0001 0.0383±0.0011
Comparing
algorithm

Coverage↓
corel5k rcv1-s1 rcv1-s2 corel16k-s1 corel16k-s2 mediamill

ATOM 0.2692±0.0124 0.1228±0.0012 0.1174±0.0029 0.3018±0.0020 0.2939±0.0031 0.1790±0.0038
LIFT 0.2955±0.0008 0.1285±0.0086 0.1250±0.0022 0.3280±0.0021 0.3169±0.0037 0.1953±0.0017
BR 0.2908±0.0008 0.1473±0.0135 0.1376±0.0035 0.3190±0.0021 0.3106±0.0019 0.5696±0.0037
MLkNN 0.3068±0.0008 0.2342±0.0091 0.2270±0.0044 0.3412±0.0022 0.3342±0.0020 0.1810±0.0018
ECC 0.2969±0.0008 0.1486±0.0153 0.1395±0.0058 0.3264±0.0021 0.3180±0.0019 0.2394±0.0024
Comparing
algorithm

One-error↓
corel5k rcv1-s1 rcv1-s2 corel16k-s1 corel16k-s2 mediamill

ATOM 0.6554±0.0097 0.4020±0.0061 0.3981±0.0065 0.6872±0.0046 0.6810±0.0101 0.1556±0.0050
LIFT 0.6874±0.0192 0.4149±0.0079 0.4107±0.0026 0.6973±0.0076 0.6857±0.0081 0.1483±0.0036
BR 0.7700±0.0074 0.4519±0.0080 0.4393±0.0034 0.7229±0.0129 0.7215±0.0068 0.2426±0.0057
MLkNN 0.7442±0.0059 0.5730±0.0184 0.5452±0.0098 0.7384±0.0075 0.7473±0.0047 0.1672±0.0038
ECC 0.7136±0.0092 0.4543±0.0096 0.4269±0.0084 0.7030±0.0113 0.6970±0.0108 0.2023±0.0387
Comparing
algorithm

Ranking loss↓
corel5k rcv1-s1 rcv1-s2 corel16k-s1 corel16k-s2 mediamill

ATOM 0.1148±0.0056 0.0488±0.0008 0.0486±0.0012 0.1534±0.0014 0.1488±0.0019 0.0528±0.0013
LIFT 0.1232±0.0039 0.0513±0.0047 0.0518±0.0010 0.1656±0.0037 0.1595±0.0016 0.0576±0.0005
BR 0.1241±0.0047 0.0633±0.0086 0.0617±0.0016 0.1632±0.0020 0.1581±0.0015 0.1499±0.0011
MLkNN 0.1346±0.0047 0.1136±0.0052 0.1139±0.0021 0.1761±0.0018 0.1705±0.0022 0.0544±0.0008
ECC 0.1260±0.0038 0.0606±0.0064 0.0571±0.0021 0.1645±0.0012 0.1587±0.0016 0.0762±0.0033

• DL(S) = |{Y |(x, Y ) ∈ S}| : distinct label sets which
counts the number of distinct label combinations in S;

• PDL(S) = DL(S)
|S| : proportion of distinct label sets

which normalizes DL(S) by the number of example.

4.2 Evaluation Criteria
To assess the performance of multi-label algorithms from vari-
ous aspects is essential to consider multiple and contrasting
evaluation criteria due to the characteristics of multi-label
learning. Thus six popular evaluation criteria are employed,
i.e. average precision, macro-average AUC, hamming loss,
coverage, one-error and ranking loss. For a detailed descrip-
tion of these criteria, refer to [Zhang and Zhou, 2014], [Zhang
and Wu, 2015]. In essence, all the six criteria produce their
values in the interval [0, 1], with higher values indicating better
performance for average precision and macro-averaging AUC
and worse performance for hamming loss, coverage, one-error
and ranking loss.

4.3 Multi-label Classifiers
To evaluate the proposed ATOM algorithm, we compare the
following four multi-label learning algorithms against ours
in the experiments: (1) the label specific features approach,
denoted as LIFT [Zhang, 2011], [Zhang and Wu, 2015], which
constructs label specific features by utilizing clustering tech-
nique on positive and negative instances, and then by querying
the clustering results, solves independent binary classification
problems for training and testing; (2) the binary relevance
approach, denoted as BR [Boutell et al., 2004], which decom-
poses the multi-label learning problem into independent binary
classification problems; (3) the multi-label k nearest neighbors
approach, denoted as MLkNN [Zhang and Zhou, 2007], which
adapts k nearest neighbors method to handle the multi-label
data; (4) the ensemble of classifier chains approach, denoted
as ECC [Read et al., 2011], which transforms the multi-label
learning problem into a chain of binary classification problems
and employs the ensemble learning technique to deal with the
classifier chains.

4.4 Experimental Setup
We conduct experiments using ten-fold cross validation on
the regular-scale data sets. For the large-scale data sets, we
conduct this strategy which is 50% examples randomly sam-
pled as training set and the rest as test set. Then the process is
repeated for ten times. For fair comparison, LIBSVM (with
linear kernel) [Chang and Lin, 2011] is employed for ATOM,
LIFT, BR and ECC as the binary classifier. For ATOM, the
ratio β is set to 0.2 and the dc1 and dc2 depend on the order of
magnitudes of number of pairwise distances; For LIFT, the ra-
tio is set to 0.1; For MLkNN, the number of nearest neighbors
is set to 10; For ECC, the ensemble size is set to be 10 and the
sampling ratio is set to be 50%.

4.5 Results Analysis
The detailed experimental results of each comparing algorithm
with six evaluation criteria on the regular-scale and large-scale
data sets are demonstrated in Table 2 and Table 3 respectively.
For each evaluation criterion, ”↑” indicates ”the smaller the
better” while ”↓” indicates ”the larger the better”. Further-
more, the bold-faced values represent the best performance
among all the five comparing algorithms. To visually present
the relative performance of ATOM and other comparing al-
gorithms, Fig. 1 illustrates the performance ranking of each



(a) Average precision (b) Macro-averaging AUC (c) Hamming loss

(d) Coverage (e) One-error (f) Ranking loss

Figure 1: Comparison of ATOM against other comparing algorithm under each evaluation criterion. Each data set connects all
the algorithms with different color curves simultaneously and the color curves denote the performance ranking of each algorithm
corresponding to identical data set.

algorithm corresponding to data sets on each evaluation mea-
sure. In each subfigure, each data set connect all the all the
algorithms with different color curves simultaneously and the
color curves denote the performance ranking of each algorithm
corresponding to identical data set.

Across all the 72 configurations (i.e. 12 data sets× 6 criteria
as shown in the two tables and one figure), ATOM ranks in first
place among the five comparing algorithms at 81.9% cases.
In detail, for the regular-scale data sets, ATOM ranks first in
86.1% cases. And for the large-scale data sets, ATOM ranks
first in 77.8% cases. Furthermore, ATOM ranks first in in
79.2% cases on the data sets with spares features (genbase,
slashdot, rcv1-s1 and rcv1-s2). On the other hand, ATOM
ranks first in more than 83.3% cases on the data sets with dense
features (emotions, image, scene, yeast, corel5k, corel16k-s1,
corel16k-s2 and mediamill). These results indicate that ATOM
tends to work better in application domains with regular-scale
data sets and dense feature representation than those with
sparse feature representation.

As shown in Table 2, Table 3 and Fig. 1, ATOM achieves
superior performance against BR in terms of each evalua-
tion criterion. Because BR can be regarded as ATOM which
keeps the original feature vector untouched, the superior per-
formance of ATOM against BR clearly verifies the effective-
ness of employing global density fusion mapping features.
ATOM achieves comparable performance against LIFT too.
Because LIFT employs the label specific features, this clearly
verifies the superior performance of global information. Fur-
thermore, ATOM significantly outperforms MLkNN and ECC.
This clearly verifies the effectiveness of reconstructed feature
space.

5 Conclusion
The major contribution of our work is to utilize global density
fusion mapping features for multi-label learning, which sug-
gests a promising direction for learning from multi-label data.
Experiments across the largest number of benchmark data sets
up to date show that: (a) ATOM achieves highly competi-



tive performance against other competitors; (b) Multi-label
learning algorithms comprising binary classifiers might be
improved by utilizing global density fusion mapping features.

In the future, it is interesting to design other global density
fusion mapping features generation strategies, incorporate
global density fusion mapping features into other multi-label
learning algorithms, and improve ATOM by consider label
correlations into the global density fusion mapping features
construction step.
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