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Modeling Latent Relation to Boost Things
Categorization Service
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Abstract—While it is well understood that the Internet of things (IoT) offers the capability of integrating the physical world and the
cyber world, it also presents many significant challenges with numerous heterogeneous things connected and interacted, such as how
to efficiently annotate things with semantic labels (i.e., things categorization) for searching and recommendation. Traditional ways for
things categorization are not effective due to several characteristics (e.g., thing’s text profiles are usually short and noise, things are
heterogeneous in terms of functionality and attributes) of IoT. In this paper, we develop a novel things categorization technique to
automatically predict semantic labels for a given thing. Our proposed approach formulates things categorization as a multi-label
classification problem and learns a binary support vector machine classifier for each label to support multi-label classification. We
extract two types of features to train classification model: 1) explicit feature from thing’s profiles and spatial-temporal pattern; 2) implicit
feature from thing’s latent relation strength. We utilize a latent variable model to uncover thing’s latent relation strength from their
interaction behaviours. We conduct a comprehensive experimental study based on three real datasets, and the results show fusing
thing’s latent relation strength can significantly boost things categorization.

Index Terms—Things Categorization, Multi-label classification, Interaction behaviours, Latent variable model, Internet of things
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1 INTRODUCTION

R ECENT years have witnessed numerous physical things (e.g,
mobile phones, wallets and key-chains) embedded with

sensing, communication and computing capabilities are being
inter-connected to form an Internet of things, which is mainly
attributed to the rapid advances in identification technologies and
micro sensors, such as radio frequency identification (RFID), self-
powered sensors, and nano technology sensors. Physical things
embedded with smart sensors are seamlessly integrated into the
information network, people can query and change their state
and associated information over the Internet. Interconnection of
physical things providing the ability to share information across
platforms through a unified framework, developing a common
operating picture for enabling innovative applications, such as
supply chain management, smart healthcare and intelligent trans-
portation. Meanwhile, the IoT also presents a few significant
challenges with increasing heterogeneous things participate in
sensing and communicating, such as how to efficiently annotate
these heterogeneous things with semantic labels for browsing,
searching and recommendation. Traditional ways (for a review see
Section 2) for things categorization will suffer serious challenges
due to unique characteristics in IoT:

– Text-based categorization methods [33], [36], [37] cannot
achieve satisfactory performance as the text profiles of
things are usually short and noise in IoT. Additionally,
labels are usually expensive and unlabelled things are
abundant in IoT.
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– Semantic-based categorization methods [1], [6], [7], [8],
[23] are not effective as they require time-consuming
preparation of prior knowledge, such as manually defining
the descriptions of things and their corresponding concepts
under a uniform format like Resource Description Frame-
work (RDF).

– Link-based categorization methods [19], [22], [30] are
infeasible in IoT since the connection of things in IoT
are usually implicit, unlike people has observable links
in social network or web-pages are linked by universal
resource locator (URL) in Internet.

Fortunately, the interaction behaviours of things can be easily
recorded and obtained using ubiquitous sensing technologies,
such as RFID and sensor readings. These interaction behaviours,
which embedded with rich spatial-temporal information and
implicitly imply the regularities of users, provide us a new
approach to uncover the latent connection of things. Things are
discrete without explicit connection in IoT, but human and things
will interact in daily activities, and these interactions can provide
rich information (e.g., activity, location and time) for uncovering
thing’s implicit connection. Our proposed approach can derive
the latent relation strength among things from their interaction
behaviour and further form a relation graph of things, where
their implicit connections can be revealed. This kind of relation
analysis can boost many valuable services in IoT, such as:

Things clustering, which aims to cluster heterogeneous things
into different groups according to a predefined proximity measure.
The key of things clustering is designing proximity metric to
measure the similarity of things. However, traditional ways based
on text features or thing’s attributes are not effective as the unique
characteristics in IoT (e.g., the text descriptions of things are
usually incompleted, things are heterogeneous in term of different
attributes thus cannot be represented in a uniform space).
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The relation analysis of things can enhance the performance
of things clustering in terms of things tend to interact with other
things with similar characteristics according to [40]. Therefore,
things clustering can be solved by some graph-based algorithms
(e.g., community detection algorithm [38]) based on thing’s rela-
tion graph.

Things Categorization, which aims to automatically predict
the labels for a given thing. Millions of things connected and
interacted in the IoT will result in serious challenges for things
management and network scaling, while effectively things cat-
egorization is an essential step to cope with these challenges.
For instance, in education scenario, things categorization enables
learners to get rich data and further improve their knowledge [7].
As mentioned earlier, text-based models [33], [37] or link-based
models [22], [30] are not effective for things categorization in the
IoT.

Fortunately, things interactions are not completely random as
human daily activities usually follow a regular pattern [34], such
as people usually cook in the kitchen and eat breakfast at 7:00
am-9:00 am. Therefore, things relation analysis based on their
interactions can boost things categorization since different things
used by the same person at the same location or time may be
similar (e.g., having the same label).

Context-aware Activity Recognition, which aims to recog-
nize human activities (e.g., eating, cooking and toileting) from
sensor readings. Existing approaches usually use the sensor values
of things as input to train a probabilistic model to find the most
likely sequence of activities (e.g., Hidden Markov Model [32]
and support vector machine [25]). However, these methods are
inefficient when human activities are performed in a complex
situation (i.e., interleaved or concurrent) [12].

Complex human activities can be defined as a task that several
things interact at specific location at a certain timestamp (see in
Table 2), and then can be modeled as a 3-dimensional tensor:
Activity ∈ RT hings×Location×Time. After modeling the sensor read-
ings with 3-dimensional tensor by deriving thing’s latent relation
strength from their interaction behaviours, activity recognition can
be solved by finding a matching scheme to measure the similarity
of two tensors.

In this paper, we present a novel things categorization tech-
nique for the IoT to automatically predict the labels for a given
thing. We formulate things categorization as a multi-label classifi-
cation problem and learn a binary SVM classifier for each label in
the label space to support multi-label classification. We extract two
types of features to train classification model: 1) explicit feature
from thing’s profiles and spatial-temporal pattern; 2) implicit
feature from similar things in terms of thing’s latent relation
strength. The principle underlying our approach for modeling
thing’s latent relation strength is the homophily theory in thing’s
interaction [39], [40], which suggests the stronger the relation the
higher likelihood that a certain type of interaction will take place
between a pair of things. In this way, we consider that the latent
relation strength directly impacts the interaction frequency of a
pair of things, and further model the latent relation strength as a
hidden cause of their interaction frequency.

The remainder of the paper is organized as follows: Section 2
surveys related work about things categorization in IoT. Section 3
describes the proposed approach for modelling the latent relation
strength of things in detail. Section 4 demonstrates how to utilize
the learnt latent relation strength to boost things categorization.
Section 5 reports and discusses the experimental results. Finally,

we present our conclusion and future work in section 6.

2 RELATED WORK

In this section, we survey related works about things categorization
and discuss how these works differ from our study.

Text-based Categorization. IoT things usually have short
and noisy text descriptions, such as thing’s name, manufacturer
and instruction manual. Thus text-based methods can be used to
label things, which firstly extract text-based features (e.g., term
frequency and information gain) and then perform categorization
with classifiers. To overcome some limitations of traditional text
features, the work [33] proposed a novel feature selection method
based on term frequency and T-test for text categorization, and
[37] utilized the compactness of the appearances of the word
and the position of the first appearance of the word to construct
distributional features for text categorization.

Since assigning labels to large samples is costly and time-
consuming, the work [36] proposed a web-assisted text categoriza-
tion framework, which firstly extracted important keywords from
the available labelled documents to form the queries, then utilized
search engines to retrieve relevant documents for semi-supervised
categorization. Unfortunately, this approach is impractical for
things categorization in IoT as there is few information about
physical things in Internet nowadays.

Semantic-based Categorization. A few studies ( [1], [6], [7],
[8], [23]) have been proposed to label things using semantic web
technologies. The idea behind semantic-based categorization is
that firstly define a metadata model to describe all the cyber-
physical characteristics (e.g., geophysical, functional and non-
functional) of a thing, then use ontology language description
logic to label physical things in terms of different dimensions
(e.g.,spatial, temporal and thematic).

To enrich the description of thing’s characteristics for ed-
ucational purpose, the work [7] exploited shared vocabularies
for categorization by three steps: 1) defining a data model for
representing Point-of-Interest; 2) mapping the relational database
to the data model; 3) generating RDF data and enriching with
links to related data. The work [8] proposed an IoT semantic
categorization framework, which representing the model data as
linked data and associating with the existing data on the Web
(e.g., Linked Open Data). The work [6] proposed a hierarchi-
cal context model based on ontology to label things and their
contextual relationships. The work [23] further utilized Time-of-
Arrival for thing’s geospatial categorization in IoT. The drawbacks
of semantic-based categorization methods include: 1) The time-
consuming preparation of prior knowledge, such as defining the
descriptions of things and their corresponding concepts under a u-
niform format like RDF; 2) Most of semantic-based categorization
methods are based on problem-solving principle, which defines
the ontology related to a certain task (e.g., home energy [1] and
education purpose [7]) or activities thus are lack of scalability.

Link-based Categorization. IoT things are implicitly con-
nected in a network or graph by some attributes (e.g., location,
owner and manufacturer), thus link-based methods [19], [22], [30],
[31] can leverage these connections to improve categorization
performance. For example, the work [35] labelled things by
modelling things as web tables with headers and cell values.
More exactly, this categorization process includes three steps:
1) querying the background knowledge base sources to generate
initial ranked lists of candidate assignments for schemas, content
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values and relations between schemas; 2) using a probabilistic
graphical model to capture the correlation between schemas,
content values and schema relations to make class, entity and
relation assignments; 3) producing linked data triples after the
mapping is complete and performing things categorization using
link-based methods [19].

More recently, increasing studies [2], [4], [17] aimed at giving
social-like capabilities to the things in IoT, namely social internet
of things (SIoT) based on the notion of social relationships among
things. In SIoT [2], things are able to interact with other things in
an autonomous way with respect to the owners, and can easily
crawl the IoT made of billions of things to discover services
and information in a trust-oriented way. For example, SIoT [2]
described four kinds of relationships for things in IoT: co-location
relationship, co-work relationship, co-owner and social relation-
ship. Lilliput [4] further extended the SIoT by integrating things
as well as online social networks, which is an ontology-based
platform by fusing online social networks and things as a social
graph. Socialite [17] utilized semantic model for the SIoT, which
includes device types, capabilities, users, relationships and rules
leveraging such models. Therefore, many link-based methods [22],
[30] can be utilized to label things by modeling heterogeneous
things and their relationships with a graph. Unfortunately, link-
based methods are ineffective for things categorization in IoT
due to 1) acquiring a sufficient number of labelled things to
enable accurate learning for link-based categorization usually
are expensive or impractical; 2) SIoT may ignore some implicit
factors that may influence categorization performance (such as
usefulness and availability), for instance, Microwave and Toaster
may have different manufacture or owner, but both they are kitchen
appliances and can heat foods.

To our best knowledge, only several studies [39], [40] focus
on boosting things categorization by exploring regularities in
the interactions between human and things. These approach-
es discovered the latent relation strength of things by mining
three dimensional information of the interaction behaviours: user,
temporarily and spatiality. However, we find these approaches
mentioned above fail to model thing’s latent relation strength
and their interaction behaviours by analyzing three real datasets,
for example, we observe that the interaction probability of two
things and their history interaction frequency follows a roughly
power law distribution. Additionally, these studies infer thing’s
relation strength without considering their attributes profiles (e.g.,
the manufacturer, type and capability).

Our proposed approach differs from the above-mentioned
works in the following three aspects: 1) we regard things cat-
egorization as a multi-label classification problem and learn a
binary SVM classifier for each label in the label space to perform
things categorization; 2) we extract two types of features to
train SVM classifier, one is explicit features from thing’s text
profiles and spatial-temporal pattern, another is implicit features
from thing’s latent relation strength; 3) we derive thing’s latent
relation strength by jointly considering thing’s profile similarities
and interaction behaviours with a latent variable model. Recently,
latent variable model has been widely used in a few studies on
text mining. For instance, latent semantic analysis (LSA) [18]
supposed that there is an underlying semantic structure in text
and the relationship between terms and documents can be derived
in this semantic space. Several studies [20], [42] based on LSA
are proposed to deal with short text classification. Probabilistic
latent semantic analysis (pLSA) [14] extended LSA by explicitly

TABLE 1: Notations used in the paper

SYMBOL DESCRIPTION

O,T,Loc,U the set of things, timestamps, locations, labels
N,Q,F,H the number of things, timestamps, locations, interactions
Ai the attribute set of thing oi

a j
i the value of the j-th attribute of oi

Y (i j) the interaction set between thing oi and o j

X (i j) the variables to capture the tendency of interactions
z(i j) A similarity vector based on thing’s attributes
I(i j) the latent relation strength between oi and o j
Ωi the k-neighbour set of oi in terms of relation strength
w A K-dimensional similarity vector to be estimated
σ2 the variance of Gaussian distribution
αl ,βl ,θl the parameters of power law distribution
G = {V,E,W} thing’s top-k relation graph, V =Vs ∪Vr
Vs,Vr the labelled things set and unlabelled things set
M the transition matrix of random walk with restart
FLatent implicit features from thing’s relation graph
FCluster implicit features by clustering thing’s interactions
Ftext text-based features from thing’s text descriptions
FS spatial features from thing’s spatial pattern
FT temporal features from thing’s temporal pattern

defining latent topic of a document as the latent variable during a
random process, which is widely used in text summarization [26]
and image annotation [43]. Latent Dirichlet Allocation (LDA) [3]
further extended pLSA by adding priors (Dirichlet Distribution)
to the document collection, which occupies an important position
in many fields of text mining (such as text classification [5] and
review-based sentiment analysis [24]).

3 MODELING THE LATENT RELATION OF THINGS
FROM INTERACTION BEHAVIOUR

In this section, we first present the problem statement of modeling
thing’s latent relation strength from their interaction behaviours.
Then detail the proposed approach, a latent variable model to
derive thing’s latent relation strength.

3.1 Problem Statement
For ease of the following presentation, we first define the key data
structures and notations used in the proposed approach. Table 1
lists the relevant notations used in this paper.

Definition 1. (Thing) A Thing oi in IoT, denote by < IDi,Ai >,
where IDi is the identifier of oi and Ai = {a1

i , ...,a
j
i , ...,a

|Ai|
i } is the

attributes set of oi (e.g., type, color and manufacturer). a j
i is the

value of the j-th attribute of oi.
As identified by [13] and [16], things in IoT are sensing

and actuating physical devices that providing the ability to share
information across platforms through a unified framework. Thus
things has the following three characteristics: 1) physical devices.
Thing’s attributes are directly related to the physical characteristics
of devices [9]; 2) embedded-in sensors, which are utilized to
provide sensing, computing and communication ability; 3) unique
identity. For example, the associated IP address can be utilized
as thing’s identifier. Things concept can be explained by the
following example.

Example 1: Considering a thing o named smart oven 1 (as
shown in Figure 1), which is a physical oven but embedded in
several sensors (e.g., laser scanner for reading bar codes on the lids

1. https://www.wired.com/2016/03/tovalas-smart-oven-wants-replace-
microwave/
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Physical 
devices 

Embedded  
in sensors 

Identifier of things 
through associated IP 

laser scanner, temperature and 
humidity sensor, built-in WiFi 
 

Physical oven Identifier 

192.168.1.125   Smart oven 

Physical characteristics:  <type : appliance >, <color : black>, 
<manufacturer : Tovala>, <function : heating food>,  
 

Fig. 1: An illustrative example of thing and its attribute set

TABLE 2: An example of things interaction behaviour

Daily activity Preparing breakfast,3/5/2016, 08:13:12, 08:24:18

Things Freezer, Microwave, Sink faucet - hot, Plate, Pan
Starting Time 08:15:38, 08:17:21, 08:19:35, 08:22:14, 08:20:25
Ending Time 08:21:24, 08:23:19, 08:20:11, 08:23:38, 08:20:46

of compatible meals, temperature and humidity sensor for detect-
ing whether the heat and humidity inside the oven is optimal, and
built-in WiFi for downloading new and newly perfected recipes
from the cloud). For an oven, its physical characteristics consist of
< type : appliance >,< color : black >,< manu f acturer : Tovala >

,< f unction : heating f ood >, thus we can obtain its attributes set:
Ao = {appliance,black,Tovala,heating f ood}. According to thing’s
definition, we denote thing o as < 192.168.1.125,Ao > by using IP
address as thing’s identifier.

Definition 2. (Interaction Behaviour) Interaction behaviour a-
mong things happens when people use things in daily activities
(e.g., Preparing breakfast, Dish washing and Brushing teeth). Let
O = {o1,o2, ...,oN},T = {ts1, ts2, ..., tsQ} and Loc = {loc1, ..., locF}
denote the set of things, timestamps and locations, respective-
ly. An interaction between oi and o j, denote by y ∈ Y (i j) =

{y(i j)
1 ,y(i j)

2 , ...,y(i j)
H } = {< oi,o j, ts, loc > |oi,o j ∈ O

∧
ts ∈ T

∧
loc ∈

Loc}, indicates that a user used oi and o j in location loc at
timestamp ts. To extract the timestamp of thing’s interaction
behaviours, we divide a day into 24 hourly slots. To this end,
we generate the total number of hashed time slots is 24, denote
as T S={ts1, ts2, ..., ts24}. For instance, if two things interact at 1:32
pm, 3/15/2016, the time slot of this interaction is ts14.

In our experiment, we utilize a context-aware experience
sampling tool (CEST) and state-change sensors to collect thing’s
interaction behaviours, i.e., the state-change sensors recorded data
about the movement of things and the participants used CEST to
record information about their activities. During the study, each
participant was given a PDA to run CEST tool. The participant
utilizes the CEST to select the activity what he/she is doing, and
records the start and end time of this activity. Figure 2 shows an
example of the type of data that was collected by the state-change
sensors and CEST. As shown in Figure 2a, the starting and ending
time of things are automatically recording by their embedded-
in state-change sensors. Then, we can obtain the participated
things of an activity by observing the sensor activations during
the activity duration (as shown in Figure 2b). As shown in Table
2, we generate the daily activity (Preparing breakfast) involved
five things, and consider there is an interaction behaviour between
each pair of things during this activity.

Definition 3. (Latent Relation Strength) The latent relation

Fig. 3: Graphical model of learning thing’s latent relation strength

strength between oi and o j denote by I(i j),which is determined
by i) the attribute similarity of oi and o j; and ii) the interaction
behaviours between oi and o j. In other words, for the larger latent
relation strength I(i j), two things (oi and o j) are required to be
more similar in term of either attributes or are more likely to
interact with each other.

With the aforementioned definitions, the problem of modeling
thing’s latent relation strength can be formally stated as follows:

Given a set of things: O = {< ID1,A1 >,< ID2,A2 >

,...,< IDN ,AN >}; and their history interaction behaviours Y =

{y1,y2, ...,yH}, the problem of modeling latent relation strength aims
to discover the implicit connection of things by exploiting their at-
tributes and observable interaction behaviours.

3.2 Approach

In this section, we first describe the modeling part of the proposed
approach, a latent variable model to infer thing’s latent relation
strength from their interaction behaviours, and then present its
inference process.

3.2.1 Model Description.
Previous studies [39], [40] have shown that homophily is ubiq-
uitous in IoT, which suggests the likelihood that a certain type of
interaction will take place between a pair of things relate positively
to their latent relation strength. In this way, we model thing’s
latent relation strength as the hidden cause for their interaction
behaviours. Such interactions could be, for example, preparing
breakfast, eating lunch and brushing teeth. We further consider
thing’s latent relation strength as a hidden effect of thing’s profile
similarities. The profiles similarity are caused by thing’s attributes,
such as the manufacturer, the functionality and the geographic
locations that they belong to, etc.

Formally, let Y (i j) = {y(i j)
1 ,y(i j)

2 , ...,y(i j)
H } denote the interaction

behaviours between oi and o j, I(i j) denote the latent relation
strength between oi and o j. Then, we utilize a graphical model
to represent the influence caused by the profiles similarity to I(i j),
as well as the influence of I(i j) on interaction behaviours, as shown
in Figure 3. In this figure, the gray-colored nodes depict observed
variables (i.e., z(i j),Y (i j) and {x(i j)

1 ,x(i j)
2 , ...,x(i j)

H }), which are all
visible in the training phase.

The detailed description of variables in this figure is explained
as follows:

• z(i j) denotes the profiles similarity of oi, o j, which is a K-
dimensional vector calculated based on the attributes set
of oi and o j (i.e., Ai and A j).

• I(i j) is the latent relation strength between oi and o j, which
is a hidden factor for thing’s interaction behaviours and
influenced by their profiles similarity.
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Sensor ID Day Starting 
Time 

Ending 
Time 

Location Thing 

36 3/5/2016 08:15:38 08:21:24 Kitchen Freezer 

26 3/5/2016 08:17:21 08:23:19 Kitchen Microwave 

28 3/5/2016 08:19:35 08:20:11 Kitchen Sink faucet - hot 

131 3/5/2016 08:22:14 08:23:38 Kitchen Plate 

19 3/5/2016 08:20:25 08:20:46 Kitchen Pan 

…… …… 

Activity Day Starting Time Ending Time Location 

Preparing breakfast 3/5/2016 08:13:12 08:24:18 Kitchen 

Activity Information from CEST Tool 

Sensor Activations Information from Built-in Sensors 

(a) 

(b) 

Fig. 2: An illustrative example of collecting thing’s interaction behaviours

• X (i j) = {x(i j)
1 ,x(i j)

2 , ...,x(i j)
H } are auxiliary variables that we

introduce to increase the accuracy of the model. Such vari-
ables capture auxiliary causes of the interactions which are
independent of the latent relation strength. For example,
the total number of interactions that a thing participated
in represents its intrinsic tendency to interact, which can
moderate the effect of latent relation strength on interac-
tion behaviours.

Our model represents the relationships among these variables
by modeling the conditional dependencies (as shown in Figure 3),
so the joint distribution decomposes as follows:

P(I(i j),Y (i j)|Ai,A j) = P(I(i j)|Ai,A j)
H

∏
l=1

P(y(i j)
l |I

(i j),x(i j)
l ) (1)

Given the attributes of oi and o j, we model the conditional
probabilities P(I(i j)|Ai,A j) using the widely-used Gaussian distri-
bution:

P(I(i j)|Ai,A j) = (wT z(i j),σ2) (2)

where w is a K−dimensional weight vector to be estimated and
σ2 is the variance of Gaussian model, z(i j) is the profiles similarity
based on Ai and A j.

For modeling the dependency between Y (i j) and I(i j),X (i j), we
analyze the characteristics of thing’s interaction behaviours using
three real world datasets: 1) Our dataset is collected by 13 par-
ticipants during six months, which consists of 32,716 interaction
records from 196 things ; 2) MIT S1, S2. The two datasets are
published by the AI group in MIT [28], which consists of 503
interaction records from 146 things in total. More details of these
datasets are shown in Table 3. Figure 4 shows the likelihood of
two things may interact as a function of their historical interaction
frequency. As shown in Figure 4, we observe there exists a positive
correlation between the likelihood of two things may interact
and their historical interaction frequency, indicating a clustering
phenomenon in thing’s interaction behaviours. This phenomenon
may be intuitively explained by the following tendencies: 1) things
with similar attributes (e.g., provided similar services and located
in the same geographic location) tend to interact; 2) things with the
same label (e.g., cooking tools and office supplies) tend to interact.
As mentioned earlier, we consider thing’s latent relation strength is
determined by their attribute similarity and interaction behaviours
We believe that this clustering phenomenon in thing’s interaction

behaviours can be exploited for uncovering thing’s latent relation
strength. Thus, in the following, we study and model thing’s latent
relation strength and their interaction frequency.

Based on Figure 4, we intuitively think the distribution follows
a roughly power-law form. Even though the right part of the figure
increases linearly (i.e., increases exponentially in regular scale)
and thus fits power-law distribution very well, the left part may
sometimes deviate irregularly (i.e., the probability is high at some
points). A reasonable explanation is that the likelihood of two
things may interact cannot judge from few interactions. Generally
speaking, the fact that two things with more historical interactions
tend to interact is confirmed in our data analysis. Moreover, the
linear portion of the plot in Figure 4 covers the majority (90%) of
the interaction behaviours In this way, we model the dependency
between Y (i j) and I(i j),X (i j) with a power-law distribution:

P(y(i j)
l |I

(i j),x(i j)
l ) = (αlI

(i j)+βlx
(i j)
l )θl (3)

where αl ,βl and θl are parameters of power law distribution to
be estimated, l = 1,2, ...,H.

We further add L2 regularizes on these hyper parameters (e.g.,
αl , βl , θl) to avoid over-fitting, which can be regarded as Gaussian
prior:

P(αl ,βl)∝ e−(λ1/2)(α2
l +β 2

l ), l = 1, ...,H

P(θl)∝ e−(λ2/2)(θl)
2
, l = 1, ...,H

P(w)∝ e−(λ3/2)(wT w)

(4)

The dataset are represented as a set of thing pairs: Φ = O×O,
denoted as D = {(i1, j1), ...,(iN , jN)}. During training phase, the
variables z(i j),y(i j)

l and x(i j)
l are all visible, (i, j)⊆Φ. According to

Equation 1, given all the observed variables, the joint probability
is shown as:

H

∏
l=1

P(Φ|w,αl ,βl ,θl)P(w,αl ,βl ,θl) =

∏
(i, j)∈D

P(I(i j)|z(i j),w)P(w)
H

∏
l=1

P(D|I(i j),x(i j)
l ,αl ,βl ,θl)P(αl ,βl ,θl)

∝ ∏
(i, j)∈D

(
e−(1/2δ 2)(wT z(i j)−I(i j))2

H

∏
l=1

(αlI
(i j)+βlx

(i j)
l )θl

)

e−(λ3/2)wT w
H

∏
l=1

e−(λ2/2)(θl)
2
e−(λ1/2)(α2

l +β 2
l )

(5)
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Fig. 4: Fraction of interaction probability as a function of thing’s historical interaction frequency

3.2.2 Model Inference.
We estimate the unknown model parameters Σ = {w,αl ,βl ,θl} by
maximizing the likelihood function as shown in Equation 5. As for
the hyper parameters σ2,λ1,λ2,λ3, for simplicity, we take a fixed
value (σ2 = 0.5, λ1 = λ2 = λ3 = 0.01) in experiment. Applying a
logarithmic transformation to both sides of Equation 5, we obtain
the following expression:

L((i, j) ∈ D,w,αl ,βl ,θl) = ∑
(i, j)∈D

− 1
2σ2 (w

T z(i j)− I(i j))2

+ ∑
(i, j)∈D

H

∑
l=1

θl log(αlI
(i j)+βlx

(i j)
l )− λ3

2
(wT w)

−
H

∑
l=1

λ2

2
θ

2
l −

H

∑
l=1

λ1

2
(α2

l +β
2
l )

(6)

Note the function L (see in Equation 6) is concave, then
we optimize the parameters αl ,βl ,θl and variable I(i j) with a
stochastic gradient descent algorithm. We use Netwton-Raphson
algorithm to update these parameters in each iteration:

I(i j)new = I(i j)old − ∂L
∂ I(i j)

/
∂ 2L

∂ (I(i j))2
(7)

α
new
l = α

old
l − ∂L

∂αl
/

∂ 2L
∂ (αl)2 (8)

β
new
l = β

old
l − ∂L

∂βl
/

∂ 2L
∂ (βl)2 (9)

θ
new
l = θ

old
l − ∂L

∂θl
/

∂ 2L
∂ (θl)2 (10)

Where the coordinate-wise gradients and the second order
derivatives can be found in Appendix A (the appendix file is
included in the supplemental file).

As for w, the coordinate-wise gradient is as following:

∂L
∂w

=− 1
σ2 ∑

(i, j)∈D
z(i j)(wT z(i j)− I(i j))−λ3w (11)

The root of ∂L/∂w = 0 can be solved by ridge regression [11]:

w = (λ3σ
2I +ZT Z)−1ZTC (12)

where Z = [z(i1 j1),z(i2 j2), ...,z(iN jN)]T ,C =

[I(i1 j1), I(i2 j2), ..., I(iN jN)]T , I is the identity matrix.
Algorithm 1 shows the procedure for optimizing these pa-

rameters, we optimize model parameters Σ = {w,αl ,βl ,θl} using
Newton-Raphson until converged.

Algorithm 1 The algorithm for optimizing parameters

Require: Data samples D = {(i1, j1), ...,(iN , jN)}.
Ensure: Model parameters Σ = {w,αl ,βl ,θl |l = 1,2, ...,H}.

1: while not converged do
2: for each Newton-Raphson step do
3: ***Step1: Estimate latent relation strength***
4: for (i, j) ∈ D do
5: Update I(i j) according to Equation 7.
6: end for
7: ***Step2: Estimate parameters αl ,βl ,θl***
8: for l = 1,2, ...,H do
9: Update αl ,βl ,θl according to Equation 8, 9, 10

10: end for
11: end for
12: Update w according to Equation 12.
13: endwhile
14: return Σ = {w,αl ,βl ,θl |l = 1,2, ...,H}.

4 BOOSTING THINGS CATEGORIZATION USING LA-
TENT RELATION

Modelling thing’s latent relation strength can facilitate a few
valuable services (e.g., things categorization, recommendation and
searching) in IoT. Due to space constraints, we briefly introduce
an important application: things categorization, which aims to
automatically predict appropriate semantic labels that a given
thing. A thing may be associated with multiple labels in IoT.
For example, a microwave associated with a label cooking may
also be tagged with appliance, and a television may label with
entertainment and appliance. Therefore, things categorization can
be formulated as a multi-label classification problem. In this study,
we propose a method for things categorization by learning a binary
SVM classifier for each label to support multi-label classification.
To train the classification model, we extract two kinds of features
for each thing: 1) implicit features from similar things in terms
of the learnt latent relation strength, which is derived by building
a top-k relation graph where similar things are linked by virtual
edges; 2) explicit features of things, such as text features (e.g.,
Term Frequency or Term Frequency Inverse Document Frequency)
and spatial-temporal pattern.

4.1 Implicit Features from the Learnt Latent Relation
Strength
We extract the implicit features among things in order to formulate
descriptive features of a given thing from its similar things. To
capture the implicit features from similar things, we first construct
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a top-k relation graph of things based on the learnt relation
strength. In thing’s relation graph, things are linked by their
latent relation strength, which is derived from their interaction
behaviours. Then, we perform random walk with restart (RWR)
[10] to derive the relation strength between each pair of things.
The goal of RWR is to predict the label probability for a given
thing by exploring the latent relation strength with similar things,
and using the label probability as implicit feature for classification.

(1) Construct top-k relation graph of things (RGT). The idea
of extracting implicit features is to infer descriptive features of a
given thing from its neighbour and labelled things, since only few
things are labelled in IoT. In this way, we construct a top-k relation
graph of things by connecting things together.

Formally, let G =< V,E,W > denote the top-k relation graph
among things , where V =Vs∪Vr (Vs is the labelled vertex set and
Vr is the unlabelled vertex set) is the set of nodes, E is the set of
edges in G. For oi,o j ∈Vs, we define Wi j = 1 if oi and o j have the
same class label, 0 otherwise. If at least one of oi,o j is unlabelled,
Wi j is defined as:

Wi j =

{
exp(−1/ηI(i j)), if o j ∈Ωi or oi ∈Ω j

0, otherwise
(13)

where Ωi denotes the k nearest neighbour set of oi in term of
relation strength and Ω j is also similar, η is a weight coefficient.

(2) Perform RWR on RGT. Let Ωi = {o j1,o j2, ...,o jk} be the
set of k nearest neighbours which is connected with oi in RGT,
τi denotes a tag µ associated with thing oi (µ ∈ U). Let P(τi =

µ|Ωi)(µ ∈ U) denote the probability that oi may associate with
label µ , we initialize P(τi = µ|Ωi) = 1/|U | for unlabelled things,
and P(τi = µ|Ωi) = 1 for labelled things if thing oi has label µ or
0 otherwise. Then, we utilized RWR to find P(τi = µ|Ωi)(µ ∈U)

for each thing.
Without lost of generality, we assume the random walker starts

from an unlabelled things oi on graph G. Then, the random walker
iteratively transmits to other nodes which have edges with oi, with
the probability that is proportional to the edge weight between
them. At each step, oi also has a restarting probability λ to return
itself. We can obtain the steady-state probability of oi by visiting
other vertexes until the RWR process is converged. The RWR
process can be formulated as Equation 14:

Pt+1(τi = µ|Ωi) = (1−λ )MPt(Ωi)+λPt(τi = µ|Ωi) (14)

where Pt(τi = µ|Ωi) represents the estimation probability in
step t, Pt(Ωi) denote the estimation probabilities of all near-
est neighbours of oi at step t, denote by Pt(Ωi) = [Pt(τ j1 =

µ|Ω j1),Pt(τ j2 = µ|Ω j2), ...,Pt(τ jk = µ|Ω jk)]. M is the transition
matrix, which is obtained based on weight matrix W by row
normalization, as shown in Equation 15.

M =WΨ
−1 (15)

where W = [w(i, j1),w(i, j2), ...,w(i, jk)]T , Ψ is the usual nor-
malizer and defined as Ψ = ∑ js∈Ωi

W (i, js).
The label probability estimation for each label on a thing

oi can be obtained when the RWR process is converged, which
are regarded as implicit features for SVM training (FLatent ). The
process on how to extract implicit features can be explained by
the following example.

Example 2: As shown in Figure 5, suppose we have 5 things
( three labelled things:{A,B,C} and two unlabelled things:{D,E})

2-Nearest Neighbor  Set 
 
A  {B: 0.83, D: 0.41} 
B  {A: 0.83, D: 0.34} 
C  {D: 0.54, E: 0.92} 
D  {A: 0.41, C: 0.54} 
E  {C: 0.92,  D: 0.27} 

A 

B 

E 

C 
D 

Labelled Things  
A: {l1, l2}; B: {l2, l4}; C: {l3} 

Implicit Features 

 0.33  0.51  0.3 0.27 

 0.34  0.52  0.29 0.27 

 0.26  0.36  0.41 0.2 

0.29 0.43 0.36 0.23 

0.26 0.35 0.42 0.2 

      l1            l2          l3          l4  

B 

C 

D 

E 

A 𝑃𝑃0 𝑃𝑃∞ 

Fig. 5: An example of extracting implicit features from top-k
relation graph

and 4 labels (l1,l2,l3 and l4). After constructing top-2 relation
graph of things based on their latent relation strength, we extract
thing’s implicit features by performing RWR on the relation
strength according to Equation 14 until converged. Finally, we
obtain the label probability estimation for each possible label on
a thing and regard the label probability estimation as implicit
features. For instance, the implicit features of thing A are a 4-
dimensional vector [0.33,0.51,0.3,0.27], while the implicit features
of thing D is: [0.29,0.43,0.36,0.23].

Let |U | denotes the number of labels, |V | denotes the total
number of things, and |E| denotes the total number of edges in
the relation graph. It takes O(|U | ∗ |V |) time to initialize the label
probabilities for all things. Then at each iteration, we need to
process each edge twice to update the label probabilities, once
for each thing at each end of the edge. We also need O(|U | ∗
|E|) time to learn from the initial label probabilities, so the time
complexity of each iteration is O(|U | ∗ (|E|+ |V |)). Therefore, the
total time complexity for extracting implicit features is O(t ∗ |U | ∗
(|E|+ |V |)), where t is the maximum number of iteration needed
to reach the steady state. We will experimentally demonstrate that
this algorithm converges in a few iterations. And since the number
of labels |U | is constant, the computational complexity is generally
linear in the number of edges and nodes in the relation graph.

4.2 Explicit Features from Text and Spatial-temporal
Pattern
Things usually have some short and noisy text profiles (e.g.,
thing’s color, type and manufacturer), which can be used to extract
text-based features for multi-label classification. On the other
hand, thing’s interactions imply some spatial-temporal patterns as
human daily activities usually follow a regular temporal pattern
[34], for instance, people usually eat dinner at 5:00 pm-7:00 pm,
which means the interacted things tend to be cooking tools during
the time slot. We extract three explicit features from thing’s text
profiles and spatial-temporal patterns for training classification
model.

4.2.1 Text-based Feature
We utilize the well-known Term Frequency Inverse Document
Frequency (TF/IDF) to extract keywords from things’ text descrip-
tions [29], and the weight of keywords are regarded as text-based
features (Ftext ).

4.2.2 Spatial Feature
To show the spatial pattern of thing’s interaction behaviours in
IoT, we aggregate the number of things associated with different
labels at a specific location using a real-world dataset that consists
of 196 things, more details of this dataset are shown in Table
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Fig. 6: Spatial-temporal pattern of things associated with different
labels

3. As shown in Figure 6a, things with different labels have very
different spatial pattern corresponding to different locations. For
instance, things associated with Cooking and Cabinet & container
are mainly located in Kitchen, while things associated with Office
& study are mainly located in Den. Therefore, we consider the
spatial pattern to be a very useful feature for things categorization.
Formally, we define spatial pattern as a F-dimensional vector:
FS(i) = [SF i(loc1),SF i(loc2), ...,SF i(locF )]. Note that, SF i(lock) is
computed as

SF i(lock) =
Ni(lock)

∑
F
j=1 Ni(loc j)

(16)

where Ni(lock) is the number of interactions involved thing oi
in location lock, ∑

F
j=1 Ni(loc j) is the total number of interactions

involved thing oi, and F is the number of locations.

4.2.3 Temporal Feature
Figure 6b reports the hourly distribution of things associated with
different labels at different timestamps using a real-world dataset
collected over half years (see in Table 3). From this figure, we
can observe two very different temporal patterns corresponding to
two kinds of labels (i.e., Cooking and Entertainment). For instance,
the interaction of things associated with label Cooking have clearly
three peak periods, corresponding to breakfast, lunch and dinner
time, respectively. On the contrary, for things associated with label
Entertainment, the interaction has one peak period (from 6:00 pm
to 10:00 pm). Therefore, the temporal pattern of thing’s interaction
is discriminative feature for distinguishing different labels, such as
Cooking and Entertainment. Formally, we define temporal pattern
as a T -dimensional vector: FT (i) = [T F i(t1),T F i(t2), ...,T F i(tT )].
T F i(tk) is computed as

T F i(tk) =
Ni(tk)

∑
T
j=1 Ni(t j)

(17)

where Ni(tk) is the number of interactions involved thing oi
at timestamp tk, ∑

T
j=1 Ni(t j) is the total number of interactions

involved thing oi, and T is the number of timestamps.

4.3 Things Categorization by fusing Explicit Features
and Implicit Features

In our approach, we first formulate things categorization as a
multi-label classification problem and then decompose into several
distinct single-label binary classification problems. For instance,
as shown in Figure 7, Microwave labelled Cooking is positive sam-
ple for a classifier for Cooking but negative sample for a classifier

Things 

Labels Storage Cooking   Appliances 

Positive Negative 

Cooking 

 Appliances 

Storage 

Label 1 

Microwave Tablet PC Trash can 

Label 2 

Label 3 

Multi-label classification 

Fig. 7: An example of formulating things categorization to a multi-
label classification problem

TABLE 3: Detailed information of the three datasets

MIT S1 MIT S2 Dataset 3

# of things 76 70 196
# of daily activities 33 35 93

# of interaction records 295 208 32716
# of participants 1 1 13

# of collecting period (days) 14 14 180

for Storage, while Garbage bag labelled Storage is positive sample
for a classifier for Storage but negative sample for a classifier for
House Appliances. To perform things categorization, our approach
outputs the aggregation of the labels positively predicted by all the
independent binary classifiers.

After extracting four kinds of features: 1) Implicit features
(FLatent ) from thing’s relation graph; 2) Text-based features (Ftext )
from thing’s text descriptions; 3) Spatial features (FS) from thing’s
spatial pattern when interacting; 4) Temporal features(FT ) from
thing’s temporal pattern when interacting, we combine the features
(FLatent +Ftext +FS +FT ) together as inputs for training a set of
binary SVM classifier for things categorization.

5 EXPERIMENT EVALUATION

In this section, we first describe the experiment settings including
data sets, baseline methods and evaluation metric. Then, we report
and discuss the experimental results.

5.1 Datasets.

Three real world datasets about things interaction in IoT: two
public datasets from MIT [28] AI group and one collected dataset
(Dataset 3) in our experiment, are used for experimental evalua-
tion. More details of these datasets are reported in Table 3.

– MIT Dataset. The first two datasets (MIT S1 and MIT S2)
are published by the AI group in MIT, which collected
two subject’s daily activities during two weeks. The first
subject was a 30-year-old woman who spent free time at
home, and the second was an 80-year-old woman who
spent most of her time at home. Both subjects lived
alone in one-bedroom apartments, 77 and 84 sensors are
installed in everyday things (e.g., Microwave, Refrigerators
and Stoves) of the two subject’s apartment, respectively.
Each data collection board was marked on a plan-view
of the environment for collecting data after these sensors
were installed, and the location (e.g Bathroom) and type
(e.g Toaster) of each thing associated sensor was prior
known. For recording the subject’s activities information,
a context-aware experience sampling tool was used for
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Ambient  Sensors Activities Tagged things  

Force sensor or 
Pressure sensor 

Sleeping, sitting, 
napping 

Beds, couches 

Contact sensors Opening and closing 
of the doors, 
cupboards 

Door frames,  
shower 
cupboards 

Proximity sensors Detecting close 
distance objects 

Chairs, closets 
and taps 

Infrared Receiver 
Sensor 

Watching TV Near the TV 

pressure sensor 

motion sensor 

temperature sensor 

gyro sensor 

RFID tags 

RFID readers 

Fig. 8: Part of sensors and devices used in our experiment

labelling activities. Finally, 76 and 70 things that have par-
ticipated in interactions are used to conduct experiments.

– Our Dataset. Our experiment environment includes one
workspace (e.g., office, laboratory and meeting room) and
two smart houses (e.g., bedroom, living room and kitchen).
In our experiment, there are 196 things are tagged with
RFID and various sensors (e.g., motion, pressure and
temperature sensors, as shown in Figure 8) for collecting
interaction behaviours. For generating thing’s interaction
behaviours, three types of information need to be recorded:
1) Activity information. To obtain the activity informa-
tion, each participant utilized a context-aware experience
sampling tool to mark and record their activities when
interacting with things; 2) Temporal information. To map
the interacting time to the corresponding timestamps, we
split one day into 24 timestamps with one hour as an
interval as mentioned earlier; 2) Spatial information. For
static things (e.g., cabinet, toaster and door), the spa-
tial information is prior known. For mobile things (e.g.,
RFID-tagged remote control and coffee cup), we utilized
a fingerprint-based positioning algorithm to estimate the
unknown location [44]. Thirteen participants participated
in the data collection phase during six months, and more
than 32,000 interaction behaviours of things are recorded
in the experiment.

We manually labelled these things with different semantic
labels as the ground-truth data for performance evaluation. Note
that some things are labelled with multiple labels (e,g, Microwave
is labelled with both Cooking and House Appliances, Television is la-
belled with both Entertainment and House Appliances), thus a thing
may belong to multiple categories. Finally, we manually labelled
these things with 798 different labels, more details information
can be found in Appendix B (the appendix file is included in the
supplemental file) due to space limitation.

5.2 Baseline Methods.
We extract five kinds of feature for a thing to train a set of
binary SVM classifiers (the whole set of features are shown in
Table 4), and aggregate of the labels positively predicted by
all the independent binary classifiers as things categorization
result. Among the five features, FCluster has not been discussed
before, which means deriving thing’s implicit features by clus-
tering thing’s interactions directly instead of using the proposed
graphical modeling approach. The feature extraction process of
FCluster is similar to FLatent , which firstly constructs top-k relation
graph of things based on thing’s interactions and then performs
RWR on the relation graph to extract thing’s implicit features.

Based on these features, we evaluated 8 methods for things
categorization as listed in Table 6. Among the 8 methods, TE

TABLE 4: Features for things categorization

Features Description
Ftext The text-based feature using TF/IDF (Section 4.2.1)
FS The spatial pattern of interaction behaviours(Section 4.2.2)
FT The temporal pattern of interaction behaviours(Section 4.2.3)
FCluster The label probabilities for labels by clustering interactions
FLatent The label probabilities for labels on a thing (Section 4.1)

TABLE 5: An example of text description for MIT datasets

Activity Description

Preparing a snack Domestic work,Preparing a snack
Doing laundry Domestic work,Clean house

Bathing Personal needs,Personal hygiene

needs to extract TF/IDF features from thing’s text profiles. Thing’s
text profiles have not been discussed before, we detail it in the
following. For MIT datasets, we utilize the activity description
that things participated in as thing’s text profiles to extract text-
based features. For instance , a Closet participate in three kinds
of activities: {Preparing a snack,Doing laundry,Bathing}, then we
combine the descriptions of the three activities (as shown in
Table 5) as its text description, i.e., ”Domestic work,Preparing
a snack,Clean house,Personal needs,Personal hygiene”. For things
of our collected dataset, we utilize the text description from E-
commerce company (e.g., ebay 2 and Taobao 3) as thing’s text
profiles to extract text-based features.

5.3 Evaluation Metrics.

We use two widely used metrics (Hamming Loss and F-measure)
for multi-label classification to evaluate the performance, which
are defined as:

– Hamming Loss, which is used to evaluate how many times
a thing is misclassified, i.e., a label not associated with a
thing is predicted or a label associated with the thing is not
predicted. Formally, the Hamming Loss is defined as:

HammingLoss =
1
|Dte| ∑

i∈Dte

HD(vi,vi)

|L|
(18)

where |Dte| is the number of test samples, |L| is the number
of labels, vi and vi are the ground truth and prediction
vectors for testing thing oi. HD(vi,vi) is the hamming
distance between vi and vi.

– F-measure, which is a particular kind of average between
precision and recall that has been widely used in many

2. http://www.ebay.com/
3. http://www.taobao.com/

TABLE 6: Methods for comparison

Method Description

TE Using Ftext to train SVM classifier
S Using FS to train SVM classifier
T Using FT to train SVM classifier

EF Combination of Ftext , FS and FT to train SVM classifier
CL Using FCluster to train SVM classifier
IF Using FLatent to train SVM classifier

CL+EF Combination of Ftext , FS, FT and FCluster to train SVM classifier
IF+EF Combination of Ftext , FS, FT and FLatent to train SVM classifier
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TABLE 7: The profile similarity features of things

Feature Description

z(i j)
1 1 if oi and o j have the same manufacturer, 0 otherwise

z(i j)
2 1 if oi and o j are owned by the same user, 0 otherwise

z(i j)
3 1 if oi and o j are located in the same place, 0 otherwise

z(i j)
4 1 if oi and o j have the same functionality, 0 otherwise

z(i j)
5 1 if oi and o j have the same color, 0 otherwise

prediction problems including binary classification, multi-
label classification and structured output prediction. Let vi
and vi denote the ground truth and prediction vectors for
testing thing oi, the F-measure is defined as:

F−measure =
1
|Dte| ∑

i∈Dte

2×|vi
⋂

vi|
vi + vi

(19)

Due to the small size of dataset, we perform five-fold cross-
validation and also report the corresponding standard deviation as
error bar for each case. Firstly, each dataset was randomly split
into 5 equal groups (N=5). Secondly, trains the model on 4 groups
of data, and records the error for the excluded data. This process is
repeated 10 times, each time records the performance (Hamming
Loss and F-measure) for the excluded data set. Finally, this whole
procedure is repeated 10 times with different random splits of
the data to produce the final results. We report the mean of the
performance and standard deviation produced with the 50 (5x10)
sets of test data as the ultimate experiment results.

5.4 Parameter Setting.
For our dataset, we utilize five attributes to capture the profiles
similarity of each pair of things (oi,o j), which is defined as:
z(i j) = [z(i j)

1 , ...,z(i j)
5 ]T and the meaning of the five features are

reported in Table 7. For MIT datasets, we utilize two attributes
to capture the profiles similarity for each pair of things (oi,o j):
z(i j) = [z(i j)

2 ,z(i j)
3 ]T , since the other three types of information are

not provided.

5.5 Experiment Results.
We conduct two groups of experiments and report their results.
The first group is to perform parameter turning for models (IF and
CL) using implicit features. The second group is to compare the
effectiveness and efficiency of models using explicit features and
implicit features for things categorization, respectively.

5.5.1 Impact of Model Parameters
Tuning algorithm parameters, such as the parameter λ of RWR
process and the number of neighbours (k) for constructing top-k
relation graph, are critical to the performance of methods (IF and
CL) using implicit feature. We tune λ and k on the three datasets,
and plot the Hamming Loss and F-measure with different values
in Figure 9.

Set the number of neighbours for constructing relation graph
equals to 10, we test the performance of IF by varying λ , and
present the results in Figure 9a and Figure 9b. As mentioned earli-
er, for each dataset, we perform 5-fold cross-validation and repeat
10 times for each cross-validation, and report the corresponding
standard deviation as error bar for each case. From the figure, it
is observed that best Hamming Loss and F-measure are reached

when λ = 0.7. We further observe both the Hamming Loss and
F-measure slightly increase with the increasing of λ from 0.1 to
0.7, and then decrease when λ is greater than 0.7. The reason
is that the convergence of RWR is determined by λ , i.e., the
greater λ results in the faster convergence, and further bring better
performance. But a larger λ will cause a high probability to back to
the target thing, thus reducing the number of neighbours with high
latent relation strength and further decreasing the performance.
As shown in Figure 9e and Figure 9f, similar results are also
observed in turning λ for CL (for example, the mean of F-measure
and Hamming Loss achieve the best results (43.74% and 38.16%,
respectively) when λ = 0.7 for MIT S1.).

Set λ = 0.7, Figure 9c Figure 9d report the performance of IF
with different number of neighbours (k), where k is in the range
[5,10,...,40], because there are 342 things in total and a greater
value of k is usually ignored when constructing top-k relation
graph. From the two Figures, we observe the best Hamming Loss
and F-measure are reached when k = 10 and 15 on MIT datasets
and Dataset 3, respectively. The is because that our dataset has
much more things than MIT datasets. However, the performance
decreases with increasing k, since a greater k will bring in some
noisy neighbours thus may decrease the performance. Similar
results are also observed in turning k for CL, for example, the
mean of F-measure and Hamming Loss achieve the best results
(50.88% and 30.52%, respectively) when k = 15 for Dataset 3.

5.5.2 Explicit Features vs Implicit Features
In this part, we compare the effectiveness and efficiency of
models using explicit features and implicit features for things
categorization. We evaluate the categorization effectiveness from
two aspects: 1) the performance of explicit Features (TE, S, T
and EF), implicit Features (CL and IF) and their hybrid (EF+CL
and EF+IF) with fixed mark-off rate. Here the mark-off rate means
the ratio of unlabeled things. In this case, we perform 5-fold cross-
validation and repeat 10 times for each cross-validation, and report
the mean and the corresponding standard deviation as error bar; 2)
the performance of five methods (EF, CL, IF, EF+CL and EF+IF)
with different mark-off rate. In this case, we randomly removed
the category labels of a certain percentage (named testing things
with mark-off rate) from each category of the ground-truth dataset.
The methods are used to recover the category labels for those
testing things. For each case, we report the average performance
and corresponding standard deviation as error bars by repeating
the experiments 10 times.

Performance Comparison. We compare the performance of
8 methods (TE, S, T, EF, CL, IF, EF+CL, EF+IF) on the three
datasets, as shown in Table 8.

For methods (TE, S, T and EF) using explicit features, we can
observe from Table 8 that: 1) For methods using explicit features,
EF that combines the spatial, temporal and text information always
outperforms the baseline methods (TE, S, T), which merely
utilizes one type of feature. For instance, EF outperforms TE
by 22.09% and 11.73% on MIT S1 and MIT S2 in terms of F-
measure, respectively. This result suggests that, fusing spatial,
temporal and text feature is beneficial for improving the perfor-
mance of things categorization; 2) For Dataset 3, TE achieves
much worse performance than S and T in terms of both Hamming
Loss and F-measure. The reason is that Dataset 3 utilizes the
description from E-commerce company as thing’s text description
to extract text-based features, which usually are short and noisy.
For example, a text description from E-commerce site for cabinet
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Fig. 9: Impact of parameters (λ and k) for IF and CL (mean plus standard error bars)

TABLE 8: Performance (%) comparison with different baselines (F1=F-measure, HL=Hamming Loss)

Method MIT S1 MIT S2 Dataset 3
F1 (%) HL(%) F1 (%) HL(%) F1 (%) HL(%)

TE 47.31 ± 2.84 39.42 ± 2.47 59.05 ± 2.38 45.71 ± 1.94 30.17 ± 2.15 43.31 ± 2.42
S 35.02 ± 2.71 46.31 ± 1.87 50.08 ± 2.62 40.17 ± 2.36 41.59 ± 3.12 37.94 ± 2.86
T 39.42 ± 2.67 40.15 ± 2.89 57.16 ± 3.12 36.31 ± 2.79 50.62 ± 3.23 36.83 ± 2.89

EF 69.38 ± 2.47 26.89 ± 2.06 70.78 ± 2.95 24.28 ± 1.89 66.14 ± 1.83 22.11 ± 2.37
CL 43.74 ± 3.45 38.16 ± 2.79 46.38 ± 3.77 37.15 ± 2.93 53.88 ± 3.25 30.52 ± 3.76
IF 56.43 ± 2.95 31.85 ± 1.85 59.22 ± 2.46 30.13 ± 2.18 64.37 ± 2.79 23.93 ± 2.12

EF+CL 72.69 ± 2.74 24.17 ± 2.18 73.17 ± 3.35 20.71 ± 2.76 73.58 ± 2.53 20.19 ± 2.49
EF+IF 77.15 ± 2.36 20.89 ± 2.14 79.92 ± 3.27 16.58 ± 2.17 83.51 ± 2.78 14.13 ± 2.86

is ”the home cabinet with simplicity of modern style, two / three
door”, then the keywords extracted from this text are {cabinet,
door}. Therefore, the cabinet is likely to be misclassified as door.
The results suggest that text-based features based on the well-
known TF/IDF feature for things categorization are not effective
in IoT, since the text descriptions of things are usually short and
noisy.

For methods using implicit features (CL and IF), we observe
from Table 8 that IF outperforms CL significantly in terms of
both F-measure and Hamming Loss, showing the advantages of
using graphical model to mine thing’s latent relation strength and
derive implicit features. For instance, the F-measure of IF is about
56.43% on MIT S1, 59.22% on MIT S2 and 64.37% on Dataset 3,
the performance is improved by 12.69% (MIT S1), 12.84% (MIT
S2) and 10.49% (Dataset 3) compare with CL respectively. The
reasons for better precision are: 1) CL extracts implicit features
from thing’s relation graph by clustering thing’s interactions
directly, which are powerless to capture information from things
without interactions for deriving categorization features. On the
contrary, our proposed graphical model can be applied in two
ways. First, if both things attributes set and their interaction
behaviours are known, we can estimate the latent relation strength

based on both things attributes set and their interaction behaviours.
Second, when the interaction behaviours are unobserved, we can
estimate thing’s latent relation from their attributes similarity.
This in fact demonstrates a strength of our proposed graphical
model: the lower part of the model is generative so that the overall
model will not suffer much from missing interaction behaviours
during training. Once the model is learned, for new data the latent
variables can be inferred using only the upper level of variables
in the model; 2) our proposed graphical model introduces a few
auxiliary variables that capture auxiliary causes of thing’s inter-
actions, which can moderate the effect of latent relation strength
on interaction behaviours thus increase the accuracy of the model.
CF intuitively clusters thing’s interactions for predicting labels,
particularly the betweenness centrality is strongly biased towards
nodes with high degree, or nodes that are central in large local
groups of nodes [15]. Moreover, the random walk may terminate
with a high likelihood when reaches an unlabeled nodes with
numerous interactions during extracting implicit features [27].

For methods using both explicit features and implicit features
(EF+CL and EF+IF), we can observe from Table 8: 1) the methods
using hybrid features outperform merely using explicit feature
(EF) or implicit features (CL or IF) significantly in terms of both
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Hamming loss and F-measure. For example, EF+IF outperforms
EF by around 7.97% on MIT S1, 9.14% on MIT S2, and around
17.37% on Dataset 3 in terms of F-measure. This result shows
the unified method (EF+IF) is superior to the state-of-art method
in terms of categorization effectiveness, which suggests that the
learnt latent relation strength from thing’s interactions behaviours
can significantly boost things categorization; 2) the performance
improvement of our dataset is much higher than the other two
datasets for both EF+CL and EF+IF. This is because our dataset
consists of much more interaction behaviours than MIT datasets,
which can be utilized to learn thing’s latent relation strength better.

Performance with different Mark-off Rates. We investigate the
impact of different mark-off rates to the performance of EF, CL,
IF, EF+CL and EF+IF. As shown in Figure 10, the performance of
all methods with different feature sets degrade to some extent as
the mark-off rate increases. Nevertheless, EF+CL and EF+IF show
better performance consistently than CL and IF over all mark-off
rates as they include both explicit features and implicit features.
For example, the F-measure of EF+IF on our dataset is 78.44%
when the mark-off rate is 40%, while 54.02% of EF with the
same mark-off rate. This clearly demonstrates the effectiveness of
hybrid features by combining both implicit feature and explicit
feature. We also observe the unified method (EF+CL and EF+IF)
can achieve considerable performance even when the mark-off
rates are relatively high, while explicit features (EF) perform
poorly with few labeled things to train model. For example, the
F-measure of IF+EF on MIT S2 drops 5.6% when the mark-off
rate increases from 40% to 60%, while 18.3% of EF with the
same condition. This is because explicit features require either
enough text profiles or obvious spatial-temporal pattern to extract
features for training model, while hybrid features can utilize
implicit feature extracted from thing’s relation graph to boost
things categorization even with few labeled samples.

Efficiency of Extracting Implicit Features. The time complex-
ity of the proposed things categorization model consists of three
parts: 1) the first part is the graphical model for inferring the model
parameters. Since this part can be done in offline phase, the learned
parameter values can be applied to estimate the latent relation
strength for a new pair of things in constant time; 2) the second
part is extracting implicit features. We have proved in Section
4.1 that the time complexity of this part is generally linear in the
number of edges and nodes in the relation graph. We will show
the feature extraction process will converge fast in the following
experiments; 3) the third part is multi-label classification by SVM
model, which is scalable to big datasets as suggested by a few
studies [21], [41]. Therefore, the proposed things categorization
model is scalable to large dataset.

We use ε = 10−5 as the termination condition of iterations.
The iteration numbers when implicit feature extraction process
terminates are plotted in Figure 11a by varying the training sample
sizes. From this figure, we observe the iteration numbers when
implicit feature extraction process terminates are less than 400 for
the three datasets, which shows the feature extraction process is
scalability to large dataset. We further report the run time with
different training sample sizes by setting the iteration number
as 500 in Figure 11b. From this figure, we can observe time
complexity is generally linear in the ratio of unlabeled nodes as
expected.

0.1 0.3 0.5 0.7 0.9
0

100

200

300

400
(a) Iteration number when converging

The ratio of unlabeld nodes

It
e

ra
tio

n
 N

u
m

b
e

r

0.1 0.3 0.5 0.7 0.9
0

0.5

1

1.5

2

2.5

(b) Run time when iteration number =500

The ratio of unlabeld nodes

T
im

e
 (

S
e

c)

 

 

MIT S1 MIT S2 Dataset 3

Fig. 11: The efficiency of extracting implicit features: (a) the com-
parison of iteration numbers when converging; (b) the comparison
of run time

6 CONCLUSION

In this paper, we investigate things categorization problem, which
aims to automatically associate things with semantic tags in IoT.
Things categorization is a crucial pre-requisite for a few valuable
services in IoT, such as things browsing, searching and recom-
mendation. We propose a novel things categorization algorithm
which learns a binary SVM classifier for each type of label. For
training SVM classifier, we extract two kinds of features: explicit
features and implicit features. More exactly, we extract three
types of explicit features: text feature from thing’s text profiles,
spatial feature from thing’s location distribution and temporal
feature from the hourly distribution of thing’s interaction. For
extracting the implicit feature, we firstly construct a relation graph
based on the learnt latent relation strength from thing’s interaction
behaviours, then exploit thing’s relatedness to generate implicit
feature. Finally, we conduct a comprehensive experimental study
based on three real datasets . Experimental results show that this
proposed approach significantly outperforms state-of-art methods
based on explicit features, showing the superiority of our approach
and also supporting the assumption that the latent relation strength
among things can boost things categorization.

As future work, we plan to facilitate more valuable services
in IoT based on the learnt latent relation strength of things from
their interaction behaviours, such as, things searching, clustering
and service discovery.
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activity recognition in a home setting. In Proceedings of the 10th
international conference on Ubiquitous computing, pages 1–9. ACM,
2008.

[33] D. Wang, H. Zhang, R. Liu, and W. Lv. Feature selection based on term
frequency and t-test for text categorization. CoRR, abs/1305.0638, 2013.

[34] Y. Wang, N. J. Yuan, D. Lian, L. Xu, X. Xie, E. Chen, and Y. Rui. Reg-
ularity and conformity: location prediction using heterogeneous mobility
data. In Proceedings of the 21th ACM SIGKDD International Conference
on Knowledge Discovery and Data Mining, pages 1275–1284. ACM,
2015.

[35] Z. Wu, Y. Xu, C. Zhang, Y. Yang, and Y. Ji. Towards semantic web
of things: From manual to semi-automatic semantic annotation on web
of things. In International Conference on Big Data Computing and
Communications, pages 295–308. Springer, 2016.

[36] Z. Xu, R. Jin, K. Huang, M. R. Lyu, and I. King. Semi-supervised
text categorization by active search. In Proceedings of the 17th ACM
conference on Information and knowledge management, pages 1517–
1518. ACM, 2008.

[37] X.-B. Xue and Z.-H. Zhou. Distributional features for text categorization.
IEEE Transactions on Knowledge and Data Engineering, 21(3):428–442,
2009.

[38] L. Yang, X. Cao, D. Jin, X. Wang, and D. Meng. A unified semi-
supervised community detection framework using latent space graph
regularization. IEEE transactions on cybernetics, 45(11):2585–2598,
2015.

[39] L. Yao and Q. Z. Sheng. Correlation discovery in web of things. In
Proceedings of the 22nd International Conference on World Wide Web,
pages 215–216, 2013.

[40] L. Yao, Q. Z. Sheng, B. J. Gao, A. H. Ngu, and X. Li. A model
for discovering correlations of ubiquitous things. In 2013 IEEE 13th
International Conference on Data Mining, pages 1253–1258, 2013.

[41] H. Yu, J. Yang, and J. Han. Classifying large data sets using svms
with hierarchical clusters. In Proceedings of the ninth ACM SIGKDD
international conference on Knowledge discovery and data mining, pages
306–315. ACM, 2003.

[42] S. Zelikovitz and F. Marquez. Transductive learning for short-text
classification problems using latent semantic indexing. International
Journal of Pattern Recognition and Artificial Intelligence, 19(02):143–
163, 2005.

[43] R. Zhang, L. Zhang, X.-J. Wang, and L. Guan. Multi-feature plsa for
combining visual features in image annotation. In Proceedings of the
19th ACM international conference on Multimedia, pages 1513–1516.
ACM, 2011.

[44] Z. Zheng, Y. Chen, T. He, F. Li, and D. Chen. Weight-rss: a calibration-
free and robust method for wlan-based indoor positioning. International
Journal of Distributed Sensor Networks, 2015:55, 2015.

Yuanyi Chen received his BSc degree from
Sichuan University in 2010, the master’s degree
from Zhejiang University in 2013. From Septem-
ber 2014 to September 2015, he was a jointly-
supervised PhD candidate at Hong Kong Poly-
technic University. He is currently a PhD can-
didate at Department of Computer Science and
Engineering, Shanghai Jiao Tong University. His
research topic includes the Internet of Things
and mobile computing.

Jingyu Zhang received the BSc degree from
Hunan Normal University in 2008 and the ME
degree from Chongqing Jiaotong University in
2011. He is currently a PhD candidate at the
Department of Computer Science and Engineer-
ing, Shanghai Jiao Tong University. His research
interests include mobile computing, computer
architecture, cache optimization, and adaptive
video streaming.

Liting XU received the BSc degree and Master
degree from Jiangsu University, China, in 2005
and 2007, respectively, both in computer science
and applications. During 20082011, she was a
Software R&D Engineer at TERAOKA Weigh-
System Pte. Ltd, Singapore. From 2011 to 2012,
she was with ASM Technology Singapore Pte
Ltd, as a Software R&D Engineer. After that,
she had been a Software Modelling Engineer
in Continental Automotive Singapore Pte Ltd.
In May. 2013, she joined Shanghai Jiao Tong

University, China, as Research Engineer. Her present research interests
include computer supported cooperative work (CSCW), applications of
distributed computing and web visualization on the Grid.

Minyi Guo received the B.S. and M.E. degrees
in Computer Science from Nanjing University,
China in 1982 and 1986, respectively. From 1986
to 1994, he had been an assistant professor of
the Department of Computer Science at Nan-
jing University. He received the Ph.D.degree in
information science from University of Tsukuba,
Japan in 1998. He is currently a chair professor
and the head of the Department of Computer
Science and Engineering at Shanghai Jiao Tong
University. His research interests include parallel

computing, distributed computing and mobile computing. He has more
than 300 publications in major journals and international conferences
in these areas. He is on the editorial board of the journals IEEE Trans-
actions on Parallel and Distributed Systems and IEEE Transactions on
Computers. He is a senior member of the IEEE, a member of the ACM,
IEICE IPSJ, and CCF.

Jiannong Cao received the BSc degree from
Nanjing University, China, in 1982, and the MSc
and PhD degrees from Washington State Uni-
versity, USA, in 1986 and 1990, all in computer
science. He is currently a chair professor and
the head of the Department of Computing at
Hong Kong Polytechnic University. His research
interests include parallel and distributed comput-
ing, computer networks, mobile and pervasive
computing, fault tolerance, and middle-ware. He
co-authored four books, coedited nine books,

and published more than 300 technical papers in major international
journals and conference proceedings. He has directed and participated
in numerous research and development projects and, as a principal
investigator, obtained over HK$25 million grants. He is the chair in
Technical Committee on Distributed Computing, IEEE Computer Soci-
ety. He has served as an associate editor and a member of editorial
boards of many international journals, and a chair and a member of
organizing/program committees for many international conferences. He
is a fellow of the IEEE, a member of the ACM, and a senior member of
China Computer Federation.




