
IEEE TRANSACTIONS ON WIRELESS COMMUNICATIONS, VOL. X, NO. X, XXXXX 2017 1

Lossless In-network Processing and Its Routing
Design in Wireless Sensor Networks

Peng Guo, Xuefeng Liu, Jiannong Cao and Shaojie Tang

Abstract—In many domain-specific monitoring applications of wireless sensor networks (WSNs), such as structural health monitoring,
volcano tomography and machine diagnosis, the raw data in WSNs are required to be losslessly gathered to the sink where a
specialized centralized algorithm is then executed to extract some global features or model parameters. To reduce the large raw
data transmission, in-network processing is usually employed. However, different from most existing in-network processing works that
pre-assume some common computation/aggregation functions, in-network processing of a given centralized algorithm requires to
exactly partition the algorithm first and then appropriately assign the partitioned computations into WSNs. We call it as lossless in-
network processing, which has not gotten much studied. Lossless in-network processing raises two questions: 1) what pattern should
a centralized algorithm be partitioned into so that the partitioned computations can be flexibly assigned into a WSN with arbitrary
topology? and 2) for each partition pattern how to design efficient routing for the resource-limited sensor nodes? These two questions
can be called as topology-constrained computation partition problem and computation-constrained routing design problem, respectively.
In this paper, we first introduce some general patterns on the topology-constrained computation partition. Then, with the computation
constraints in the patterns, we present a series of novel routing schemes customized for different cases of computation results. The
work in this paper can also serve as a guideline for distributed computing of big data where the data spreads in a large network.

Index Terms—Wireless Sensor Network (WSN), In-network processing, Matrix computation, Routing scheme

F

1 INTRODUCTION
Recently, we are seeing that wireless sensor networks
(WSNs) are extending their applications into some
domain-specific areas, such as structural health monitor-
ing (SHM) [1], volcano tomography [2], state estimation
in smart grid [3], and fault diagnosis of machines [4].
In these domain-specific applications of WSNs, usu-
ally large amount of sensor nodes are deployed and
cooperatively monitor a common huge object (e.g.,
structure, volcano, smart grid and large machine) instead
of individual events in the network. After the sink node
gathers the raw data sampled at different positions of
the object, a specialized centralized algorithm is then ex-
ecuted to extract some global features or estimate model
parameters of the object. We call such kind of monitoring
applications as global collaboration monitoring (GCM).

To obtain the global feature or model parameter, GCM
usually requires each node to sample sufficient raw data.
For example, to estimate the mode shape of a structure in
structural health monitoring, the sampled local vibration
data at each sensor node can be of a size about several
thousands of bytes [5]. To reduce the large amount
raw data transmission in WSNs, in-network processing
is an efficient way. With in-network processing, only
the important information or intermediate computation

P. Guo (e-mail: guopeng@mail.hust.edu.cn) and X. Liu are with
Huazhong University of Science and Technology, China. E-mail: {guopeng,
lxfeng0527}@hust.edu.cn
J. Cao is with Hong Kong Polytechnic University, Hong Kong, China. E-mail:
csjcao@comp.polyu.edu.hk.
S. Tang is with University of Texas at Dallas, Richardson, TX 75080. E-mail:
shaojie.tang@utdallas.edu.

data rather than the raw data is transmitted. Hence, the
transmission load in WSNs can be significantly reduced.

However, implementing in-network processing in
WSNs for GCM is not easy. Due to the global collab-
oration on common object monitoring, the algorithm for
GCM usually works with data-level collaboration, which
is much different from the feature-level or decision-level
fusion employed in conventional WSNs applications.
Fig. 1 shows the difference among the three collaboration
modes. For the feature-level or decision-level fusion,
each sensor can process its own data independently
to extract feature or make decision without exchang-
ing information with others. Therefore, the in-network
processing of these kinds of fusion tasks is usually
simple (e.g., MAX, SUM or top-k) and typically lim-
ited to spatial or temporal aggregation [6], or directly
assumes a general aggregation function (e.g., constant
size of output) [13]. However, in WSNs for GCM, the
in-network processing of data-level collaboration should
not simply assume a common aggregation (or feature
extraction) function in advance, because processing the
local aggregation results (or features) instead of the raw
data cannot achieve the same accuracy with that of the
processing on the raw data [14], or even have a far devi-
ated output [15]. Typical data-level collaboration based
GCM applications are SHM [1], volcano tomography [2],
and fault diagnosis of machines [4]. In these applications,
usually a dedicate domain-specific centralized algorithm
is designated, and a WSN needs to exactly (or losslessly)
distribute the centralized algorithm into sensor nodes for
in-network processing, so as to achieve the same quality
as that of the centralized GCM system (which is so-called

The following publication P. Guo, X. Liu, J. Cao and S. Tang, "Lossless In-Network Processing and Its Routing Design in Wireless Sensor Networks," in
IEEE Transactions on Wireless Communications, vol. 16, no. 10, pp. 6528-6542, Oct. 2017 is available at https://doi.org/10.1109/TWC.2017.2724516.

This is the Pre-Published Version.

©2017 IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for all other uses, in any current or future media,
including reprinting/republishing this material for advertising or promotional purposes, creating new collective works, for resale or redistribution to
servers or lists, or reuse of any copyrighted component of this work in other works.

IEEE TRANSACTIONS ON WIRELESS COMMUNICATIONS, VOL. X, NO. X, XXXXX 2017 2

Decision
making

Decision

Decision
making

Feature-level fusion

Decision
making

Data-level fusion

Decision-level fusion

Raw dataFeature
extraction

Raw

data

Feature

Decision
making

Feature
extraction

(a) (b)

Feature
extraction

Raw

data

Feature

Feature
extraction

Feature

Feature

(c)

Fig. 1 Algorithms with collaboration (a) at decision level (b) at feature level (c) at data level.

lossless in-network processing in this paper).
Unfortunately, it is not easy to exactly partition the

domain-specific GCM algorithms into distributed in-
network processing functions, as many of these algo-
rithms contain matrix computations, such as eigen de-
composition (ED) or singular value decomposition (SVD)
for feature extraction in SHM [1], and matrix inversion in
least square estimation (LSE) for model parameter esti-
mation in volcano tomography [2]. For each step in these
matrix computations, almost all raw data are involved.
However, to in-network process the computation, it is
expected to partition the computation into a series of
distributed functions each of which requires only part
of the raw data. In particular, each distributed function
assigned to a sensor node needs only the raw data of
the node as well as the raw data from the node’s de-
scendant designated by the routing scheme. Considering
the arbitrary topology of the WSN in practice, finding
appropriate partition of a centralized algorithm for any
WSN is not a trivial.

In this paper, we separate the problem of lossless in-
network processing into two parts: 1) finding the general
computation partition patterns that can be independent
of (or say universal to) the network topology; 2) de-
signing the computation-constrained routing for each
partition pattern. The objective of the routing design is
to minimize the total transmission cost in WSNs, with
the constraints of the computation partition patterns.

Contributions of the paper are summarized as follows.
• We introduce some general patterns on lossless

computation partition, with which the partitioned
computations can be flexibly assigned into a WSN
with arbitrary topology.

• For each computation partition pattern, we list sev-
eral typical rules on the relationship between raw
data’s size and the size of computation results (i.e.,
the intermediate data), which widely exist in prac-
tical GCM algorithms. Though finding the optimal
routing with these rules is generally NP-hard, we
find this kind of routing problem can come down
to an appropriate combination of the classic routing
strategies (e.g., MST, SPT, TSP), with an insight of

routing for the above data-size rules.
• Based on the above hint, we design a series of

computation-constrained routing schemes, respec-
tively for each rule of the data sizes in each partition
pattern. Extensive simulation results show the effi-
ciency of the schemes.

Note that, the work in the paper, either the computa-
tion partition patterns or the routing ideas, is not limited
to lossless in-network processing in WSN, but can also
serve as a guideline for distributed computing of big
data where the “raw data” spreads in a large network.

The remainder of the paper is organized as follows. In
Section 2, we review the related works. Section 3 presents
the general lossless computation partition patterns. Sec-
tion 4 introduces the proposed computation-constrained
routing schemes for different cases of lossless in-network
processing. Simulations are described in Section 5, fol-
lowed by the conclusions in Section 6.

2 RELATED WORK

Though lots of works on in-network processing have
been done for WSNs [7] in last decade, most of them
work at decision level or feature level. Sometimes they
are rather called as in-network aggregation, as they
usually pre-assumed a common aggregation function,
such as averaging the raw data, finding the maximum
or top-K of the raw data, or just a general compression
formation [8] [9]. The pre-assumed aggregation functions
usually ignore the types of input data. Thus, the sizes
of aggregation/processing results simply follow a sin-
gle rule. However, this paper addresses the in-network
processing of data-level collaboration algorithm, which
needs to partition the algorithm into several functions
with considering different types of input data. Hence,
the size of processing result at different sensor nodes
may follow different rules, which makes the routing
design much different from existing routing works for
data aggregation [10]–[13].

Nevertheless, there are still some works handling the
in-network processing of data-level collaboration. Aim-
ing at least square estimation (LSE), the classic matrix-

IEEE TRANSACTIONS ON WIRELESS COMMUNICATIONS, VOL. X, NO. X, XXXXX 2017 3

involved computation, some works study lossless in-
network processing of LSE, i.e., distributed LSE, in
WSNs [16]–[18]. However, the efficient assignment of
LSE into WSNs is not addressed. In other word, these
works do not further study the efficient routing design
for the distributed LSE.

Another classic data-level collaboration computation
is ED or SVD, which helps to extract the object’s features
from the raw data. In [21], the authors study the net-
worked computation of SVD for structural health moni-
toring in WSN, with designing the optimal routing tree
for in-network processing of SVD computation. Howev-
er, they suppose that the SVD computation is performed
upon only the raw data at some selected nodes (i.e.,
cluster headers). Once the raw data is processed into the
SVD results, the results are directly delivered to the sink
without being further processed. Therefore, although
the routing structure in [21] is based on a tree, the
computation structure is simply based on clustering. In
other word, it is actually a conventional routing scheme
for clustered WSNs, with given certain computation task
for only cluster headers.

However, we know that the SVD results actually can
further be iteratively processed and updated with the
raw data at each node [22]. In our previous work [1], we
take one step on the routing design for iterative comput-
ing SVD within WSNs. However, as the paper mainly ad-
dresses partitioning a certain SVD-contained centralized
algorithm, the general computation-constrained routing
in the paper does not get much studied. In this paper,
we give an extensive study on the routing for lossless
in-network processing, with consideration a series of
typical computation cases in practical algorithms. The
work in the paper is not only suitable to the routing in
WSNs but also of some significance to the distributed
computing of big data in the Internet.

It is noted that, parallel and distributed computing
(PDC) [19], which has been heavily researched in the last
forty years, seems to address the same problem as ours.
In fact, PDC is intrinsically different mainly in following
two aspects. Firstly, conventional PDC usually focuses
on how to utilize the computation power of a given num-
ber of computation utilities to accomplish a computation
task with minimum time, while in-network processing
a centralized algorithm in WSN for GCM targets at
minimizing the communication cost. Secondly, the data
used in computation tasks with PDC are NOT generated
from the computational entities and initially can be
freely assigned to different entities (e.g., by assuming a
common memory) according to how the computational
task is decomposed. However, when designing lossless
in-network processing of the centralized algorithms, it
is highly desirable that each computation entity (i.e. a
sensor node), when implements its sub-task, uses only
its own data or data from its neighbors.

3 COMPUTATION PARTITION

In a WSN employing lossless in-network processing,
each sensor node processes its raw data and the received
data according to its computation assigned, and then
forward the processing result to its parent node desig-
nated by the routing. The processing result usually will
be further processed at the parent node along with other
data (either raw data or other processing result). Finally,
the processing result will arrive at the sink node, and
it is desired to be the same as that of the centralized
algorithm calculated with all the raw data.

Since the processing results at sensor nodes generally
can be further processed in in-network processing, there
is a hint that in-network processing of a given central-
ized algorithm requires the algorithm can be partitioned
into some incremental-like computation patterns. In this
section, we give a detailed discussion of the computation
partition patterns.

3.1 Expected properties of partitioned functions
Generally, a lossless in-network processing function at
a sensor node, i.e., the computation partitioned and
assigned to the node, can be expressed as f({⋆}), where
⋆ can be either raw data x sampled by sensor nodes
or intermediate data s which is the processing result of
another in-network processing function.

We expect to partition the computation of a given
centralized algorithm into a series of f({⋆}) functions
nested together, i.e., the output of one f({⋆}) function is
one of the input of another f({⋆}) function. To assign the
nested f({⋆}) functions to a WSN, it is desired that the
input data of each f({⋆}) function assigned to a sensor
node comes from the nearby nodes. However, due to
the arbitrary topology of WSNs, the sensor nodes in the
WSN may not spread around as required by the nested
f({⋆}) functions. Hence, it is needed to carefully design
the nested f({⋆}) function so that the assignment of the
functions can be universal to any WSN. To this end, we
expect the f({⋆}) function to have following properties:

• Property A: {⋆} in f({⋆}) can have any number of
elements. In other word, any node in a WSN can
execute f({⋆}) no matter how many neighbors it
has.

• Property B: The formation of f({⋆}) can be inde-
pendent of the content of the data. In other word,
the formation of f({⋆}) keeps unchanging no matter
which node the data in set {⋆} comes from.

• Property C: f({⋆}) can be executed iteratively or
recursively with new input data. In other word, the
intermediate data can always be further processed
by f({⋆}) with other intermediate data or raw da-
ta. This property allows that any sensor node can
perform f({⋆}) as long as an in-network processing
path passes by it.

It can be seen, the above three properties make the
assignment of the nested functions free from the net-

IEEE TRANSACTIONS ON WIRELESS COMMUNICATIONS, VOL. X, NO. X, XXXXX 2017 4

work’s density, nodes’ individuation and routing path,
respectively, and hence free from the network topology.
Note that, these properties are not necessary condition,
but a guideline that we proposed for computation par-
tition. We are seeing that many classic matrix computa-
tions (such LSE, SVD) have successfully been partitioned
into functions with the properties [17], [24]. Sometimes,
property A may not hold, as some function f({⋆}) may
require at least a certain number of input data [1]. To this
end, a clustering algorithm can be performed in advance,
so that f({⋆}) can be conducted with the unit of cluster
which has sufficient input data.

In addition, f({⋆}) is also expected to have low com-
plexity, so that it can be performed by sensor nodes.
Generally, this property is easy to achieve, as each f({⋆})
is performed with input of only a small portion of the
data, and the MCU in sensor nodes today is becoming
more powerful and cheaper (e.g., the price of low-power
MCU STM32F103 with frequency 70MHz and RAM
48KB is less than 1$).

3.2 Types of processing functions
In view of input data type (either raw data x or interme-
diate data s), we divide the f({⋆}) functions into three
categories: f1({x}), f2({x}, s) and f3({s}), as shown in
Fig. 2 (a). All the input of f1({x}) must be raw data.
In other word, f1({x}) processes only the raw data x.
f2({x}, s) can process one intermediate data s with some
raw data {x}. f3({s}) can process multiple intermediate
data {s} and “merge” them to be one s. Generally,
f3({s}) requires more computation cost.

A sensor node may be assigned with one or several
functions above, according to the routing scheme. For
example, if multiple x and one s are routed to a sensor
node, to process these data into one s, the node needs
to be assigned with either one f1({x}) and one f3({s})
(nested as f3(s, f1({x})), i.e., the output of f1({x}) is
an input of f3({s})), or just one f2({x}, s). However, if
multiple s are routed to the node, the node must to be
assigned with f3({s}).

For an intermediate node, it has at least one s received
from others and one x sampled by itself. Generally, we
assign the node with one f2({x}, s) first, and then with
one f3({s}) if the node has multiple s. As for a leaf
node, sometimes it may be assigned with f1({x}), while
in more cases it cannot be assigned any function, as
f1({x}) function usually requires more than one input
raw data for computation. Under this circumstance, the
leaf node has to deliver its raw data to a cluster leader
for executing f1({x}).

3.3 Computation partition patterns
We expect that a centralized computation algorithm
can be partitioned into the above three categories of
functions nested together. However, it may not be fea-
sible for some centralized algorithms. For example, the
distributed least square estimation D-LSE algorithm in

[17] does not contain f3({s}), which means two s data
cannot be in-network processed into one s. Under this
circumstance, the intermediate data s has to always be
in-network processed with raw data x by f2({x}, s).

Generally, for any centralized computation algorithm,
there are three cases of computation partition for loss-
less in-network processing, in view of the categories of
functions partitioned: i) there is only f1({x}) function
in the computation partition; ii) there are f1({x}) and
f2({x}, s), but no f3({s}) in the computation partition
(e.g., D-LSE algorithm [17]); and iii) all the three cat-
egories of functions exist in the computation partition
(e.g., SVD in ERA algorithm [1]). The three cases have
different constraints on the function nesting structures.
We discuss them as follows.

- For the first case, as there is only one f1({x}) func-
tion, the processed result of a sensor node can not
be furthered processed, which means the centralized
algorithm actually can not be partitioned. For this
case, sometimes people may directly assign the cen-
tralized algorithm to some cluster leader nodes in
WSNs, each of which performs the algorithm with
partial raw data, as shown in Fig. 2 (b). This idea
is similar to “divide-and-conquer”, which however
does not guarantee the same result of the centralized
computation with all raw data.

- For the second case, as there is no f3({s}), i.e.,
any two intermediate data s can not be processed
together, the intermediate data s should always be
processed with raw data x by f2({x}, s). Hence,
all the f2({x}, s) functions must be nested one by
one, thus forming a chain-like nesting structure, as
shown in Fig. 2 (c). It can be seen, with the chain-
like nesting structure, the centralized algorithm is
actually calculated in a recursive way.

- For the third case, as any two functions’ output can
be the input of a third function f3({s}), there is little
limitation on the function nesting structure. Hence,
the functions can be nested like an aggregation tree,
as shown in Fig. 2(d).

We call these nesting structures as computation par-
tition patterns. Note that, these patterns represent the
structure of the computations partitioned, instead of the
structure of routes. More specifically, each vertex in Fig. 2
does not refer to one sensor node’s computation or data.
As analyzed above, a sensor node may be assigned
with multiple functions. The functions need to be nested
according to the patterns in Fig. 2. For example, if a
sensor node has two s and one x, the node will be
assigned with one f2({x}, s) and one f3({s}) which are
nested as either the structure shown in the dotted box 1
or that shown in dotted box 2 in Fig. 2(d).

Different computation partition patterns impose dif-
ferent constraints on the routing design. In addition, the
computation ability of sensor nodes and the variation
of data size during the processing also much affect the
routing design. In next section, we discuss the routing

IEEE TRANSACTIONS ON WIRELESS COMMUNICATIONS, VOL. X, NO. X, XXXXX 2017 5

f1({x})

x

x

x

s0 f2(x,si)

x

f3({s})

si sj

sj

si+1 sk

x s raw data intermediate data

(a) Three categories of lossless in-network processing functions

f1({x})

x x x

s0

f1({x})

x x x

s0

f1({x})

x x x

s0

(b) Cluster-based computation partition pattern

f1({x})

x

x

f2(x,s0)

x

f2(x,s1)

x

s
s0 s1 s2

(c) Chain-based computation partition pattern

f1({x})

x

x

f2(x,si)

x

f1({x})

x

x

f3({s})

f2(x,sm)

x

s

si sj

sk

sm

(d) Tree-based computation partition pattern

1

2

Fig. 2 Lossless in-network processing functions and some general partition patterns.

design constrained by these computation issues.

4 COMPUTATION-CONSTRAINED ROUTING

In this section, we show how to apply the above general
computation patterns into WSNs with arbitrary topol-
ogy. More specifically, we discuss the efficient routing
design under constraints of these computation patterns.
The term of “efficient” here refers to the total transmis-
sion cost in WSNs with the routing.

4.1 Motivations for computation-constrained rout-
ing design

Finding the optimal routing design for lossless in-
network processing is usually NP-hard (will be ex-
plained later). However, we notice that there are usually
some certain rules on the data sizes of processing results
in practical engineering algorithms, such as the constant
size of processing result for the distributed LSE [17],
the linear size increment of processing result for the
distributed SVD [1]. These typical rules give us hint on
designing the efficient routing. For example, it is well
known that: i) for constant size of data transmission at
each node in WSNs, the optimal routing is the minimum
spanning tree (MST) or Hamilton path; ii) for additive
size of data transmission (i.e., the size of processing
result is the sum of the input data sizes) at each node,
the optimal routing is the shortest path tree (SPT).

However, designing efficient routing for lossless in-
network processing is not a simple application of above
classic routing strategies. Attributing to the computation
involved, there are two more specialties in the routing
design for lossless in-network processing, besides the
computation constraints.

• Firstly, the data transmitted in the routing has two
different rules in the data size. One is the raw
data whose size is generally constant, and another

is the intermediate data whose size usually fol-
lows a typical and uniform rule (e.g., constant or
linear increment). These double rules contained in
the routing imply a mixture of the classic routing
strategies.

• Secondly, the linear increment rule of the interme-
diate data size can also be regarded as a mixture
of two routing strategies. One is for constant size
of data transmission corresponding to the constant
part of the intermediate data, and another is for
additive size of data transmission corresponding to
the increased part of the intermediate data (which
is generally the sum of the increased part of input
intermediate data). Note that, we should not really
partition the intermediate data into these two parts
for separate transmissions.

With the analysis above, we get motivation that: the
optimal routing design for lossless in-network processing of
many practical engineering algorithms, actually can come
down to an appropriate combination of the classic routing
strategies. Based on this motivation, in this section we
show how to appropriately combine and modify the
classic routing strategies to be efficient routing for loss-
less in-network processing. In particular, as this special
routing design highly depends on the rules of data
sizes, we discuss the routing design for different cases of
data sizes and summarize the corresponding proposed
routing algorithms with Table 1, where | ⋆ | denotes the
size of ⋆, and |s| + + denotes the case that |s| increases
with the processing.

4.2 Routing for chain-based computation partition
pattern
In chain-based computation, as the intermediate data
s should always be processed with raw data x, the
network must not initiate more than one intermediate
data s. Hence, the in-network processing has to follow a

IEEE TRANSACTIONS ON WIRELESS COMMUNICATIONS, VOL. X, NO. X, XXXXX 2017 6

Table 1 The proposed computation-constrained routing algorithms

Routing for chain-based partition pattern Routing for tree-based partition pattern

|s| < |x| |s| ≥ |x| |s| < |x| |s| ≥ |x|
|s| = c S-TSP vs CC-TSP DS-TSP vs CC-TSP |s| = c LD-MST vs CC-MST DS-MST vs CC-MST

|s|++ SP-TSP vs DSP-TSP |s|++ DS-SLT vs CC-SPT

single path to the sink in the WSN, and nodes outside of
the path need to deliver their raw data to the nodes on
the path for processing. We call the single path on which
nodes execute the chain-based computation as in-network
processing path.

Finding the optimal in-network processing path to min-
imize the total transmission cost in WSNs is a new
problem, and can be easily proved to be NP-complete
by reducing the travelling salesman problem (TSP) to the
problem (with assuming |s| → |x|). Designing heuristic
algorithms for this new problem much depends on the
relationship between |s| and |x|. We discuss the routing
design for different cases as follows.

4.2.1 Case 1: |s| is constant and |s| < |x|
Case analysis: In many recursive computation applica-
tions where the chain-based partition pattern can be ap-
plied, the intermediate data s is usually about the model
parameter whose size is smaller than that of the raw
data, i.e., |s| < |x|. During the recursive computation,
the parameter will be updated with each added raw
data, while the parameter’s size keeps constant. Hence,
to save transmission cost of the in-network processing,
we expect as many as possible sensor nodes to join the
recursive computation, so as to transmit the intermediate
data instead of their raw data. Thus, the optimal in-
network processing path is a Hamilton path from one
sensor node to the sink, passing by all other sensor
nodes. However, Hamilton path does not always exist
in a given WSN, and finding a Hamilton path in the
WSN is NP-complete.

We design a semi-TSP routing scheme (named as S-
TSP) to find an appropriate in-network processing path in
a given WSN G. The basic idea of S-TSP is as follows:

- Construct a complete graph G′ based on G, by
regarding the shortest path between each pair of
non-neighboring nodes in G as their edge in G′. Ac-
cording to graph theory, there must exist Hamilton
path in G′.

- Employ a TSP greedy algorithm in G′ to get a
Hamilton path. The path may pass some nodes
multiple times in G, and as a result contains some
circles on it, as shown in Fig. 3 (a). We call this path
in G as semi-Hamilton path, and regard it as the
initial in-network processing path.

- Update the in-network processing path by appropri-
ately removing some nodes from the circles on
the in-network processing path, if this operation can
reduce the total transmission cost in G. The solid
line in Fig. 3 (b) is the final in-network processing path

(which still passes some nodes double times), and
the dashed line is the path of raw data delivery.

In addition, we can also directly employ the TSP
greedy algorithm on G. Thus, a single but very long
path passing part of the nodes in G can be obtained.
With regarding this path as the in-network processing path,
sensor nodes outside of the path will send their raw data,
along the shortest routes, to the nearest nodes on the
path for processing. We name this routing scheme as
CC-TSP (computation-constrained TSP) scheme. Fig. 3
(c) shows the result of CC-TSP in the same network G.

4.2.2 Case 2: |s| is constant and |s| ≥ |x|
Case analysis: There is also some recursive computation
application where |s| ≥ |x|. For instance, in distributed
least square estimation in [17], the size of intermediate
data always equals to (or a little larger than) that of
raw data. For this case, it is no need to expect the in-
network processing path to pass each node in G, as sending
raw data instead of the intermediated data may have
lower cost. However, to avoid long-distance raw data
transmission, we still expect the in-network processing path
detour its way to pass by the “near” area of most nodes,
so as to let the nodes send their raw data to the path
with a short distance.

We design a dominating set (DS) plus TSP based
routing scheme (named as DS-TSP) for this case. The
basic idea is as follows.

- Find a minimum dominating set (MDS) in G.
- Find a Hamilton path passing all the dominant

nodes to the sink. The Hamilton path obtained is
the in-network processing path, and all other nodes
outside of path send their raw data to the nearest
nodes on the path (i.e., their corresponding domi-
nant nodes).

Fig. 3 (d) shows the result of DS-TSP in the above
network. Note that, in DS-TSP we can even use a gen-
eralized definition of dominating set. Instead of only
dominating one-hop neighboring nodes in traditional
DS, we regard the dominating range (i.e., the upper
bound of hop counts between dominated node and
dominating node) to be ⌊|s|/|x|⌋.

4.2.3 Case 3: |s| increases with the processing
Case analysis: For the recursive computation of another
well-known matrix computation, i.e., SVD [24], the size
of intermediate data increases with each addition of raw
data in the processing. In particular, the size usually

IEEE TRANSACTIONS ON WIRELESS COMMUNICATIONS, VOL. X, NO. X, XXXXX 2017 7

(a) Semi-Hamilton path (b) Result for S-TSP (c) Result for CC-TSP (d) Result for DS-TSP

(e) Initial path in SP-TSP (f) Detour the path in SP-TSP (g) Result for SP-TSP (h) Result for DSP-TSP

Fig. 3 Examples of the routing schemes for chain-based computation.

increases linearly with the number of raw data involved
in the processing. Hence, we assume |sk| = C + k ∗ r,
where C and r < |x| is a constant, k is an integer and
usually equals to the number of raw data involved in
sk. It can be seen, the size of intermediate data on the
in-network processing path increases step by step, and may
become too large for the in-network processing to worth
further detouring the path across more nodes. In other
word, the in-network processing path finally may need to
go along the shortest path to the sink without a little
detour. However, at beginning it still needs to try to
detour itself to pass more nodes to reduce their raw
data transmissions. Thus, the in-network processing path
under this case is actually a combination of TSP and the
shortest path.

To find the optimal combination of TSP and the short-
est path for the in-network processing, we design a SP-
TSP scheme. The basic idea of SP-TSP is as follows.

- Enumerate each node in G, and take the shortest
path from one node to the sink as the initial in-
network processing path P = {n1, n2, ·} (ni represents
the ith node in P), if the path leads to the minimum
total transmission cost (which is the sum of the cost
on gathering the raw data x of all the nodes outside
of P to P along the shortest paths and transmitting
s to the sink along P). As shown in Fig. 3 (e).

- Update P with one of n1’s edge plus the shortest
path from n1’s neighbor on the edge to the sink,
if the updated P leads to lower total transmission
cost; find the optimal updated P by enumerating
each edge of n1. As shown in Fig. 3 (f).

- Further update P by checking each edge of the
second node in the current P , and then the third,
until the last node (i.e., the sink). Fig. 3 (g) shows
the result of SP-TSP in the above network.

We give the formal description of SP-TSP with Algo-
rithm 1.

Algorithm 1 The proposed SP-TSP algorithm

1: Input: a WSN G = (V,E)
2: for each node ni ∈ G do
3: Calculate the shortest path between ni and sink, and

record the path as Pi.
4: Calculate the total transmission cost in G with Pi, and

return Call(Pi).
5: end for
6: Call = min{Call(Pi)}
7: Record the node whose corresponding total cost is Call as

n1, and record the corresponding path as P1.
8: j = 1
9: while j ≤ |V | do

10: Construct set S = 0.
11: for each nj ’s neighbor node nj

t that is not on Pj do
12: Calculate the shortest path Pt between nj

t and the
sink.

13: Construct path P ′
t = {n1, n2, . . . , nj , nj

t} ↔ Pt, where
∗ ↔ ⋆ means to connect ∗ to ⋆.

14: Calculate the total transmission cost with P ′
t, and

return Call(P ′
t).

15: if Call(P ′
t) < Call then

16: Add the corresponding node nj
t into S.

17: Call = Call(P ′
t)

18: end if
19: end for
20: if S == 0 then
21: Break, and return: Pj .
22: end if
23: j++.
24: Record the node in S whose corresponding total cost is

Call as nj , and the corresponding path as Pj .
25: end while

A key issue in Algorithm 1 is the calculation of the
total transmission cost in G with a given in-network
processing path. To calculate it, it is needed to ascertain

IEEE TRANSACTIONS ON WIRELESS COMMUNICATIONS, VOL. X, NO. X, XXXXX 2017 8

the corresponding optimal routes for other nodes outside
of the path. Since the intermediate data’s size increases
with the processing, the optimal route for nodes outside
the in-network processing path is not just the shortest path
to it, which is different from the above two cases.

To this end, we notice that: the size of the intermediate
data on the in-network processing path, is determined only
by the number of nodes contributing their raw data to
the path. Hence, we can regard that: once a node’s raw
data is delivered to the in-network processing path, it will
be processed to be an independent virtual data with size
r, and the virtual data will be directly sent to sink along
the path without being further processed.

Thus, to calculate the total transmission cost in G with
a given in-network processing path, we separately calculate
the transmission cost for the delivery of each raw data
from its source node to the sink, including the raw
data transmission stage and the virtual data transmission
stage. To minimize the cost of raw data transmission
stage of a node (say ni), we need to select the optimal
node (say nj) on the in-network processing path to process
ni’s raw data, and the delivery of ni’s raw data must
follow the shortest path from ni to nj . In this way, the
optimal routing for ni’s raw data transmission stage is
obtained, and the total cost for the delivery of ni’s raw
data to the sink via nj can be calculated. We present the
procedure on calculating the total transmission cost in G
with a given in-network processing path with Algorithm 2.

Algorithm 2 Calculation of the total transmission cost
with a given in-network processing path

1: Input: the in-network processing path P = {n1, n2, . . . , nk =
sink}

2: Initialize total transmission cost in WSN Call(P) = 0
3: for each node ni ∈ V − {n1, n2, . . . , nk = sink} do
4: for each node nj ∈ P do
5: Calculate the length Lij of the shortest path between

ni and nj in G.
6: Calculate the length ljk of the path between nj and

nk in P .
7: Calculate the cost for delivery ni’s raw data to sink

via nj as Cj
ni

= |x| · Lij + r · ljk.
8: end for
9: Record Cni = min{Cj

ni
}, j ∈ [1, k], and ascertain the

corresponding node on P .
10: Record the shortest path between ni and the ascertained

node on P as the route for ni’s raw data delivery.
11: Call(P) = Call(P) + Cni

12: end for
13: Return: Call(P) = Call(P) + C · l1k + r ·

∑k−1
m=1 lmk

Since SP-TSP is based on greedy strategy which may
lead to local optimum, we additionally design a DS-
based SP-TSP routing scheme (named as DSP-TSP). The
basic idea of DSP-TSP is as follows. Considering that
dominant nodes can spread nearly evenly in the net-
work, if path P in SP-TSP is also allowed to detour
its way to pass by a nearby dominant node via the
shortest path to the node, it may help SP-TSP to jump
out of the local optimum, thus possibly achieving better

performance. It can be seen, the detour strategy of DSP-
TSP is a tradeoff between the coarse-grained searching
strategy of CDS-TSP (with unit of only dominant node)
and the fine-grained searching strategy of SP-TSP (with
unit of neighboring node). Fig. 3 (h) shows the result of
DSP-TSP in the above network.

4.3 Routing for tree-based computation partition
pattern
In tree-based computation, as any two intermediate data
can be in-network processed together, a tree-based rout-
ing scheme can be designed for the processing in WSNs
with little constraint. Finding the optimal in-network
processing tree is similar to the optimal aggregation tree
problems [8] [10] [11], and have been proved to be NP-
hard [20] [11]. However, considering the typical rules
on the change of data sizes in the processing of many
matrix computation, we can design some special routing
schemes customized for the in-network processing. In
this section, we show how to design such routing ac-
cording to different relationships between |s| and |x|.

Note that, for the case of |s| = |x|, it is well known that
the optimal in-network processing tree with minimum
total transmission cost is the MST. And, for the case that
|s| always equals to the sum of all input data’s sizes, the
optimal in-network processing tree is the shortest path
tree (SPT). As for the other cases, we discuss the routing
design as follows.

4.3.1 Case 1: |s| is constant and |s| < |x|
Case analysis: For the case that |s| is constant and
|s| < |x|, the leaf nodes (transmitting x) in an in-network
processing tree always have higher transmission cost
than that of intermediate nodes (transmitting s). Hence,
to construct an efficient in-network processing tree, a
spanning tree with less leaf nodes is preferred. In other
word, the optimal in-network processing tree for this
case is a tradeoff between MST and a spanning tree with
the minimum number of leaves.

To find an efficient tradeoff between MST and the
spanning tree with minimum number of leaves, we
propose a leaf deletion scheme based on MST (named
as LD-MST). The basic idea of LD-MST is as follows.

- Construct the MST in G (e.g., with the classic Prim
algorithm) and regard the MST as the initial in-
network processing tree.

- For each leaf node ni in the current in-network
processing tree, set the neighboring leaf node nj

to be ni’s new parent if the corresponding change
of total transmission cost (including the changes of
ni’s cost, nj ’s cost and ni’s former parent’s cost) is
negative and maximum.

- Re-execute the above operation until there is no cost
improvement. Fig. 4 (a) shows the result of LD-MST
in the above network.

For comparison, we also design a computation-
constrained MST scheme (called as CC-MST) based on

IEEE TRANSACTIONS ON WIRELESS COMMUNICATIONS, VOL. X, NO. X, XXXXX 2017 9

(a) Result for LD-MST (b) Result for DS-MST (|s| < |x|) (c) Result for DS-SLT

(d) Result for CC-MST (|s| < |x|) (e) Result for CC-MST (|s| ≥ |x|) (f) Result for CC-SPT (|s|++)

Fig. 4 Examples of the routing schemes for tree-based computation.

the Prim algorithm. Instead of always choosing the
edge with the minimum weight in Prim, CC-MST al-
ways chooses the edge with the minimum “computation-
dependant weight”. We give the description of CC-MST
with Algorithm 3.

Algorithm 3 The proposed CC-MST algorithm

1: Input: a WSN G = (V,E)
2: Denote T = (VT , ET) as the routing tree, and initiate VT =

{sink}, ET = 0.
3: while VT ̸= V do
4: Initiate edge set El = 0, Ep = 0.
5: Add each edge that is in E−ET and connected to a leaf

node in T , into El.
6: Add each edge that is in E − ET and connected to a

non-leaf node in T , into Ep.
7: Find the optimal edge e∗l ∈ El that |x| ·w∗

l −wT (|x|−|s|)
is the minimum, where w∗

l is weight of e∗l , and wT is
the weight of the edge in T connected to e∗l .

8: Find the edge e∗p ∈ Ep, which has the minimum weight
w∗

p .
9: if |x| · w∗

p < |x| · w∗
l − wT (|x| − |s|) then

10: ET = ET ∪ {e∗p};
11: Add the node connected to e∗p into VT .
12: else
13: ET = ET ∪ {e∗l };
14: Add the node connected to e∗l into VT .
15: end if
16: end while
17: Return: T = (VT , ET)

The reason of leveraging “computation-dependant
weight” in CC-MST is that: when a leaf node changes

to be a parent node in the in-network processing tree,
the node’s edge weight should also change. The result
of CC-MST is shown in Fig. 4 (d).

4.3.2 Case 2: |s| is constant and |s| ≥ |x|
Case analysis: For the case that |s| is constant and
|s| ≥ |x|, the intermediate nodes in an in-network pro-
cessing tree always have higher transmission cost than
that of leaf nodes. Hence, to construct the efficient in-
network processing tree, a spanning tree with more leaf
nodes is preferred. In other word, the optimal in-network
processing tree for this case is a tradeoff between MST
and a spanning tree with the maximum number of
leaves.

To find an efficient tradeoff between MST and the
spanning tree with maximum number of leaves, we
propose a DS plus MST based scheme (named as DS-
MST). The basic idea of DS-MST is as follows.

- Find a MDS in G, and then construct a complete
graph G′ consisting of all the dominant nodes and
the sink, and each edge in G′ represents the shortest
path between the corresponding dominant nodes in
G.

- Find the MST in G′, the shortest paths in G corre-
sponding to the edges in the MST of G′ serve as the
in-network processing paths;

- With the in-network processing paths, nodes outside
of the paths in G, i.e, the dominated nodes, work as
leaf nodes and send their raw data to their dominant

IEEE TRANSACTIONS ON WIRELESS COMMUNICATIONS, VOL. X, NO. X, XXXXX 2017 10

nodes. Fig. 4 (b) shows the result of DS-MST in the
above network.

For comparison, we also employ the CC-MST algo-
rithm designed above (though |s| < |x| in that case). The
result is shown in Fig. 4 (e).

4.3.3 Case 3: |s| increases with the processing
Case analysis: For the case that |s| increases with the
processing (i.e., the size of intermediate data increases
with each addition of raw data in the processing), the
intermediate nodes’ cost is not constant but depends
on the number of their descendant nodes. We are con-
cerned with the usual case of linear increment of |s|, i.e.,
|sk| = C+k ∗r (e.g., tree-based computation of SVD [1]).
For this case, each intermediate node can be regarded
to additionally deliver a virtual data, which has size
r and cannot be further processed, along the routing
to the sink. Based on this understanding, setting the
shortest paths to the sink for some intermediate nodes
as their routing instead of MST can possibly reduce the
total transmission cost. Hence, the optimal in-network
processing tree for the case of linear increment of |s| is a
tradeoff between MST and SPT, which is similar to the
shallow light tree (SLT) [30].

To find the appropriate SLT for in-network processing
with the computation constraint, we need to discuss
the relationship between |x| and |s1| (i.e., the value of
|s| at the beginning of the processing). Firstly, for the
case that |x| = |s1| (e.g., in-network processing of SVD
[1]), we prove, in the Appendix, that directly using
SLT with certain parameter as the routing can achieve
approximation ratio 1 +

√
2. Secondly, for the case that

|x| < |s1|, we give the appropriate SLT design as follows.
As for the case that |x| > |s1|, we omit the corresponding
SLT design for brevity in this paper.

Since |x| < |s1| and |s| increases with the processing,
|s| will be always larger than |x|. Hence, a routing tree
with more leaf nodes is preferred. Thus, we design DS-
SLT scheme based on the DS-MST proposed above. The
basic idea of DS-SLT is as follows. Firstly, we employ
DS-MST proposed above to construct a spanning tree in
G. Then, the algorithm for establishing SLT is performed
on the spanning tree, i.e., conducting deep first searching
(DFS) within the spanning tree: if an intermediate node
is becoming not “shallow” to the sink, the path from the
node to the sink in the spanning tree will be replaced
by the path from the node to the sink in SPT. Metric for
“shallow” here is defined as ratio α of the distance from
the node to sink in the spanning tree to that in SPT. Fig. 4
(c) shows the result of DS-SLT in the above network. The
value of parameter α depends on the ratio of the MST’s
cost to SPT’s cost as well as the ratio of the initial size
of s to r.

For comparison, we additionally design a special
computation-constrained SPT scheme (called as CC-
SPT), as shown in Algorithm 4. The reason of leveraging
“weight of path” in Algorithm 4 is that the traffic on a

path will increase with r for each addition of a node
during the algorithm. The results of CC-SPT are shown
in Fig. 4 (f).

Algorithm 4 The proposed CC-SPT algorithm

1: Input: a WSN G = (V,E)
2: Denote T = (VT , ET) as the routing tree, and initiate VT =

{sink}, ET = 0.
3: while VT ̸= V do
4: Initiate edge set El = 0, Ep = 0.
5: Add each edge that is in E−ET and connected to a leaf

node in T , into El.
6: Add each edge that is in E − ET and connected to a

non-leaf node in T , into Ep.
7: Find the optimal edge e∗l ∈ El that |x| · w∗

l − wT (|x| −
|s|) + d∗l · r is the minimum, where d∗l is the weight of
path between the sink and the node in T connected to
e∗l .

8: Find the edge e∗p ∈ Ep that |x|·w∗
p+d∗p ·r is the minimum.

9: if |x| ·w∗
p + d∗p · r < |x| ·w∗

l −wT (|x| − |s|) + d∗l · r then
10: ET = ET ∪ {e∗p};
11: Add the node connected to e∗p into VT .
12: else
13: ET = ET ∪ {e∗l };
14: Add the node connected to e∗l into VT .
15: end if
16: end while
17: Return: T = (VT , ET)

4.3.4 Case 4: F3({s}) only at sink
Sometimes, function F3({s}) may take high computa-
tion cost (e.g., diff-RLS in [29]), which makes F3({s})
not available to be executed on resource-limited sensor
nodes except for the sink node. Under this circumstance,
the centralized algorithm has to be partitioned into
multiple chain-based computations, and the final results
of these chain-based computations will be “merged”
with function F3({s}) at the sink node. Optimal routing
design for this case can be formulated into the classic
multiple TSP problem (MTSP) (if |s| = c). As for the
case |s| + +, referring to the above SP-TSP, a multiple
SP-TSP algorithm (could be called as MSP-TSP) can be
designed. The details are omitted for briefness.

5 SIMULATIONS

In this section, we conduct extensive simulations of the
proposed schemes. In the simulations, we use random-
generated networks by randomly deploying N nodes in
area Z with size L ∗ L. The transmission range of each
node is denoted by R. The weight of each edge between
neighboring nodes is regarded to be proportional to the
edge’s length.

To extensively evaluate the proposed schemes’ per-
formance in different network densities, network scales
and relative data sizes (e.g., |s|/|x|, r/|x| or |x|/C), we
conduct the simulations in two scenarios. First, we fix
the number of nodes to be 100 but gradually increase the
network density by increasing R from 15 to 45. The area

IEEE TRANSACTIONS ON WIRELESS COMMUNICATIONS, VOL. X, NO. X, XXXXX 2017 11

in this scenario is fixed to be 120∗120. For each network
density, we gradually increase the corresponding relative
size from 0.2 to 1.

Then we maintain the network density with fixing
R = 30 but gradually increase the network scale by
increasing the number of nodes from 100 to 500. Note
that, to maintain the network density, when increasing
the number of nodes, the size of the deployment area
also needs to be increased. Also, for each network scale,
the relative size increases from 0.2 to 1. In both scenarios,
20 simulations are performed for each parameter set, and
the average value of each scheme’s transmission cost is
calculated.

5.1 Baseline: Typical Straightforward Schemes

To evaluate the performance of the proposed schemes, a
baseline needs to be set. Although there are lots of rout-
ing algorithms proposed for WSNs with in-network pro-
cessing, as analyzed in Section 2, the routing algorithms
are designed with assumption of common processing
function and ignoring the difference in the input data
types. In lossless in-network processing of a designated
centralized algorithm, either the processing functions are
not unique, or the input data is of different types, making
the existing routing algorithms not applicable here.

To set the baseline, we use straightforward routing
idea for comparison. Meanwhile, for chain-based in-
network processing, we directly regard the longest short-
est path as the in-network processing path, and the routes
for nodes outside of the path are just the shortest paths
between the nodes to the in-network processing path. As
for tree-based in-network processing, we directly use
SPT as the baseline.

Fig. 5 compares the performance between the baseline
schemes and the proposed routing schemes. It can be
seen, the proposed schemes generally far outperform
the baseline schemes, for various cases of lossless in-
network processing. In the following, we further give
an extensive comparison between the proposed routing
schemes at different network and computation condi-
tions. We find that, the proposed schemes perform well
at certain conditions. This helps us to appropriately
select the routing scheme according to a given network
and computation condition of the lossless in-network
processing in practice.

5.2 Simulations for chain-based in-network pro-
cessing

Fig. 6 shows the simulation results of S-TSP and CC-
TSP at different network and computation conditions.
According to Fig. 6 (a)(b), we find that S-TSP always
has lower total transmission cost than CC-TSP. And, the
advantage of S-TSP becomes more prominent in sparse
network (with lower transmission range) or large-scale
network.

Fig. 7 shows the simulation results of DS-TSP and CC-
TSP. According to Fig. 7 (a)(b), CC-TSP outperforms DS-
TSP in most cases, especially when x has similar size
to s or the network scale is large. However, we notice
that, smaller network scale will mitigate the performance
gap between DS-TSP and CC-TSP. Moreover, when |x| is
much smaller than |s| and the network density is high,
DS-TSP could lead to lower total transmission cost than
CC-TSP.

Fig. 8 shows the simulation results of SP-TSP and
DSP-TSP. According to Fig. 8 (a), SP-TSP and DSP-TSP
perform well at different conditions, respectively. For
dense WSN and small increment of |s|, SP-TSP tends
to outperform DSP-TSP. However, when the density
decreases or the increment of |s| becomes large, DSP-
TSP has better performance than SP-TSP. According to
Fig. 8 (b), the comparison betwenn SP-TSP and DSP-TSP
becomes much sensitive to the increment of |s|. When
the increment of |s| is small, SP-TSP far outperforms
DSP-TSP in large scale network. However, when the
increment of |s| is large, DSP-TSP can far outperform
SP-TSP in large scale network.

5.3 Simulations for tree-based in-network process-
ing

Fig. 9 shows the comparison between LD-MST and CC-
MST. It can be seen, the performance of the two schemes
is almost the same at different conditions. Generally, CC-
MST performs a little better than LD-MST. In addition,
we notice that the performance of the two schemes is
independent of the network density.

Fig. 10 shows the comparison between DS-MST and
CC-MST. It can be seen, DS-MST and CC-MST perform
well at different conditions, respectively. For small |x|,
DS-MST tends to outperform CC-MST. However, when
|x| becomes close to |s|, CC-MST has better performance
than DS-MST. The comparison result is independent
of the network density. According to Fig. 10 (b), DS-
MST outperforms CC-MST when |x| is much smaller
than |s|, no matter how large the network scale is.
However, when |x| is close to |s|, CC-MST will has better
performance than DS-MST. That is say, the comparison
result is also independent of the network scale.

Fig. 11 shows the comparison between DS-SLT and
CC-SPT. It can be seen, the comparison between DS-
SLT and CC-SPT is a little similar to that between DS-
MST and CC-MST. For small initial size of s, DS-SLT
tends to outperform CC-SPT, no matter how large the
network density or network scale is. However, when the
initial size of s becomes close to |x|, CC-SPT has better
performance than DS-SLT.

To sum up, the performance of the proposed
computation-constrained routing schemes much de-
pends on the network scale, density and relative sizes
for x and s. Different routing ideas perform well only at
certain conditions. We need to appropriately choose the

IEEE TRANSACTIONS ON WIRELESS COMMUNICATIONS, VOL. X, NO. X, XXXXX 2017 12

20 25 30 35 40
0

1000

2000

3000

4000

5000

6000

7000

Transmission range

T
ot

al
 tr

an
sm

is
si

on
 c

os
t

Baseline
S−TSP
CC−TSP

(a) Chain case with |s| = c & |s| < |x|

20 25 30 35 40
0

500

1000

1500

2000

2500

3000

3500

4000

Transmission range

T
ot

al
 tr

an
sm

is
si

on
 c

os
t

Baseline
DS−TSP
CC−TSP

(b) Chain case with |s| = c & |s| ≥ |x|

20 25 30 35 40
0

1000

2000

3000

4000

5000

6000

Transmission range

T
ot

al
 tr

an
sm

is
si

on
 c

os
t

Baseline
SP−TSP
DSP−TSP

(c) Chain case with |s|++

20 25 30 35 40
0

1000

2000

3000

4000

5000

6000

7000

Transmission range

T
ot

al
 tr

an
sm

is
si

on
 c

os
t

Baseline
LD−MST
CC−MST

(d) Tree case with |s| = c & |s| < |x|

20 25 30 35 40
0

500

1000

1500

2000

2500

3000

3500

4000

Transmission range

T
ot

al
 tr

an
sm

is
si

on
 c

os
t

Baseline
DS−MST
CC−MST

(e) Tree case with |s| = c & |s| ≥ |x|

20 25 30 35 40
0

500

1000

1500

2000

2500

3000

3500

4000

4500

5000

5500

Transmission range

T
ot

al
 tr

an
sm

is
si

on
 c

os
t

Baseline
DS−SLT
CC−MST

(f) Tree case with |s|++

Fig. 5 Comparison between the baselines and the proposed schemes.

routing scheme according to the characteristics of both
the network and the computations.

In addition, it is worth mentioning that the compu-
tation cost of the routing schemes is also an impor-
tant issue. However, compared to the high-power data
transmission, the low-power computation is generally a
minor role in energy consumption in most cases, which
inspires many works (e.g., data aggregation) to employ
computation to reduce the data transmission. Since low-
er total transmission cost generally implies lower total
energy consumption, the comparison of transmission
cost among the routing schemes in this section, actually
also represents the comparison of energy consumption
among them.

Finally, we give a comparison between chain-based
routing and tree-based routing. As multiple intermediate
data can be processed together in tree-based routing,
the routes do not need to detour their way too much
as the chain-based path does. Hence, the end-to-end
delay of tree-based routes is surely lower than that of
chain-based routes. As for the transmission cost, with
less constraint on selecting destination nodes in the rout-
ing, tree-based routes generally have lower transmission
cost than chain-based routes, especially for the case of
the increasing intermediate data’s size. Only when the
intermediate data’ size is always smaller than that of
raw data, the chain-based routes may be possible to
have lower transmission cost than tree-based routes,
as the former may have less leaf nodes (i.e., less raw
data transmission). In addition, it should be noted that
tree-based partition pattern is not always feasible for a

centralized algorithm (e.g., LSE in [17]).

6 CONCLUSIONS

Lossless in-network processing is required in many do-
main specific monitoring applications of WSNs. This
paper gives a framework on lossless in-network pro-
cessing of a given complicated centralized algorithm in
resource-limited WSNs, with introducing some general
patterns on the computation partitioning. Constrained
by the patterns, a series of special routing algorithm-
s for different cases of the computation results’ sizes
and network parameters, are introduced and compared.
These routing algorithms can serve as guidelines not
only for efficient lossless in-network processing of the
practical engineering algorithms in applications of large
object monitoring and diagnosis with WSNs, but also for
distributed computing of big data in Internet.

ACKNOWLEDGEMENT

The work presented in this paper was supported in part
by the NSF of China with Grant 61572217 and 61572218.
Xuefeng Liu is the corresponding author.

APPENDIX

For the case that |s| linearly increases with the in-
network processing (i.e., |sk| = C + k ∗ r) and initially
|s| = |x| (e.g., distributed computation of SVD [1]), we
formulate the problem of finding the optimal in-network
processing tree (denoted as OIT problem) as follows.

IEEE TRANSACTIONS ON WIRELESS COMMUNICATIONS, VOL. X, NO. X, XXXXX 2017 13

|s|/|x|

1

0.8

0.6

0.4

0.2

2025

(a)

Trans. range
303540

2500

2000

1500

1000

500

0

T
o
ta

l
tr

a
n

s.
 c

o
st

S-TSP

CC-TSP

|s|/|x|

1

0.8

0.6

0.4

0.2

100

(b)

200

Network scale

300400500

15000

10000

5000

0

T
o
ta

l
tr

a
n

s.
 c

o
st

Fig. 6 Performance of S-TSP and
CC-TSP w.r.t. different (a) density
and |s|/|x|; (b) scale and |s|/|x|.

|x|/|s|

1

0.8

0.6

0.4

0.2

2025

(a)

Trans. range

303540

5000

4000

3000

2000

1000

0

T
o

ta
l

tr
a

n
s.

 c
o
st

DS-TSP

CC-TSP

|x|/|s|

1

0.8

0.6

0.4

0.2

100

Network scale

(b)

200300400500

2.5

2

1.5

1

0.5

0

 10
4

T
o

ta
l

tr
a
n

s.
 c

o
st

Fig. 7 Performance of DS-TSP and
CC-TSP w.r.t. different (a) density
and |x|/|s|; (b) scale and |x|/|s|.

r/|x|

1

0.8

0.6

0.4

0.2

20
Trans. range

25

(a)

303540

0

2000

4000

6000

8000

T
o
ta

l
tr

a
n

s.
 c

o
st

SP-TSP

DSP-TSP

r/|x|

1

0.8

0.6

0.4

0.2

100

Network scale

(b)

200300400500

6

5

4

0

1

2

3

 10
4

T
o
ta

l
tr

a
n

s.
 c

o
st

Fig. 8 Performance of SP-TSP and
DSP-TSP w.r.t. different (a) density
and r/|x|; (b) scale and r/|x|.

- Given: a network G = (V,E), where V is the set of nodes
and E is the set of edges between neighboring nodes.
Initially, each node has raw data with equal size C + r.

- Assume: either raw data or intermediate data can be
in-network processed by any node, and the processing
result’s size is C + (m+ 1)r, where m is the number of
descendant nodes sending data to the node.

- Objective: construct an optimal in-network processing
tree rooted by a given sink node, so as to minimize the
total transmission cost in G.

It can be seen, the OIT problem is a special case of
the traditional aggregation problems which have been
proved to be NP-hard [26] [27]. In the following, we
present a sub-optimal tree for OIT, with which the
transmission cost is no more than 1 +

√
2 times that of

the optimal tree.
Denote Topt = (V,E′) as the optimal in-network pro-

cessing tree for OIT problem, where E′ is the set of edges
in Topt. Let w(ei) as the weight of edge ei, and C + ri is
the size of data transmitted on ei, where ri = ki ∗ r (ki is
an integer). The total transmission cost of the in-network
processing on Topt can be denoted as:

Copt =
∑
ei∈E′

(C + ri)w(ei) (1)

We first give a lower bound on Copt as follows.

LEMMA 1. The cost of using an optimal in-network
processing tree for OIT problem is bounded from below by
Copt ≥ C · cMST + r · cSSP , where cMST is the cost of the
minimum spanning tree (MST) of all nodes in V (i.e., the
sum of all edges’ weights in MST), and cSSP is the sum of
the costs of all the shortest paths to the sink node.

Proof: According to Equation 1, we have:

Copt =
∑

ei∈E′

(C + ri)w(ei) = C ·
∑

ei∈E′

w(ei) +
∑

ei∈E′

ri · w(ei)

(2)

It can be seen, there are two parts of cost in Copt.
One is C ·

∑
ei∈E′ w(ei), and another is

∑
ei∈E′ ri ·w(ei).

Meanwhile,
∑

ei∈E′ w(ei) is the cost of Topt. Since Topt

contains all nodes in V , its cost must be no less than
cMST , i.e.,

∑
ei∈E′ w(ei) ≥ cMST .

In addition, according to the processing model, the
variant part of the data size, i.e., ri, is cumulated directly
during the in-network processing. Therefore,

∑
ei∈E′ ri ·

w(ei) is equivalent to the cost for that all sensor nodes
transmit their data with size r to the sink along Topt

without any processing. It is well known that, gathering
all nodes’ data to the sink without processing along a
shortest path tree will have the minimum cost. Hence,∑

ei∈E′ ri ·w(ei) must be no less than r · cSSP . Therefore,
the lemma follows immediately from what we have
proved.

Since finding Topt is NP-hard, we propose a sub-
optimal tree for OIT problem. In particular, we establish
a shallow light tree (SLT) [23] [30] with certain parameter
as the sub-optimal tree. SLT is a spanning tree that
balances the performance of the SPT (“shallow”) and
the MST (“light”). The basic idea of constructing SLT
is simple: conducting deep first searching (DFS) within
MST, if a node is becoming not “shallow” to the root, the
path from the node to the sink in MST will be replaced
by the path from the node to the sink in SPT. Metric for
“shallow” is defined as the ratio α of the distance from
the node to root in MST to that in SPT.

IEEE TRANSACTIONS ON WIRELESS COMMUNICATIONS, VOL. X, NO. X, XXXXX 2017 14

|s|/|x|

1

0.8

0.6

0.4

0.2

2025

(a)

Trans. range
303540

0

500

1000

1500

T
o
ta

l
tr

a
n

s.
 c

o
st

LD-MST

CC-MST

|s|/|x|

1

0.8

0.6

0.4

0.2

100

Network scale

(b)

200300400500

0

2000

4000

6000

8000

T
o
ta

l
tr

a
n

s.
 c

o
st

Fig. 9 Performance of LD-MST
and CC-MST w.r.t. different (a) den-
sity and |s|/|x|; (b) scale and |s|/|x|.

|x|/|s|

1

0.8

0.6

0.4

0.2

2025

(a)

Trans. range
303540

5000

4000

3000

2000

1000

0

T
o
ta

l
tr

a
n

s.
 c

o
st

DS-MST

CC-MST

|x|/|s|

1

0.8

0.6

0.4

0.2

100

(b)

200

Network scale
300400500

0

0.5

1

1.5

2
 10

4

T
o
ta

l
tr

a
n

s.
 c

o
st

Fig. 10 Performance of DS-MST
and CC-MST w.r.t. different (a) den-
sity and |x|/|s|; (b) scale and |x|/|s|.

|x|/C

1

0.8

0.6

0.4

0.2

2025

(a)

Trans. range
303540

3000

2000

1000

0

4000

5000

6000

T
o
ta

l
tr

a
n

s.
 c

o
st

|x|/C

1

0.8

0.6

0.4

0.2

100

(b)

200

Network scale
300400500

0

1

2

3

4
 10

4

T
o
ta

l
tr

a
n

s.
 c

o
st

DS-SLT

CC-SPT

Fig. 11 Performance of DS-SLT
and CC-SPT w.r.t. different (a) den-
sity and |x|/C; (b) scale and |x|/C.

To find the optimal SLT, we need to calculate the
optimal parameter α of SLT in a WSN with arbitrary
topology. According to [30], given a graph G = (V,E)
and a number α > 1, a SLT has the following two
properties:

• The distance between any node and the root in
the SLT is no more than α times the length of the
shortest path from that node to the root in G.

• The total cost of a SLT cSLT is no more than α+1
α−1

times that of the MST of the graph G;
Theorem 1. The cost of using a SLT with parameter α =

1 +
√
2 (denoted by SLT1+

√
2) for OIT problem is no more

than 1 +
√
2 times that of the optimal in-network processing

tree.
Proof: Since the variant part ri of the data size is

cumulated during the computation in SLT1+
√
2 while

the constant part C of the data size is maintained on
each edge in SLT1+

√
2, the total cost of using SLT1+

√
2

for OIT problem can be expressed as

CSLT (1+
√
2) = C · cSLT

1+
√

2
+

∑
ui∈V

r · path(ui, t)|SLT
1+

√
2

≤ C · 1 +
√
2 + 1

1 +
√
2− 1

cMST + r · (1 +
√
2)cSSP

= C · (1 +
√
2)cMST + r · (1 +

√
2)cSSP

≤ (1 +
√
2)Copt

(3)

Therefore, the theorem follows immediately from what
we have proved.

Note that, α = 1+
√
2 is not the optimal parameter for

SLT to minimize the transmission cost, considering the

arbitrary topology of the WSN. We expect to calculate
the optimal α based on the characteristic of the WSN’s
topology. According to Equation 3,

CSLTα ≤ C · α+ 1

α− 1
cMST + r · αcSSP (4)

Hence, the optimal parameter α∗ = 1 +
√
2C

r · cMST

cSSP
,

and CSLTα∗ ≤ CSLT1+
√

2
≤ (1 +

√
2)Copt.

REFERENCES

[1] Xuefeng Liu, Jiannong Cao, Wen-Zhan Song, Peng Guo, Zongjian
He, Distributed Sensing for High-Quality Structural Health Monitoring
using WSNs, IEEE Transactions on Parallel and Distributed System-
s, Vol. 26, No. 3, pp. 738-747, 2015.

[2] G. Kamath, L. Shi, and W.-Z. Song, Component-average based dis-
tributed seismic tomography in sensor networks, in DCOSS. IEEE, 2013,
pp. 88-95.

[3] H. T. Pham and B.-S. Yang, Estimation and forecasting of machine
health condition using arma/garch model, Mechanical Systems and
Signal Processing, vol. 24, no. 2, pp. 546-558, 2010.

[4] Y.-F. Huang, S. Werner, and et al., State estimation in electric power
grids: Meeting new challenges presented by the requirements of the future
grid, Signal Processing Magazine, IEEE, vol. 29, no. 5, pp. 33-43,
2012.

[5] Xuefeng Liu, Jiannong Cao, Wen-Zhan Song, Shaojie Tang, Dis-
tributed Sensing for High Quality Structural Health Monitoring Using
Wireless Sensor Networks, in IEEE RTSS, Dec. 2012, pp. 75-84.

[6] B. Yu, J. Li, and et al., Distributed data aggregation scheduling in
wireless sensor networks, in INFOCOM, 2009, pp. 2159-2167.

[7] Fasolo, E. ; DEI, Padova Univ. ; Rossi, M. ; Widmer, J. ; Zorzi,
M., In-network Aggregation Techniques for Wireless Sensor Networks:
A Survey, IEEE Wireless Communications, vol. 14, no. 2, 2007, pp.
70-87.

[8] Cunqing Hua and Tak-Shing Peter Yum, Optimal Routing and Data
Aggregation for Maximizing Lifetime of Wireless Sensor Networks,
IEEE/ACM Transactions on Networking, vol. 16, no. 4, 2008, pp.
892-903.

IEEE TRANSACTIONS ON WIRELESS COMMUNICATIONS, VOL. X, NO. X, XXXXX 2017 15

[9] Sharanya Eswaran, Matthew Johnson, Archan Misra, Thomas La
Porta, Adaptive In-Network Processing for Bandwidth and Energy Con-
strained Mission-Oriented Multihop Wireless Networks, IEEE Transac-
tions on Mobile Computings, Vol. 11, No. 09, 2012, pp: 1484-1498.

[10] Yan Wu ; Dept. of Comput. Sci., Purdue Univ., West Lafayette,
IN ; Fahmy, S. ; Shroff, N.B., On the Construction of a Maximum-
Lifetime Data Gathering Tree in Sensor Networks: NP-Completeness and
Approximation Algorithm, in INFOCOM, Phoenix, AZ, Apr. 2008.

[11] Weifa Liang, and Yuzhen Liu, Online Data Gathering for Maximizing
Network Lifetime in Sensor Networks, IEEE Transactions on Mobile
Computing, vol. 6, no. 1, 2007, pp. 2-11.

[12] XiaoHua Xu, Mo Li, XuFei Mao, Shaojie Tang, A Delay-Efficient
Algorithm for Data Aggregation in Multihop Wireless Sensor Networks,
IEEE Transactions on Parallel and Distributed Systems, vol. 22, no.
1, 2011, pp. 163-175.

[13] Peng-Jun Wan, Scott C.-H., Lixin Wang, Zhiyuan Wan, Xiao-
hua Jia, Minimum-latency aggregation scheduling in multihop wireless
networks, In MobiHoc, New York, USA, 2009, pp. 185-194.

[14] Bo Hong and Viktor K. Prasanna, Optimizing a Class of In-network
Processing Applications in Networked Sensor Systems, The 1st IEEE
International Conference on Mobile Ad-hoc and Sensor Systems
(MASS 2004), October 2004.

[15] J. Juang and R. Pappa, Eigensystem realization algorithm for modal
parameter identification and model reduction, Journal of Guidance,
Control, and Dynamics, vol. 8, no. 5, pp. 620-627, 1985.

[16] Schizas, I.D. ; Dept. of Electr. and Comput. Eng., Univ. of Min-
nesota, Minneapolis, MN ; Mateos, G. ; Giannakis, G.B., Distributed
LMS for Consensus-Based In-Network Adaptive Processing, IEEE Trans-
actions on Signal Processing, Vol. 57, No. 6, 2009, pp. 2365-2382.

[17] Ali H. Sayed, Cassio G. Lopes, Distributed Recursive Least-squares
Strategies Over Adaptive Networks, Fortieth Asilomar Conference on
Signals, Systems and Computers (ACSSC), Oct. 2006.

[18] Liang Zhao, Wen-Zhan Song, Lei Shi, Xiaojing Ye, Decentralized
Seismic Tomography Computing In Cyber-Physical Sensor Systems,
Cyber-Physical Systems, Taylor & Francis, Vol. 1, No. 2-4, 2015,
pp. 91-112.

[19] G. R. Andrews, Foundations of parallel and distributed programming,
Addison-Wesley Longman Publishing Co., Inc., 1999.

[20] R. Cristescu, B. Beferull-Lonzano, and M. Vetterli, On Network
Correlated Data Gathering, In Proceeding of the 23rd Conference of
the IEEE Comunications Society (INFOCOM), 2004.

[21] A Jindal, M. Liu, Networked computing in wireless sensor networks for
structural health monitoring, IEEE/ACM Transactions on Network-
ing, vol. 20, no. 4, pp. 1203-1216, 2012.

[22] H. Zha and H. Simon, On updating problems in latent semantic
indexing, SIAM Journal on Scientific Computing, vol. 21, p. 782,
1999.

[23] B. Awerbuch, A. Baratz, and D. Peleg. Cost-Sensitive Analysis
of Communication Protocols. In Proc. of the 9th Symposium on
Principles of Distributed Computing (PODC), 1990.

[24] H. Zha and H. Simon, On updating problems in latent semantic
indexing, SIAM Journal on Scientific Computing, vol. 21, p. 782,
1999.

[25] S. Khuller, B. Raghavachari, N. Young, Balancing minimum span-
ning trees and shortest-path trees, Algorithmica, Vol. 14, no. 4, pp
305-321, 1995.

[26] A. Goel and D. Estrin, Simultaneous Optimization for Concave
Costs: Single Sink Aggregation or Single Source Buy-at-Bulk, Proc.
ACM/SIAM Symp. Discrete Algorithms, pp. 499-505, 2003.

[27] S. Guha, A. Meyerson, and K. Munagala, A constant factor approx-
imation for the single sink edge installation problem, Proceedings of
33rd ACM Symposium on Theory of Computing, 2001.

[28] Salman, F.S., Cheriyan, J., Ravi, R., Subramanian, S., Approximating
the Single-Sink Link Installation Problem in Network Design, SIAM
Journal on Optimization, Vol. 11, No. 3, pp. 595-610, 2000

[29] F. S. Cattivelli, C. G. Lopes, and A. H. Sayed, Diffusion recursive
least-squares for distributed estimation over adaptive networks, IEEE
Transactions on Signal Processing, Vol. 56, No. 5, pp. 1865-1877,
2008.

[30] S. Khuller, B. Raghavachari, N. Young, Balancing minimum span-
ning trees and shortest-path trees, Algorithmica, Vol. 14, no. 4, pp
305-321, 1995.

Peng Guo received his M.S. and Ph.D. de-
gree from Huazhong University of Science and
Technology, Wuhan, China, in 2003 and 2008,
respectively. He is currently an Associate Pro-
fessor at the school of Electronic Information
and Communications in Huazhong University of
Science and Technology. His research interest-
s include wireless sensor networks, distributed
computing and in-network processing. He has
served as a reviewer for several international
journals/conference proceedings.

Xuefeng Liu received his M.S. and Ph.D. degree
from Beijing Institute of Technology, China, and
University of Bristol, UK, in 2003 and 2008,
respectively. He is currently an Associate Pro-
fessor at the school of Electronic Information
and Communications in Huazhong University of
Science and Technology. His research interests
include wireless sensor networks and in-network
processing. He has served as a reviewer for sev-
eral international journals/conference proceed-
ings.

Jiannong Cao received the MSc and PhD de-
grees in computer science from Washington S-
tate University, Pullman, Washington, in 1986
and 1990, respectively. He is currently the head
and chair professor in the Department of Com-
puting at Hong Kong Polytechnic University,
Hong Kong. His research interests include paral-
lel and distributed computing, mobile computing
and big data analytics. He is a IEEE Fellow and
a senior member of the China Computer Feder-
ation. He has served as a member of editorial

boards of several international journals, a reviewer for international
journals/conference proceedings, and also as an organizing/program
committee member for many international conferences.

Shaojie Tang is currently an assistant professor
of Naveen Jindal School of Management at Uni-
versity of Texas at Dallas. He received his PhD in
computer science from Illinois Institute of Tech-
nology in 2012. His research interest includes
social networks, e-business and optimization.
Tang served as chairs and TPC members at
numerous conferences.

