
IEEE TRANSACTIONS ON INDUSTRIAL INFORMATICS, VOL. XX, NO. Y, MONTH 2017 1

Lossless In-network Processing in WSNs for
Domain-specific Monitoring Applications

Peng Guo, Jiannong Cao and Xuefeng Liu

Abstract—Internet of things (IOT) is emerging as sensing paradigms in many domain-specific monitoring applications in smart cities,
such as structural health monitoring (SHM) and smart grid monitoring. Due to the large size of the monitoring objects (e.g., civil
structure or the power grid), plenty of sensors need to be deployed and organized to be a large scale of multi-hop wireless sensor
networks (WSNs), which tends to have quite high transmission cost. In-network processing is an efficient way to reduce the
transmission cost in WSNs. However, implementing in-network processing for above domain-specific monitoring usually requires to
losslessly distribute a dedicate domain-specific algorithm into WSNs, which is much different from most existing in-network processing
works. This paper conducts a case study of a classic centralized SHM algorithm ERA, and shows how to losslessly and optimally
in-network process ERA, especially the typical feature extraction method SVD therein, in a WSN. Based on whether the intermediate
data can be processed together or not by sensor nodes, we respectively implement tree-based in-network processing of SVD and
chain-based in-network processing of SVD in WSNs. We prove that using an appropriate shallow light tree (SLT) as routes for
tree-based in-network processing of SVD, can achieve the approximation ratio 1 +

√
2 (in terms of transmission cost), while for the

chain-based in-network processing of SVD, we design two efficient heuristic algorithms for searching the optimal routes. Extensive
simulation results validate the efficiency of these proposed schemes that are customized for SVD-based IOT applications.

Index Terms—Wireless Sensor Network (WSN), In-network processing, Matrix computation, Routing scheme.

F

1 INTRODUCTION

Many domain-specific monitoring systems in smart cities,
such as structural health monitoring (SHM) [1] of skyscrap-
ers, state estimation in smart grid [2], and fault diagnosis of
machines [3], do not simply employ wireless sensing tech-
nology, but more and more simultaneously require some
domain-specific informatics analysis methods. When the
systems employ wireless sensor networks (WSNs), lots of
sensor nodes usually need to be deployed and cooperatively
monitor one common object (e.g., structure, smart grid or
big machine). After the sink node gathers the raw data
sampled at different regions of the object, a specialized
centralized algorithm is then executed to extract some global
features or estimate model parameters of the object.

However, implementing a WSN-based domain-specific
monitoring system in practice is usually much challenging,
which is much different from the conventional environ-
mental monitoring applications of WSNs. For instance, in
order to accurately capture the vibration response of civil
infrastructure in SHM, sensors are required to sample the
structure’s responses at high sampling rate (> hundreds of
Hz) for a “long enough” period of time [4]. Consequently,
the number of data collected at each sensor can reach the
level of tens of thousands. Transmitting such a large number

Peng Guo (e-mail: guopeng@hust.edu.cn) and Xuefeng Liu (e-mail:
csxfliu@gmail.com) are with the school of Electronic Information and Com-
munications, Huazhong University of Science and Technology, China.
Jiannong Cao (e-mail: csjcao@comp.polyu.edu.hk) is with the Department of
Computing, Hong Kong Polytechnic University, Hongkong.
Copyright c©2009 IEEE. Personal use of this material is permitted.
However, permission to use this material for any other purposes
must be obtained from the IEEE by sending a request to pubs-
permissions@ieee.org

of data to the sink becomes a challenge to resource-limited
sensor nodes, especially in multi-hop WSNs.

To deal with this challenge, in-network processing is
an effective way. With in-network processing, only the
important information or intermediate computation data
rather than the raw data is transmitted. Hence, the trans-
mission load in WSNs can be significantly reduced. How-
ever, implementing appropriate in-network processing in
WSN-based domain-specific monitoring system has typical
requirements. Different from conventional WSN applica-
tions where the in-network processing is simple (e.g., Max,
Sum or top-k) and typically limited to spatial or temporal
aggregation [5], or directly assumes a general aggregation
function (e.g., constant size of output), the in-network pro-
cessing in WSN-based domain-specific monitoring systems
should not simply assume a common aggregation function
in advance. Instead, they usually designate a specialized
centralized algorithm, and the WSN should exactly dis-
tribute the algorithm into sensor nodes for in-network pro-
cessing, so as to achieve the same quality as that of wired
centralized monitoring systems (we call it as lossless in-
network processing in this paper).

Unfortunately, it is not easy to exactly partition many
domain-specific algorithms into distributed in-network pro-
cessing functions in WSNs, as the algorithms are sophis-
ticated and require all raw data from the deployed nodes
for feature extraction, generally through various of matrix
computations such as eigen decomposition [6], singular
value decomposition (SVD) [7]. Distributing these matrix
computations into WSNs is not a trivia.

Besides the hardness of partitioning the domain-specific
algorithms, appropriate partition is also a key issue, in
consideration of assigning the partitioned computations to

This is the Pre-Published Version.
The following publication P. Guo, J. Cao and X. Liu, "Lossless In-Network Processing in WSNs for Domain-Specific Monitoring Applications," in
IEEE Transactions on Industrial Informatics, vol. 13, no. 5, pp. 2130-2139, Oct. 2017 is available at https://doi.org/10.1109/TII.2017.2691586.

© 2017 IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for all other uses, in any current or future media,
including reprinting/republishing this material for advertising or promotional purposes, creating new collective works, for resale or redistribution to
servers or lists, or reuse of any copyrighted component of this work in other works.

IEEE TRANSACTIONS ON INDUSTRIAL INFORMATICS, VOL. XX, NO. Y, MONTH 2017 2

a WSN with arbitrary topology. Inappropriate partition of a
centralized algorithm may be inefficient (or even hard) for
the computation assignment, as the raw data in the network
may not spread exactly as expected by the partitioned
computations.

In this paper, we take example of a classic SHM algo-
rithm: the eigensystem realization algorithm (ERA) [6] (with
typical matrix computation SVD therein), and show how
to losslessly in-network process ERA within an arbitrary
WSN. Then, we study the optimization of the in-network
processing, i.e, design the optimal routing scheme for the
in-network processing to minimize the transmission cost.
Contributions of the paper are summarized as follows.

• We implement two kinds (i.e., tree-based and chain-
based) of lossless in-network processing for SVD in
WSNs with arbitrary topology.

• We propose to employ a special shallow light tree (SLT)
with appropriate parameter as the routing scheme
for tree-based in-network processing of SVD, and
prove that the transmission cost of the SLT can
achieve approximation ratio 1 +

√
2.

• For chain-based in-network processing of SVD, we
propose an efficient greedy algorithm and a sim-
ulated annealing algorithm to search the optimal
routes.

Note that, as the key work in the paper is actually the
optimal lossless in-network processing of the widely used
SVD computation, the work can also be applied in many
other industrial monitoring applications which rely on SVD
factorization techniques to extract some features or patterns
from the sampled data. Examples are non-destructive test-
ing of machines [3] and state estimation of smart grid [8].
In addition, the proposed work can also help for distributed
computing of some big data mining applications (e.g., urban
traffic data [9] and smart meter data [10]) where the data
spreads in a large network and SVD computation is widely
employed.

The remainder of the paper is organized as follows. In
Section 2, we review the related works. Section 3 presents
the lossless in-network processing of ERA. The optimiza-
tion of the in-network processing is discussed in Section
4. Simulations are described in Section 5, followed by the
conclusions in Section 6.

2 RELATED WORK

Though lots of works on in-network processing have been
done for WSNs [11]–[13]. The works are rather to be called
as in-network aggregation, as usually a common and simple
aggregation function, such as averaging the raw data, find-
ing the maximum or top-K of the raw data, or just a general
common compression formation, is pre-assumed in these
works. Based on the aggregation functions, existing works
usually focus on designing efficient (in terms of communica-
tion cost [11], [12] or delivery delay [13]) routing schemes for
the in-network aggregation. However, unlike other monitor-
ing applications, SHM usually targets at detecting possible
structure damage, which is not straightforward but requires
much domain knowledge. Aggregation functions for SHM
should be specially designed according to a specialized

SHM algorithm for the damage detection. In other words,
we need to in-network process (or distribute) a dedicated
SHM algorithm in WSNs.

Unfortunately, most SHM algorithms are centralized and
require all raw data from the deployed nodes. Distributing
these algorithms into a WSN is not easy. In [14], a multi-level
damage localization strategy is proposed. In [15] and [16],
some SHM algorithms such as the ERA [6] and the FDD
[17] are made distributed through the idea of “divide and
conquer”. Other existing works in this area can be found in
[18] and [19]. However, one problem that generally exists
in these WSN-tailored distributed SHM algorithms is that
the damage detection capability cannot be guaranteed to
be comparable with the centralized SHM algorithm. This
is because each cluster divided in WSNs only uses its
local information, which can result in the ill-conditioned
problem [6], and this inaccuracy cannot be rectified via the
“stitching” process afterwards.

In recent works [1], the authors exactly distribute the
ERA algorithm into WSNs. Meanwhile, the ERA is equiv-
alently partitioned into pieces of computation tasks which
require only local data, and the intermediate data that can
be computed iteratively. This work takes one step to in-
network process ERA in WSNs. However, the paper does
not study how to efficiently in-network process ERA with
optimal routing scheme to achieve the minimum transmis-
sion cost.

3 DISTRIBUTION OF ERA

In this section, we first briefly introduce the classic SHM
algorithm ERA. Then, we show how to losslessly in-
network process ERA by exactly distributing the compu-
tation therein.

3.1 Principle of SHM

According to the vibration theory, every structure has ten-
dency to oscillate with much larger amplitude at some
frequencies than others. These frequencies are called natural
frequencies. For a structure with n degrees of freedom, it has
n natural frequencies. When a structure is vibrating under
one of its natural frequencies, it exhibits a corresponding
vibration pattern for this natural frequency. For example, the
natural frequencies and the corresponding mode shapes of a
n-degrees-of-freedom structure are denoted respectively as:

Ω = {ω1, ω2, ..., ωn},Ψ = [Ψ1,Ψ2, · · · ,Ψn] (1)

where ωi and Ψi = [φ1i , φ
2
i , · · · , φni]T (i = 1, ..., n) are

the ith natural frequency and the corresponding vibration
pattern, respectively. φki (k = 1, 2, ..., n) is the value of Ψi at
the kth degree of freedom.

ωi and Ψi are internal vibration characteristic of struc-
ture and are quite important in SHM. By comparing the
newly identified modal parameters with those obtained
when the structure is healthy, possible damage can be de-
tected and further located.

IEEE TRANSACTIONS ON INDUSTRIAL INFORMATICS, VOL. XX, NO. Y, MONTH 2017 3

3.2 The ERA algorithm

ERA algorithm is a classic SHM algorithm that can estimate
ωi and Ψi of a structure with vibration data sampled by
sensor nodes. Assume that a total ofM sensors are deployed
on a structure and the collected raw data are denoted as
xi = [xi(1), xi(2), ·, xi(Nori)], where xi(k) is the raw data
sampled by the ith sensor at kth time step and Nori is the
total number of data points collected in each node. With
gathering all these raw data, ERA first calculates the cross-
correlation function (CCF) between each nodes’ raw data.
Denote:

CCF = [CCFx1xref , · · · , CCFxMxref]T (2)

where xref is any element in set {xi}, and CCFxixref is
the CCF between xi and xref . CCFxixref can be calculated
with Welch’s method [22] which first calculates the cross
spectral density (CSD) between xi and xref and then imple-
ment inverse Fourier transform (IFFT) on the CSD to obtain
the CCF. Meanwhile, when calculating CSD, sufficient data
is required. For example, the raw data measured in each
round by a node may need to contain about nd = 20
overlapped segments of data, and each segment of data may
need to perform 2048-point IFFT. That is to say, Nori can be
more than twenty thousands. Therefore, it’s really difficult
to gather these large amount of raw data from the resource-
limited nodes to sink.

After obtaining CCF, ERA next establishes
a Hankel matrix as follows. Denote Y(j) =
[CCFx1xref (j), · · · , CCFxMxref (j)]T , j = 1, · · · , N/2.
CCFx1xref (j) is the jth component of CCFx1xref when
performing IFFT on the CSD, and N is number of points of
IFFT. Hence, the Hankel matrix can be denoted as:

H(k−1)=

Y(k) Y(k+α) ·· Y(k+βα−α)

Y(k+1) Y(k+α+1) ·· ··
...

Y(k+α−1) Y(k+2α−1) ·· Y(k+βα−1)

 (3)

To identify the natural frequency and vibration pattern
of the structure, we only need to calculate two Hankel
matrices H(0) and H(1) (H(0),H(1) ∈ RαM×β). α and β in
Eq. 3 correspond to the number of block rows and columns
in the Hankel matrix. Typical values of α and β are: α = 20
and β = 100, which are large enough to accurately identify
the modal parameters [6].

The ERA then performs SVD on H(0):

H(0)
svd
= USVT (4)

Both U and V are unitary matrices. In addition, ac-
cording to the vibration theory [20], for a structure whose
vibration is dominated by the first n modes, the rank of
H(0) is only 2n and the singular values in S has 2n non-zero

values: S =

[
S2n 0
0 0

]
, where S2n = diag(d1, · · · , d2n) are

singular values of H(0). Hence, H(0) can be re-expressed
as:

H(0)
svd
= U2nS2nVT

2n (5)

where U2n ∈ RαM×2n and V2n ∈ Rβ×2n are the first 2n
columns of the matrices U and V, respectively.

Finally, ERA uses Eq. 5 and the Hankel matrix H(1)
constructed from Eq. 3 to find two matrices A and Γ:

A = S
−1/2
2n UT

2nH(1)V2nS
−1/2
2n ,Γ = [I2n,0]U2nS

−1/2
2n (6)

With performing the eigen decomposition on A: A =
ΦΛΦ−1, the natural frequencies can be obtained according
to the eigen values in Λ, and the vibration pattern can be
calculated as ΓΦ.

3.3 Distribution of ERA
Generally, an in-network processing operation or function
can be denoted as F ({data}), where data can be raw data
sampled by sensor nodes or intermediate data which is
the computation result of another in-network processing
function. According to ERA, the raw data sampled by sensor
nodes follows such a process: raw data→CCF→H(0)→A&Γ
1. Since there are M raw data, M CCFxixref but unique
H(0) and unique A&Γ, we partition the computation of
ERA with a framework shown in Fig. 1. From Fig. 1, each
node pre-processes its raw data to be a CCF data (i.e.,
CCFxixref) with the Welch’s method mentioned above. To
facilitate each node to get the reference raw data xref for
executing Welch’s method, we take one sensor node’s raw
data as xref and let the node broadcast the data to all other
nodes. Though the broadcast brings extra communication
cost, it will facilitate sensor nodes to deliver the small-size
CCF (equal to N/2) instead of the large-size raw data (about
N ∗ nd/2 when 50% overlap of the segments).

After pre-processing the raw data into CCF data, the
network then begins to in-network process the SVD com-
putation (i.e., Equation 3 and 5) on Hankel matrix H(0)
which is constructed with the input CCF data. To realize
the in-network processing, we partition the computation
of Equation 3 and 5 into three functions: F1({CCF}),
F2(CCF,USV), and F3({USV }). In this context, the CCF
data is regarded as the “raw data” while the USV data
(i.e., the result of SVD computation) is regarded as the
“intermediate data”. The three functions are defined with
Algorithm 1, 2, and 3, respectively. It can be seen, with the
three in-network processing functions, each intermediate
sensor node transmits one USV data instead of a group of
CCF data.

Algorithm 1 F1({CCF})
1: Input: CCF data
2: Establish Hankel matrix with the CCF data using Eq. 3
3: Perform SVD on the matrix using Eq. 5
4: Return: USV data

Note that, with the increment of the matrix’s size, the
computation cost of F3({USV }) at the intermediate sensor
node may be much high, as the node needs to compute
two times of reversing SVD and then perform SVD on the
merged matrix. If the computation capability of nodes in
WSNs is limited, F3({USV }) may not be allowed to run
on the sensor nodes. This restriction will highly affect the

1. H(1) can be obtained with H(0) and Y(1 +βα)

IEEE TRANSACTIONS ON INDUSTRIAL INFORMATICS, VOL. XX, NO. Y, MONTH 2017 4

Raw data
Raw data Raw data CCF data H(0) Α&Γ

Pre-processing by broadcasting In-network processing of SVD Processing at sink

USV
SVD

Fig. 1 Distribution of ERA.

Algorithm 2 F2(CCF,USV)

1: Input: CCF data and USV data
2: if The corresponding Hankel matrix of the USV data con-

tains no more than 4 nodes’ CCF data then
3: Calculate Hankel matrix with the USV data using Eq. 5
4: Update the Hankel matrix with CCF data using Eq. 3
5: Perform SVD on the Hankel matrix using Eq. 5
6: else
7: Directly update the USV data with the CCF data using

methods in [1], [7]
8: end if
9: Return: updated USV data

Algorithm 3 F3({USV })
1: Input: USV data
2: Calculate the corresponding Hankel matrixes with the USV

data using Eq. 5
3: Merge the Hankel matrixes into one using Eq. 3
4: Perform SVD on the new Hankel matrix using Eq. 5
5: Return: updated USV data

routing design, which motivates us to design a novel routing
scheme in Section 4.2.

3.4 Analysis of the typical computation mode

As we are concerned with the transmission cost in the in-
network processing, here we analyze the sizes of the three
in-network processing functions’ results. Denote | ∗ | as the
data size of ∗. The size of CCF at each node is |CCF | = N/2,
and the size of USV of Hankel matrix for i nodes is |USVi| =
αi∗2n+(2n)2 +2n∗β, where the three terms correspond to
the data size of U2n, S2n and V2n, respectively. Considering
N = 4096, n = 5, α = 20 and β = 100, |USVi| ≈ iN/20+P ,
where P = (2n)2 + 2n ∗ β = 1100 is a constant value. It can
be seen, transmitting USV instead of a group of CCF data is
much more efficient. Moreover, it can be seen, for each in-
network processing of SVD with one node’s CCF data, the
size of the USV always increases with a constant r = N

20 .
Based on the analysis, we have:

|F1(CCF,CCF)| = |USV2| = P + 2 ∗ r (7)
|F2(CCF,USVi)| = |USVi+1| = P + (i+ 1) ∗ r (8)
|F3(USVi, USVj)| = |USVi+j | = P + (i+ j) ∗ r (9)

From the equations above, the size of the in-network
processing functions is always a constant value P plus
a variant, and the variant is always proportional to the
number of CCF data involved. We name this typical com-
putation mode as partial processing.

F1 F1 F1

F2 F3

Sink

(a) Tree-based processing

F1
F2

F2
F2

F2

F2

Sink

(b) Chain-based processing

Fig. 2 Two types of in-network processing.

4 OPTIMAL IN-NETWORK PROCESSING OF SVD
In this section, we discuss how to optimally in-network pro-
cess the SVD of ERA in WSN so as to minimize the overall
transmission cost in the network. Since we’ve established
the in-network processing functions for the SVD, our target
is actually to find the optimal in-network processing routing
for SVD.

We consider two cases for the routing design. If
F3({USV }) is acceptable in WSNs, sensor nodes can pro-
cess two intermediate data, which means each node can
serve as parent node for two non-leave neighboring nodes.
Hence, a tree-based routing can be designed for the in-
network processing, as shown in Fig. 2 (a). However, in
some applications of WSNs, the sensor nodes’ computation
resources may be too limited. Hence, F3({USV }) may not
be acceptable in these WSNs, due to the high computation
cost of F3({USV }). Under this circumstance, the intermedi-
ate data can only be processed with raw data. Thus, the in-
network processing has to follow a single path to the sink in
WSNs, as shown in Fig. 2 (b). Only the nodes on the path can
execute in-network processing with F2(CCF,USV), while
nodes outside of the path have to deliver their raw data to
the nodes on the path for processing. We call this kind of
routing as chain-based routing.

In the following, we discuss the optimization of these
two typical routing patterns for in-network processing, re-
spectively.

4.1 Optimal tree-based in-network processing for SVD
For tree-based in-network processing, our target is to design
the optimal tree for the in-network processing. We notice
that F1({CCF}) can actually be executed with only one
input CCF data. Since |F1(CCF)| < |CCF |, leaf nodes of
an in-network processing tree should process their local CCF
first, and then transmit the processing results (i.e., the USV)
to their parents. The parent nodes do not need process their
local CCF data in advance. Only after they receive the USV
data from their children nodes, they begin to process the
USV data and their local CCF data with F2(CCF,USV).

IEEE TRANSACTIONS ON INDUSTRIAL INFORMATICS, VOL. XX, NO. Y, MONTH 2017 5

As |F2(CCF,USVi)| = |F3(USV1, USVi)|, nodes as-
signed with F2(CCF,USV) is actually equivalent to be as-
signed with |F3(USV1, USVi)|, in view of the transmission
cost. Hence, considering the fact that all the data transmitted
are USV data, we regard that all sensor nodes have gotten
their own USV data with F1({CCF}) in advance (though
the parent nodes do not need to do this). Hence, our task
is actually to answer such a general question: how to opti-
mally “aggregate” the USV data with a unique “aggregation
function” F3({USV }?

Based on the analysis above, we formulate the problem
of finding the optimal in-network processing tree (denoted
as OIT problem) for SVD (or more generally for the typical
partial processing computation) as follows.

- Given: a network G = (V,E), where V is the set of
nodes andE is the set of edges between neighboring nodes.
Initially, each node has data with equal size P + r.

- Assume: the data can always be aggregated by a node
with aggregation function F3({data}) whose result’s size
is P + (m + 1)r, where m is the number of descendant
nodes sending data to the aggregation node.

- Objective: construct an optimal aggregation tree rooted
by a given sink node, so as to minimize the overall
transmission cost in G.

It can be seen, the OIT problem is a special case of the
traditional aggregation problems which have been proved
to be NP-hard [21]. In the following, we present a sub-
optimal tree for OIT, with which the transmission cost is
less than 1 +

√
2 times that of the optimal tree.

Denote Topt = (V,E′) as the optimal in-network pro-
cessing tree for OIT problem, where E′ is the set of edges in
Topt. Let w(ei) as the weight of edge ei, and P+ri is the size
of data transmitted on ei, where ri = ki ∗r (ki is an integer).
The overall transmission cost of the in-network processing
on Topt can be denoted as:

Copt =
∑
ei∈E′

(P + ri)w(ei) (10)

We first give a lower bound on Copt as follows.

LEMMA 1. The cost of using an optimal in-network pro-
cessing tree for OIT problem is bounded from below by Copt ≥
P � cMST + r � cSSP , where cMST is the cost of the minimum
spanning tree (MST) of all nodes in V (i.e., the sum of all edges’
weights in MST), and cSSP is the sum of the costs of all the
shortest paths to the sink node.

Proof. According to Equation 10, we have:

Copt =
∑

ei∈E′

(P + ri)w(ei)

= P �
∑

ei∈E′

w(ei) +
∑

ei∈E′

ri � w(ei)
(11)

It can be seen, there are two parts of cost in Copt.
One is P �

∑
ei∈E′ w(ei), and another is

∑
ei∈E′ ri � w(ei).

Meanwhile,
∑
ei∈E′ w(ei) is the cost of Topt. Since Topt

contains all nodes in V , its cost must be no less than cMST ,
i.e.,

∑
ei∈E′ w(ei) ≥ cMST .

In addition, according to characteristic of partial process-
ing computation, the variant part ri of the data size is

cumulated directly during the computation. Since each node
has raw data with variant part of size r, this part of size will
be losslessly cumulated during the in-network processing.
Therefore,

∑
ei∈E′ ri �w(ei) is equivalent to the cost for that

all sensor nodes transmit their data with size r to the sink
along Topt without any aggregation. It is well known that,
gathering all nodes’ data to the sink without aggregation
will have the minimum cost when the transmissions follow
a shortest path tree. Hence,

∑
ei∈E′ ri �w(ei) must be no less

than r � cSSP .
Therefore, the lemma follows immediately.

Since finding Topt is NP-hard, we propose a sub-optimal
tree for in-network processing of partial processing compu-
tation mode. In particular, we establish a shallow light tree
(SLT) [23] with certain parameter as the sub-optimal tree.
SLT is a spanning tree that balances the performance of the
SPT (“shallow”) and the MST (“light”). The basic idea of
constructing SLT is simple: conducting deep first searching
(DFS) within MST, if a node is becoming not “shallow” to
the root, the path from the node to the sink in MST will be
replaced by the path from the node to the sink in SPT. Metric
for “shallow” is defined as the ratio α of the distance from
the node to root in MST to that in SPT.

To optimally in-network process SVD with SLT, we need
to calculate the optimal parameter α of SLT in a WSN with
arbitrary topology. According to [23], given a graph G =
(V,E) and a number α > 1, a SLT has the following two
properties:

• The distance between any node and the root in the
SLT is no more than α times the length of the shortest
path from that node to the root in G.

• The total cost of a SLT cSLT is no more than α+1
α−1

times that of the MST of the graph G;

Theorem 1. The cost of using a SLT with α = 1 +
√

2
(denoted by SLT1+√2) for OIT problem is no more than 1+

√
2

times that of the optimal in-network processing tree.

Proof. Since the variant part ri of the data size is cumulated
during the computation in SLT1+√2 while the constant part
P of the data size is maintained on each edge in SLT1+√2,
the total cost of using SLT1+

√
2 for OIT problem can be

expressed as

CSLT (1+
√
2) = P � cSLT

1+
√

2
+

∑
ui∈V

r � path(ui, t)|SLT
1+

√
2

≤ P �
1 +
√
2 + 1

1 +
√
2− 1

cMST + r � (1 +
√
2)cSSP

= P � (1 +
√
2)cMST + r � (1 +

√
2)cSSP

≤ (1 +
√
2)Copt

(12)

Therefore, the theorem follows immediately.

4.2 Optimal chain-based in-network processing for
SVD
For the optimal chain-based in-network processing of
SVD, our target is to find an optimal path for the

IEEE TRANSACTIONS ON INDUSTRIAL INFORMATICS, VOL. XX, NO. Y, MONTH 2017 6

nodes executing the chain-based in-network processing (i.e.,
F2(CCF,USV)) as well as the optimal routes for the re-
maining nodes without in-network processing in WSN, so
as to minimize the overall transmission cost in the network.
For convenience, we call the path for nodes executing the
chain-based in-network processing as in-network processing
path.

Finding the optimal in-network processing path is still a
NP-complete problem, as it’s easy to reduce the travel-
ling salesman problem (TSP) to the problem (by assuming
r → 0). Hence, we design the heuristic algorithms for the
problem. Meanwhile, we design a greedy algorithm and a
simulated annealing algorithm.

4.2.1 The proposed greedy algorithm

Our motivation on designing the greedy algorithm is based
on the observation that: though detouring the in-network
processing path to pass more nodes for processing their local
CCF data will save transmission cost at the beginning, the
size of the processing result increases gradually and will
become much larger than that of raw data, making it finally
not worthy to detour the path across even one more node for
in-network processing. In other word, it should eventually
follow the shortest path to the sink. Hence, to design the
greedy algorithm, we assume a shortest path as the initial
in-network processing path at first, and then gradually modify
the path by detouring it step by step as long as the overall
transmission cost in WSN can be reduced.

Hence, a key issue to implement the greedy algorithm is
the calculation of the metric, i.e., the overall transmission
cost in WSNs when given any in-network processing path.
To calculate it, it is needed to ascertain the corresponding
optimal routes for other nodes outside of the path. To this
end, we notice that: the transmission load on the in-network
processing path, i.e., P + m ∗ r, is determined only by the
number of nodes (i.e., m) delivering data to the path. In
view of the size of the transmission load, we can regard
that: once a node’s CCF data is delivered to the in-network
processing path, it will be processed to be an independent
virtual data with size r, and the virtual data will be directly
sent to sink along the path without being further processed.

Thus, to calculate the overall transmission cost in WSNs
for a given in-network processing path, we separately calculate
the transmission cost for the delivery of each CCF data
from its source node to the sink, including the CCF data
transmission stage and the virtual data transmission stage.
To minimize the cost of CCF data transmission stage of a
node (say ni), we need to select the optimal node (say nj)
on the in-network processing path to process ni’s CCF, and
the delivery of ni’s CCF data must follow the shortest path
from ni to nj . In this way, the optimal routing for ni’s CCF
transmission stage is obtained, and the total cost for the
delivery of ni’s CCF to the sink via nj can be calculated. We
present the process on calculating the overall transmission
cost in WSNs for a given in-network processing path with
Algorithm 4.

Another issue is how to select the initial in-network pro-
cessing path (or the start node n1). To this end, the algorithm
searches each node’s shortest path to the sink in advance to
calculate the corresponding overall cost. The shortest path

Algorithm 4 Calculation of the overall transmission cost in
WSNs for a given in-network processing path

1: Input: the in-network processing path P = {n1, n2, . . . , nk =
sink}

2: Initialize overall transmission cost in WSN Call(P) = 0
3: for each node ni ∈ V − {n1, n2, . . . , nk = sink} do
4: for each node nj ∈ P do
5: Calculate the length Lij of the shortest path between

ni and nj in G.
6: Calculate the length ljk of the path between nj and nk

in P .
7: Calculate the cost for delivery ni’s CCF to sink via nj

as Cj
ni

= (P + r) � Lij + r � ljk.
8: end for
9: Calculate the minimum cost for delivery ni’s CCF to sink

as Cni = min{Cj
ni
}, j ∈ [1, k].

10: Record the corresponding path as the optimal routing for
ni’s CCF delivery.

11: Call(P) = Call(P) + Cni

12: end for
13: Return: Call(P) = Call(P) + P � l1k + r �

∑k−1
m=1 lmk

with the minimum overall cost is selected as the initial in-
network processing path.

Hence, with the basic ideas introduced above, we for-
mally present the proposed greedy algorithm with Algorithm
5.

Algorithm 5 The proposed greedy algorithm

1: for each node ni ∈ G do
2: Calculate the shortest path between ni and sink, and

record the path as Pi.
3: Execute Algorithm 4 with Pi, and get Call(Pi).
4: end for
5: Call = min{Call(Pi)}
6: Record the node whose corresponding overall cost is Call

as n1, and record the corresponding path as P1.
7: for j : 1→ |V | do
8: for each neighbor node nj

t of nj that is not on Pj do
9: Find the shortest path Pt between nj

t and the sink.
10: Set combined path P ′t = {n1, n2, . . . , nj , nj

t} ↔ Pt,
where ∗ ↔ ? means to connect ∗ to ?.

11: Execute Algorithm 4 with P ′t, and get Call(P ′t).
12: end for
13: if min{Call(P ′t)} < Call then
14: Record the nj ’s neighbor node whose corresponding

cost is min{Call(P ′t)} as nj+1, and record the corre-
sponding combined path as Pj+1.

15: Call = min{Call(P ′t)}
16: else
17: Break, and return: Pj .
18: end if
19: end for

4.2.2 The simulated annealing algorithm

To avoid the local optimum in the greedy algorithm, we pro-
pose a two-tier simulated annealing algorithm as follows.
In the inside tier of the simulated annealing algorithm, a
given initial in-network processing path randomly detours to a
neighbor node with probability related to the corresponding
overall transmission cost. When the inside tier of the anneal-
ing process terminates, it returns the overall transmission
cost for the final in-network processing path. In the outside

IEEE TRANSACTIONS ON INDUSTRIAL INFORMATICS, VOL. XX, NO. Y, MONTH 2017 7

(a) The proposed greedy algo-
rithm with cost 2.35 ∗ 106units
and time 1.9s

(b) The simulated annealing al-
gorithm with cost 2.29∗106units
and time 156s

Fig. 3 The in-network processing path with two heuristic
algorithms.

tier, we randomly select an initial shortest path as the input
of the inside tier with probability related to the return of the
inside tier. Detailed description of the two-tier simulated
annealing algorithm is omitted for briefness.

Taking an instance of a random deployment with 100
sensor nodes, Fig. 3 shows the results of the proposed
greedy algorithm and the simulated annealing algorithm.
It can be seen, though the in-network processing path with
the proposed greedy algorithm leads to a bit higher overall
transmission cost than that with the simulated annealing
algorithm, the running time of the greedy algorithm is far
smaller than that of the latter.

5 SIMULATIONS

To evaluate the performance of the proposed schemes, we
use random-generated networks by randomly deploying M
nodes in area Z with size L ∗ L. The transmission range
of each node is denoted by R. The weight of each edge
between neighboring nodes is regarded to be proportional
to the edge’s length.

We leverage two metrics to evaluate the performance of
the proposed schemes. One is the total transmission cost
in WSNs. In particular, we define one transmission unit
as the transmission cost for a node transmitting one bit
information. The sizes of raw data and intermediate data
are calculated according to section 3.4. Another metric is
the running time of the proposed schemes. We execute the
schemes on a computer with CPU type Intel i3-2330M
2.2GHz and 2Gbyte of RAM, and measure the running time
with Matlab7.0 tool.

5.1 Simulations for tree-based in-network processing
We first compare the transmission cost of the proposed in-
network processing scheme with the traditional centralized
ERA. For convenience, we name the proposed scheme as
decentralized ERA in the simulations. As the decentral-
ized ERA contains two phases, i.e., pre-processing and in-
network processing, the reference raw data is assumed to
be delivered along MST in pre-processing phase, while the
USV data is aggregated along the proposed SLT in in-
network processing phase. As for the traditional centralized
ERA, we assume that all the raw data is gathered along SPT
in the WSN.

Two scenarios are created to evaluate their performance
in different network densities and network scales. We first

fix the number of nodes to be 100 but gradually increase
the network density by increasing R from 20 to 40. The
area in this scenario is fixed to be 120 ∗ 120. Then we
maintain the network density at a certain level but gradually
increase the network scale by increasing the number of
nodes from 100 to 500. Note that, to maintain the network
density, when increasing the number of nodes, the size of
the deployment area also needs to be increased. In both
scenarios, 20 simulations are performed for each parameter
set, and the average value of each scheme is calculated.

Fig. 4(a)(b) shows the transmission cost of the two
schemes at different transmission ranges and network
scales, respectively. From Fig. 4(a)(b), the transmission cost
of the proposed decentralized ERA can be one order of mag-
nitude smaller than that of the centralized ERA. Therefore,
with lossless in-network processing, the proposed decen-
tralized ERA does significantly reduce the transmission cost
in WSNs without any quality loss for the structural health
monitoring. Furthermore, we can see from Fig. 4(b) that,
the gap between the two schemes’ costs increases sharply
with the network scale, showing that the advantage of the
decentralized ERA becomes more remarkable in large scale
of WSNs.

We further specially evaluate the transmission cost of the
in-network processing phase in the proposed decentralized
ERA. In particular, we compare the transmission cost of
the proposed SLT-based in-network processing with those
of the SPT-based in-network processing and the MST-based
in-network processing. The simulation results are shown in
Fig. 4(c)(d). It can be seen, the transmission cost of SLT-
based in-network processing is always smaller than those
of the SPT-based in-network processing and the MST-based
in-network processing. Meanwhile, the cost of SLT-based
in-network processing and that of SPT-based in-network
processing increase steadily with the network density and
network scale, while the cost of MST-based in-network
processing various irregularly and sometime can be lower
than that of SPT-based in-network processing.

5.2 Simulations for chain-based in-network processing

For chain-based in-network processing, we only compare
the performance of the proposed greedy algorithm with
that of the proposed simulated annealing algorithm in the
in-network processing phase. To get the ground truth for
reference, we also implement the brute force algorithm for
optimal chain-based in-network processing in small scale in
the simulation. We measure the transmission cost and the
running time of the three algorithms.

Fig. 5 shows the results of the three algorithms with
slightly increasing the network scale from 15 to 19. It can
be seen, the transmission costs of the proposed greedy
algorithm and the simulated annealing algorithm are both
very close to the optimal cost. However, the running time
of the greedy algorithm is far smaller than that of annealing
algorithm. And, when the network scale increases to 19, the
running time of the brute force algorithm is more than one
hour, while that of the simulated annealing algorithm is 4.3s
and that of the greedy algorithm is just 0.34s.

We further evaluate the performance of the greedy al-
gorithm and the simulated annealing algorithm in different

IEEE TRANSACTIONS ON INDUSTRIAL INFORMATICS, VOL. XX, NO. Y, MONTH 2017 8

 0

 5

 10

 15

 20

 25

 20 25 30 35 40

T
ra

n
s
m

is
s
io

n
 C

o
s
t
(

*
1
0

7
 u

n
it
s
)

Transmission Range

Centralized ERA

Decentralized ERA

(a)

 0

 5

 10

 15

 20

 25

 100 200 300 400 500

T
ra

n
s
m

is
s
io

n
 C

o
s
t
(

*
1
0

8
 u

n
it
s
)

Network Scale

Centralized ERA

Decentralized ERA

(b)

 2

 2.5

 3

 3.5

 4

 4.5

 20 25 30 35 40

T
ra

n
s
m

is
s
io

n
 C

o
s
t
(

*
1
0

6
 u

n
it
s
)

Transmission Range

In-network process with SPT

In-network process with MST

In-network process with SLT

(c)

 0

 10

 20

 30

 40

 50

 100 200 300 400 500

T
ra

n
s
m

is
s
io

n
 C

o
s
t
(

*
1
0

6
 u

n
it
s
)

Network Scale

In-network process with SPT

In-network process with MST

In-network process with SLT

(d)

Fig. 4 Simulation results for tree-based in-network processing.

 2

 3

 4

 5

 6

 7

 15 16 17 18 19

T
ra

n
s
m

is
s
io

n
 C

o
s
t

(
*1

0
5
 u

n
it
s
)

Network Scale

The greedy algorithm

The simulated annealing algorithm

The brute force algorithm

(a) Transmission Cost vs. Scale

15 16 17 18 19
10

−1

10
0

10
1

10
2

10
3

10
4

Network Scale

R
u

n
n

in
g

 T
im

e
 (

s)

The greedy algorithm

The simulated annealing algorithm

The brute force algorithm

(b) Running Time vs. Scale

Fig. 5 Chain-based in-network pro-
cessing with small scale

 0

 1

 2

 3

 4

 5

 20 40 60 80 100

T
ra

n
s
m

is
s
io

n
 C

o
s
t

(
*1

0
6
 u

n
it
s
)

Network Scale

The greedy algorithm

The simulated annealing algorithm

(a) Transmission Cost vs. Scale

 0

 2

 4

 6

 8

 20 40 60 80 100

R
u

n
n

in
g

 T
im

e
 (

 *
1

0
2
 s

)

Network Scale

The greedy algorithm

The simulated annealing algorithm

(b) Running Time vs. Scale

Fig. 6 Chain-based in-network pro-
cessing with different scales

 0

 2

 4

 6

 8

 20 25 30 35 40

T
ra

n
s
m

is
s
io

n
 C

o
s
t

(
*1

0
6
 u

n
it
s
)

Transmission Range

The greedy algorithm

The simulated annealing algorithm

(a) Transmission Cost vs. Density

 0

 3

 6

 9

 12

 20 25 30 35 40

R
u

n
n

in
g

 T
im

e
 (

 *
1

0
2
 s

)

Transmission Range

The greedy algorithm

The simulated annealing algorithm

(b) Running Time vs. Density

Fig. 7 Chain-based in-network pro-
cessing with different densities

network densities and network scales. Parameters are set
in a similar way to that for tree-based in-network process-
ing above. Fig. 6 and Fig. 7 show the simulation results.
From Fig. 6, with the increment of network scale, both
the transmission costs and running times of the two algo-
rithms increase as expected. Meanwhile, the transmission
cost with the greedy algorithm is even lower than that with
the simulated annealing algorithm when the network scale
is over 60. This is because larger network scale tends to
result in unsteady performance of the simulated annealing
algorithm. As for the performance of running time, the
greedy algorithm far outperforms the simulated annealing
algorithm, as shown in Fig. 6(b).

From Fig. 7, with the increment of transmission range,
the running time with the greedy algorithm increases a
little, while that with the simulated annealing algorithm
decreases. This is because larger transmission range facili-
tates the greedy algorithm to have more candidate nodes
to detour the in-network processing path, which is more
prone to get the optimal path but requires more computa-

tion time. However, for the simulated annealing algorithm,
larger transmission range facilitates the in-network process-
ing path of the algorithm to arrive earlier at the sink, at
the cost of irrational detour of the path. Comparing these
two algorithms, the greedy algorithm still have close trans-
mission cost to that with the simulated annealing algorithm
while much lower running time than that of the latter.

6 CONCLUSIONS

In this paper, we discuss the lossless in-network process-
ing of a given complex centralized algorithm in WSNs
with arbitrary topology. We take example of a classic SHM
algorithm ERA which contains typical feature extraction
method SVD, and succeed to distribute ERA into WSNs.
Meanwhile, we implement lossless tree-based in-network
processing and chain-based in-network processing of SVD,
respective for the case of unlimited computation capability
and the case of limited computation capability of sensor
nodes. Furthermore, we propose to utilize a certain SLT
with appropriate parameter as the optimal routing scheme

IEEE TRANSACTIONS ON INDUSTRIAL INFORMATICS, VOL. XX, NO. Y, MONTH 2017 9

for the tree-based in-network processing, and prove that
the transmission cost with such a SLT can achieve approx-
imation ratio 1 +

√
2. For the optimization of the chain-

based in-network processing which is a novel problem,
we propose two efficient heuristic algorithms. Simulation
results validate the efficiency of the proposed algorithms.

ACKNOWLEDGEMENT

The work presented in this paper was supported in part by
the NSF of China with Grant 61572217 and 61572218, and
the NSFC/RGC Joint Research Scheme with RGC No: N
PolyU51912 and NSFC Key Grant with project No: 61332004.
Xuefeng Liu is the corresponding author.

REFERENCES

[1] Xuefeng Liu, Jiannong Cao, Wen-zhan Song, Peng Guo, Zongjian
He, Distributed Sensing for High-Quality Structural Health Monitoring
using WSNs, IEEE Transactions on Parallel and Distributed System,
vol. 26, no. 3, pp. 738-747, 2015.

[2] Y.-F. Huang, S. Werner, and et al., State estimation in electric power
grids: Meeting new challenges presented by the requirements of the future
grid, IEEE Signal Processing Magazine, vol. 29, no. 5, pp. 33-43,
2012.

[3] H. T. Pham and B.-S. Yang, Estimation and forecasting of machine health
condition using arma/garch model, Mechanical Systems and Signal
Processing, vol. 24, no. 2, pp. 546-558, 2010.

[4] S. Doebling, Damage identification and health monitoring of structural
and mechanical systems from changes in their vibration characteristics: a
literature review, Los Alamos National Lab., Tech. Rep., 1996.

[5] B. Yu, J. Li, and et al., Distributed data aggregation scheduling in
wireless sensor networks, in INFOCOM, 2009, pp. 2159-2167.

[6] J. Juang and R. Pappa, Eigensystem realization algorithm for modal
parameter identification and model reduction, Journal of Guidance,
Control, and Dynamics, vol. 8, no. 5, pp. 620-627, 1985.

[7] H. Zha and H. Simon, On updating problems in latent semantic
indexing, SIAM Journal on Scientific Computing, vol. 21, no. 2, pp.
782-791, 1999.

[8] Julio Cesar Stacchini de Souza, Tatiana Mariano Lessa Assis, Bikash
Chandra Pal, Data Compression in Smart Distribution Systems via
Singular Value Decomposition, IEEE Transactions on Smart Grid, Vol.,
No.1, 2017, pp. 275-284.

[9] Muhammad Tayyab Asif ; Srinivasan Kannan ; Justin Dauwels ;
Patrick Jaillet, Data Compression Techniques for Urban Traffic Data,
IEEE Symposium on Computational Intelligence in Vehicles and
Transportation Systems (CIVTS), 2013.

[10] Yi Wang; Qixin Chen; Chongqing Kang; Qing Xia; Yuekai Tan;
Zhijian Zeng; Min Luo, Residential Smart Meter Data Compression and
Pattern Extraction via Non-negative K-SVD, IEEE Power and Energy
Society General Meeting (PESGM), 2016.

[11] Yan Wu ; Dept. of Comput. Sci., Purdue Univ., West Lafayette,
IN ; Fahmy, S. ; Shroff, N.B., On the Construction of a Maximum-
Lifetime Data Gathering Tree in Sensor Networks: NP-Completeness and
Approximation Algorithm, in INFOCOM, Phoenix, AZ, Apr. 2008.

[12] Weifa Liang, and Yuzhen Liu, Online Data Gathering for Maximizing
Network Lifetime in Sensor Networks, IEEE Transactions on Mobile
Computing, vol. 6, no. 1, 2007, pp. 2-11.

[13] XiaoHua Xu, Mo Li, XuFei Mao, Shaojie Tang, A Delay-Efficient
Algorithm for Data Aggregation in Multihop Wireless Sensor Networks,
IEEE Transactions on Parallel and Distributed Systems, vol. 22, no.
1, 2011, pp. 163-175.

[14] G. Yan, W. Guo, S. Dyke, G. Hackmann, and C. Lu, Experimental
validation of a multi-level damage localization technique with distributed
computation, Smart Structures and Systems, vol. 6, no. 5-6, pp. 561-
578, 2010.

[15] A. Zimmerman and M. Shiraishi, Automated modal parameter estima-
tion by parallel processing within wireless monitoring systems, Journal
of Infrastructure Systems, vol. 14, no. 1, pp. 102-113, 2008.

[16] X.Liu, J. Cao, and et al., Energy efficient clustering for wsn-based
structural health monitoring, in IEEE INFOCOM, 2011, pp. 1028-1037.

[17] R. Brincker, L. Zhang, and P. Andersen, Modal identification from
ambient responses using frequency domain decomposition, in Proceed-
ings of the 18th international modal analysis conference, 2000, pp.
625-630.

[18] T. Fu, A. Ghosh, E. Johnson, and B. Krishnamachari, Energy-
efficient deployment strategies in structural health monitoring using
wireless sensor networks, Structural Control and Health Monitoring,
2011.

[19] Y. Gao, B. Spencer Jr, and M. Ruiz-Sandoval, Distributed computing
strategy for structural health monitoring, Structural control and health
monitoring, vol. 13, no. 1, pp. 488-507, 2006.

[20] D. Inman, Engineering vibrations, Prentice Hall, 2006.
[21] A. Goel and D. Estrin, Simultaneous Optimization for Concave

Costs: Single Sink Aggregation or Single Source Buy-at-Bulk, Proc.
ACM/SIAM Symp. Discrete Algorithms, pp. 499-505, 2003.

[22] F. Harris, On the use of windows for harmonic analysis with the discrete
fourier transform, Proc. of the IEEE, vol. 66, no. 1, pp. 51-83, 1978.

[23] S. Khuller, B. Raghavachari, N. Young, Balancing minimum spanning
trees and shortest-path trees, Algorithmica, Vol. 14, no. 4, pp 305-321,
1995.

Peng Guo received his M.S. and Ph.D. de-
gree from Huazhong University of Science and
Technology, Wuhan, China, in 2003 and 2008,
respectively. He is currently an Associate Pro-
fessor at the school of Electronic Information
and Communications in Huazhong University of
Science and Technology. His research interests
include wireless sensor networks, distributed
computing and in-network processing. He has
served as a reviewer for several international
journals/conference proceedings.

Jiannong Cao received the MSc and PhD de-
grees in computer science from Washington
State University, Pullman, Washington, in 1986
and 1990, respectively. He is currently the head
and chair professor in the Department of Com-
puting at Hong Kong Polytechnic University,
Hong Kong. His research interests include paral-
lel and distributed computing, mobile computing
and big data analytics. He is a IEEE Fellow and
a senior member of the China Computer Feder-
ation. He has served as a member of editorial

boards of several international journals, a reviewer for international
journals/conference proceedings, and also as an organizing/program
committee member for many international conferences.

Xuefeng Liu received his M.S. and Ph.D. de-
gree from Beijing Institute of Technology, China,
and University of Bristol, UK, in 2003 and 2008,
respectively. He is currently an Associate Pro-
fessor at the school of Electronic Information
and Communications in Huazhong University of
Science and Technology. His research interests
include wireless sensor networks and in-network
processing. He has served as a reviewer for sev-
eral international journals/conference proceed-
ings.

