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Abstract 

Pulmonary cancer is considered as one of the major causes of death worldwide. For the 

detection of lung cancer, computer-assisted diagnosis (CADx) systems have been designed. 

Internet-of-Things (IoT) has enabled ubiquitous internet access to biomedical datasets and 

techniques; in result, the progress in CADx is significant. Unlike the conventional CADx, 

deep learning techniques have the basic advantage of an automatic exploitation feature as 

they have the ability to learn mid and high level image representations. We proposed a 

Computer-Assisted Decision Support System in Pulmonary Cancer by using the novel deep 

learning based model and metastasis information obtained from MBAN (Medical Body Area 

Network). The proposed model, DFCNet, is based on the deep fully convolutional neural 

network (FCNN) which is used for classification of each detected pulmonary nodule into four 

lung cancer stages. The performance of proposed work is evaluated on different datasets with 

varying scan conditions. Comparison of proposed classifier is done with the existing CNN 

techniques. Overall accuracy of CNN and DFCNet was 77.6% and 84.58%, respectively. 

Experimental results illustrate the effectiveness of proposed method for the detection and 

classification of lung cancer nodules. These results demonstrate the potential for the proposed 

technique in helping the radiologists in improving nodule detection accuracy with efficiency.  
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1. Introduction 

Ubiquitous internet access has opened the door for the biomedical researchers to obtain 

the dataset as well as the latest techniques available online and use them for developing 

improved health care-systems. Health-related Internet of Things (H-IoT) [1] is advancing by 

each passing day and innovative ideas are surfacing more frequently, targeting the health 

sector especially the detection and diagnosis of disease. Recently the advancements in IoT 

technology have made it a popular multidisciplinary research topic both in academia and 

industry particularly in healthcare sector [2-4]. Previously the usage of Information and 

communication technologies in healthcare sector was limited and often considered as a risk 

but nowadays ICT is offering promising medical services to patients, mostly referred to as e-

health which includes electronic record systems [5], personalised devices for diagnosis, etc. 

Traditional healthcare systems are frequently being replaced by the coherent and ubiquitous 

ICT enabled solutions mainly because they are able to deliver high quality patient-centred 

healthcare services. Rapid proliferation of smartphones and wearable devices based on IoT 

enabled technology [6-7] are evolving healthcare from conventional system towards 

personalised healthcare system. Successful utilisation of IoT enabled technology in (H-IoT) 

will enable efficient and reliable preventive care, low cost, enhanced patient-related practice 

and improved sustainability [8-9]. 

Pulmonary cancer (commonly known as lung cancer) is one of the most aggressive 

cancerous disease which results in mortality of over 70%, roughly one quarter of the deaths 

caused by all types of cancers. Pulmonary cancer is considered to be difficult to cure as the 

early diagnosis is crucial to save the patient. Most of the lung cancer patients are diagnosed 

when the disease is at an advanced stage. However, an early detection of pulmonary cancer 

could increase the chances of cure. Detection of pulmonary cancer in early stages is difficult 

mainly because there is lesion growth which is of dime-size within the lung called nodule. 

The first step towards the cure of lung cancer is detection of lung nodules in its early stage 

thus the treatment could be started before it becomes malignant. Conventional method for 

detection of lung cancer is mass screening process by using X-ray films. Small lung cancer 

nodules are not easily detected using X-ray at early stage because of organ’s shadow and the 

bone’s overlapping. Therefore, these lung nodules remain undetected by X-rays and are 

detected only by Computerized Tomography (CT) Scan. CT-Scan revolutionized medical 

image processing by presenting 3D imaging. In the beginning CT-Scan slices were obtained 

and reconstructed to be further imaged on film. Recent CT scanners are able to reformat this 

large amount of volumetric data in various planes as well as visualize using high resolution 
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volumetric (3D) representations. These technological innovations improved lung cancer 

detection and diagnosis, using CT images, by the help of various computer assisted detection 

systems (CADe). With the advancement in the field of internet-of-things (IoT) [10], the 

medical imaging equipment is also accessible through remote sensors over the internet. The 

remote connectivity of these CT-Scan imaging devices has enabled the health sector to 

introduce new methods for the diagnosis and detection of lung cancer. 

Internet of Things technology used in the field of healthcare is often termed as medical 

Internet of Things (mIoT). To address the challenges encountered in medical and health care 

information, mIoT provides advantages in the recording of patient data, its analysis and use 

of acquired information for diagnosis [11]. Revolution in mIoT is redesigning health care 

sector with promising state-of-the-art IoT-based health care solutions [12]. With the use of 

IoT-based health care methods, the diagnostic and monitoring functions performed by 

physicians today can be offset to computation methods and algorithms. Improvement in 

diagnostic accuracy by physicians could likely be assisted by use of different deep learning 

models [13]. In case of pulmonary cancer, the follow-up check-ups of the patients are 

mandatory. These follow-up check-ups comprised of CT-Scan of the patient and the 

physiological information. Deep learning model are trained using these CT image data to get 

the characteristics of pulmonary cancer nodules, and then screen the images for nodules using 

the trained model. The obtained results are provided to the radiologists to make a decision for 

the diagnosis of the patient [14-15]. The conventional diagnosis process is time consuming as 

the radiologist marks the location of the lung nodule on the other hand the automation of this 

nodule detection using different computer assisted detection (CADe) tools enable fast 

diagnosis with higher accuracy. The radiologists use CADe as a second opinion for decision 

on the pulmonary cancer stage diagnosis. 

Our proposed technique is based on the deep fully convolutional neural network 

(FCNN) for initial classification into normal CT-Scan image and patient’s CT-Scan image. 

Nodules are detected by using the pre-processed input images for the training of the deep 

FCNN. Afterwards each detected nodule is classified into four cancer stage based on the 

malignancy of the detected nodule and the metastasis information recorded by using various 

sensors. The performance of proposed work is evaluated on six different datasets with 

heterogeneous scan parameters. The performance of proposed technique was evaluated by 

comparing the results with the existing state-of-the-art CNN technique TumorNet [16]. 

Experimental results showed that the proposed technique can be used for the detection as well 

as classification of lung cancer nodules. The Section 2 describes the related work. Section 3 
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presents the proposed method in detail and based on experimental results (Section 4), the 

conclusion is presented in Section 5. 

 

2. Related Work 

Recent researches have shown that deep neural networks have great potential for CAD 

application involving volumetric medical data [17]. Few of these studies have used neural 

networks for detection and diagnosis of pulmonary nodules [18], among which ensemble 

methods using neural networks have shown the best results [19]. Artificial Neural Networks 

(ANN) method is also used for the nodule detection [20-21]. This research work was based 

on the difference-image technique in which the pulmonary nodules were enhanced and the 

normal background structures were suppressed. Afterwards thresholding technique was 

applied and lastly the nodule candidates’ image features were quantified. Rule-based method 

and ANN were used simultaneously to eliminate the FP results.  

Feed forward NN was also used by [22] for classify nodules in X-Ray images with 

limited features such as shape, perimeter and area. In recent years, convolutional neural 

network (CNN) has become a benchmark in the field of CADx systems. CNN is used to 

detect lung nodule and the results are promising [23]. There are two main methods of using 

CNN, either the researcher can model their own CNN architecture or they can use off-the-

shelf CNN for acquiring the features [24]. DFCNet takes classification to a whole new level, 

using the dense prediction by considering the convolution nets as fully convolutional and 

fine-tuning is done in such a way that the predecessor layer sends the learned features to the 

current convolution layer. FCNN are different from the existing CNN [25] as they only used 

small convolutional network and the learned features were not used as pre-training by the 

successor layer [26]. In our research work we used fully convolutional NN not only for 

detection of the nodule but also for the classification of the lung cancer stage.  

 

3. Proposed Approach 

The Internet of Things (IoT) refers to use of sensors that can transmit the gathered 

information over the internet. For computer-assisted decision support system in pulmonary 

cancer detection we used four main steps: data recording using sensors and CT-Scan Images, 

collection of obtained dataset over the internet, training the model using the obtained dataset 

and diagnosis decision making based on trained model as shown in Figure 1. This decision is 

further provided to the radiologists for assisting them in improved diagnosis decision for 

pulmonary cancer stage classification. Pulmonary cancer has four stages. Stage-1 nodule size 
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is smaller in size about >3mm and ≤ 20mm is restricted to the lungs. The nodule size of 

Stage-2 pulmonary cancer is within the range of 21mm to 30mm and is spread to surrounding 

lymph nodes. Stage-1 and Stage-2 are early stages of cancer. In Stage-3, the cancerous cells 

are extended to other nearby organs and the size of nodule is approximately between 30mm 

to 70mm. In the last stage (Stage-4) of pulmonary cancer, the nodule size is more than 70mm 

and is spread outside the lungs to other vital organs of body. Stage-3 and Stage-4 are often 

referred to as advance Stages of cancer. 

For the first step of our computer-assisted diagnosis (CADx) system, the sensors 

attached to patient’s body forming body area network (BAN) which collects comprehensive 

physiological information and uses gateways to forward that data to network. 

 

 

Figure 1: Overview of the four stages of computer-assisted decision support system 

 

Physiological symptoms of patients can be constantly monitored remotely using 

wearable IoT device. Depending on the stage of pulmonary cancer, symptoms of lung cancer 

differs [27]. Pulmonary cancer symptoms are mostly visible when the cancerous cells are 

spread out in the body. In some cases, early stages (Stage 1 and 2) also have symptoms. Most 

common symptoms for early stages of pulmonary cancer are chest pain; cough, rust-colored 

spit (phlegm), body-weight loss, breathlessness, fatigue, infections (pneumonia/bronchitis), 

wheezing, difficulty in swallowing, and swelling of feet [28].  
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In case, there are malignant nodules due to which the cancer is spreading to distant 

organs then symptoms such as backache, seizures, dizziness, numbness, yellowing of skin (if 

its spread to liver), appearance of lumps near body surface (neck/collarbone), blood pressure, 

hypercalcemia commonly known as high blood calcium levels can cause constipation, nausea, 

vomiting, pain, fatigue, anxiety, confusion, and various nervous system problems. These 

symptoms are not necessarily due to pulmonary cancer but research studies show that these 

can be caused by pulmonary cancer. The probabilities of occurrences of physical symptoms 

for different stages of Lung cancer [29] are shown in Table 1. 

 

Table 1: Symptoms Prevalence for Lung Cancer Stages 

Symptoms Stage 1 (%) Stage 2 (%) Stage 3 (%) Stage 4 (%) 

Body Weight Loss 35-631 45-60 91-94 93-99 

Breathlessness 3-55 40-87 90-95 97-99.5 

Irregular Heart Rate 11-62 18-73 92-96 92-99 

High Body Temperature 55-65 31-78.7 93-97 94-98 

Blood Pressure 29-43 63-87 89-92 90-93 

Pain 27-44 29-62 34-77 41-81 

Depression 18-32 22-47 37-77 46.5-83 

Anxiety 36-48 44-64 61-75 80-94 

Fatigue 17-38 27-44 68-80 77-88 

Insomnia 38 49-61 75-88 87-91 

Constipation 11-20 19-23 27-44 40-60 

Anorexia - - 35-67 39-76 

1. Minimum-maximum range of prevalence (%) 

 

According to Table 1, the common symptoms for all stages are body weight loss 

(BWL), Breathlessness (BLN), Heart Rate (HR), High Body Temperature (HBT), Blood 

Pressure (BP), Insomnia (INS), Hypercalcemia (HC) which is the cause of pain, fatigue, 

constipation etc. For acquiring these metastasis features for the stages classification, sensors 

were used. The data collection for the metastasis features was done by using the IoT based 

personalized health-care systems both clinical system and remote monitoring system. 

Shanghai Hospital No. 6 provided the patients metastasis information (BWL, BLN, HR, 

HBT, BP, INS, HC) by non-invasive IoT-based sensors for gathering physiological data that 
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was stored on a Cloud for instant updating. In few cases, remote monitoring was used to 

access health monitoring of patient using sensors. Multiple sensor nodes were connected to 

Internet which was used to gather information by remote monitoring devices [30]. 

 

 

Figure 2: Communication between the devices for computer-assisted decision support system 

 

 

Figure 3: Communication between the sensor nodes 
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This research work is targeted to find a method to assist with the early detection and 

stage classification of lung cancer, relieving doctor’s burdens, and providing better treatment 

options for the patients. We proposed a Computer-Assisted Decision Support System in 

Pulmonary Cancer by using the deep learning model DFCNet and metastasis information 

obtained from MBAN (Medical Body Area Network) which are lower power network 

comprising of control transmitter, sensor devices worm by the patient which receives the 

control commands in process of measuring physiological parameters for diagnostic purposes. 

The recent progress in the 5G Technology will be useful in recording the real-time 

physiological data of each patient and its storage as well as processing [31]. Vendors such as 

Philips, Qualcomm are manufacturing MBAN devices which are expected to send real-time 

physiological information of patients to physician onto their smartphones and PCs. These 

MBAN devices will have a specific spectrum range of 2360-2400Hz band. This specific 

spectrum range ensures that other wireless devices could not interfere with MBAN 

transmission. It is significant that there is no interference from other wireless devices when 

MBAN devices are sending real-time physiological information of patients to the physicians.  

Due to unavailability of such devices at the time of this research work, we mainly used 

sensors on the clinical healthcare centre (in our case it was Shanghai Hospital No. 6). We also 

used remote monitoring devices (smartphones applications) for recording the metastasis 

parameters. Wearable IoT (WIoT) is an infra-structure that interconnects wearable 

technology to exchange data with wearable sensors and to send data to cloud. Bluetooth is 

used for exchanging data with sensors whereas WIFI is used to send the recorded data to 

Cloud for further processing. 

 

Figure 4: Communication among wearable devices 
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For our proposed work, we used monitoring devices both in form of wearable devices 

and smartphone applications. Information for insomnia parameter was gathered by recording 

the sleeping-pattern by the help of MI-Band (wearable device). Breathlessness physiological 

information was obtained by recording the respiratory rate/breathing index using Rejuven’s 

Rejiva. Heart Rate was obtained by using the smartphone applications named Runtastic heart 

rate/Instant heart rate application. Body Temperature was recorded by the help of a smart-

phone application Finger print thermometer. Blood Pressure was acquired using wearable BP 

sensor and body weight loss by health assistant application.  

Although the remote monitoring devices are more convenient yet they are not 

accessible to all patients therefore for the stage classification we used the data collected by 

the clinical healthcare system. The benefit of connecting these sensors with cloud is to use 

Electronic health records (EHRs) for further training of the FCNN model. Different datasets 

was used for training of the proposed work. The dataset was from 6 different sources LIDC-

IDRI database [32], RIDER [33], LungCT-Diagnosis [34], and LUng Nodule Analysis 

(LUNA) 2016 Dataset [35]. These are publicly available in the The Cancer Imaging Archive 

(TCIA) [36], and the pulmonary nodules have been fully annotated by multiple radiologists. 

Radiologists manually segmented the lung nodules with size of 3mm or more. 

 

Table 2: Nine Classes of LISS Database for Training of DFCNet 

LISS Database 

Classes [37] 

Total Number 

of CT-Scans 

Training  

CT-Scans 

Testing 

CT-Scans 

Sign of Malignant 

or Benign Nodule 

GGO 25 17 8 Malignant 

L 21 14 7 Malignant 

CV 75 52 23 Malignant 

PI 26 17 9 Malignant 

AB 22 19 7 Both 

C 20 15 5 Both 

OP 16 11 5 Both 

BMP 29 20 9 Benign 

 

For the variations in the lung CT images, we used the LISS database which comprises 

of 9 different categories of CT imaging signs of lung diseases. These imaging signs are 

detected and labelled (region labelling and class labelling) by the radiologists [37]. LISS 
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database comprises of 271 Lung CT scans while 677 abnormal regions in these CT Scans 

which are sub-divided into nine classes (Lobulation 𝐿, Calcification 𝐶, Cavity and Vacuolus 

𝐶𝑉, Spiculation 𝑆, Plueral Indentation 𝑃𝐼, Air Brochogram 𝐴𝐵, Bronchial Mucus Plugs 𝐵𝑀𝑃, 

Obstructive Pnemonia 𝑂𝑃, Grand Grass Opacity 𝐺𝐺𝑂) of CT imaging signs of pulmonary 

disease. For the DFCNet training, the CT-Scans of all the classes were used. Table 2, shows 

the details of each class of LISS dataset for training along with its indication in terms of 

malignancy in the nodule. 

Radiologists have stated that more than one type of class can exist in a single nodule 

therefore they have to consider all the signs and predict whether the nodule is benign or 

malignant. The same idea is considered here to train the DFCNet using different samples of 

these classes and predict the malignancy of the nodule in given CT-Scan. There was another 

dataset that was not used in training phase, SPIE Challenge Dataset [38], which was not 

annotated in order to test whether the DFCNet is able to detect nodule and non-nodule 

without annotations. There was information about location on the largest cross-sectional area 

of nodule CT-Scan which was only used for extracting the CT-Scan slices and pre-processing 

of these images was necessary. The workflow of the proposed work is shown in Figure 5. 

 

 

Figure 5: Pipeline of proposed work consisting of three prominent phases: a) Pre-processing, 

b) Deep Neural Network, and c) Classification 

 

The input of the DFCNet was originally 512*512 slices with one colour channel (grey 

level 0-255). In order to prepare the desired input of 100*100*3, all of the images were 

resized to attain the 100*100 size. The grey level channel was duplicated into two other 

colour channels to provide the 3 required colour channels to the DFCNet pre-trained 

convolution layer. 

 

IMAGE PRE-
PROCESSING 

ROI BASED SEGMENTATION CLASSIFICATION USING 

DFCNet 

Nodule Class: 
Malignant or 

Benign  

Non-Nodule 
Class 
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3.1. Pre-Processing  

Various filters could be used for enhancing the images. We used low-computational 

Gabor filter [39] for the enhancement of the CT-Scan images before using these CT-Scan 

images for segmentation of region of interest. 

 

3.1.1. Lung Region-of-Interest Extraction Using the Thresholding Method 

  Thresholding is the most commonly used technique for Region-of-Interest (ROI) 

Extraction. In this technique, the object-background is selected and then threshold is obtained 

which divides the image pixels into either object or background. In this way, the ROI is 

extracted from the background and which is used for the training of the DFCNet. DFCNet 

detects whether the given voxel is likely to be a nodule or not, based on the spatio-temporal 

statistics around it. A nodule can range from 3-28 pixels wide at its largest size, and spans 3-7 

slices typically. For every nodule 48 unique perspectives were selected, which enlarged the 

initial dataset by 48 times. Furthermore, random crop of image slices was done for each slice 

which resulted in increasing the dataset, for instance the initial dataset of 932 pulmonary 

nodules of LIDC-IDR was increased to 465504 training image-slices. 

 

3.2. Deep Neural Network Architecture 

Convolutional neural networks are advance version of the multi-layer perceptron 

architecture and designed specifically for 2D structure image Use of tied weights as well as 

local connections across the layers of a CNN results in producing invariant features. Basic 

architecture of CNN comprises of multiple convolutional and subsampling layers at fully 

connected layer. Input image 𝐼 having dimensions 𝑛 × 𝑛 × 𝐶ℎ (height × width × channels, i.e.  

𝐶ℎ𝐼 = 1 (gray scale 0-255)). Within a convolutional layer of CNN, there are filters 𝐾 of size 

𝑚 × 𝑚 × 𝐶ℎ𝐹 , where 𝑚 < 𝑛  and 𝐶ℎ𝐹 ≤ 𝐶ℎ𝐼 . The kernel convolution and input image 𝐼 

generated features 𝐹 of size 𝑛 − 𝑚 + 1. For subsampling of each map, there is a pooling 

layer 𝑝 × 𝑝 (2 ≤ 𝑝 ≤ 5) which uses mean and max values. 

 

3.3.  Implementation Details 

For the initial implementation of DFCNet, the CT-Scan images of 18 patients were 

collected from Shanghai Hospital No. 6. These CT-Scan images were annotated and the 

nodules were segmented manually by the radiologist. Out of these 18 images, 11 were used 

for training of CNN whereas 7 were used for testing.  
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CT-scan images were patch-wise analysed for training of CNN afterwards subsampling 

process analysed extracted image patches for obtaining the ROI (region-of-interest). These 

sampled patches were used for training CNN. The size of each patch 𝐽 was 32 × 32, which 

was enough for extracting meaningful information from 𝐽. Large size patches are avoided as 

they can contain unnecessary information and therefore increase the complexity. 

 

 

Figure 6: Net architecture of DFCNet 

 

The CNN architecture comprises of 7 convolution with Parametric ReLU Rectified 

Linear Units (PReLU) [40] with 𝛼 = 0.25, 7 max-pooling layers (𝑀𝑝𝑜𝑜𝑙𝑛 𝑛 = 1, … ,7), 7 

batch normalization layers ( 𝐵𝑛𝑜𝑟𝑚𝑛 𝑛 = 1, … ,7 ), and two dense layers 𝐶𝑜𝑛𝑣2048  with 

Leaky Rectified Linear Units (LreLU)  with 𝛼 = 0.01, a final 1000-dimensional dense layer, 

deconvolutional layer 𝐷𝑒𝑐𝑜𝑛𝑣8with a Softmax classifier (large margin softmax loss) on top. 

If the value of 𝛼 is fixed and small then the PreLU used with convolutional layers will 

become the Leaky ReLU (LreLU) in [41]. The main purpose of using LreLU is to avoid zero 

gradients. All convolutional layers (𝐶𝑜𝑛𝑣64, 𝐶𝑜𝑛𝑣128, 𝐶𝑜𝑛𝑣256) use 3×3 sized filters with 

stride of 1 except for the last three convolutional layers. The first𝐶𝑜𝑛𝑣4096uses filter size of 7 

while the other 𝐶𝑜𝑛𝑣4096 and 𝐶𝑜𝑛𝑣2uses filter size 1. As these convolutional layers follow 

the pattern of linear layers applied to pixels of input image 𝐼 therefore they enable the NN to 

be fully convolutional. 𝐶𝑜𝑛𝑣2 assigns a score for both of the classes for each given pixel. 

Max-pooling is performed using the window of size 2 × 2  with stride of 2. The 

deconvolutional layer 𝐷𝑒𝑐𝑜𝑛𝑣8  uses filter size of 16 with a stride 8. Afterwards resultant 

image is centre-cropped to 2x128x128 before the softmax layer. Dropout regularization was 

done using dropout 25% on the convolutional layers ( 𝐶𝑜𝑛𝑣64, 𝐶𝑜𝑛𝑣128, 𝐶𝑜𝑛𝑣256 ) while 

dropout 50% for both 𝐶𝑜𝑛𝑣4096  
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Convolutional layer considers the local regions of 𝐼 and the neurons connected to this 

region to obtain the output. The set of learnable filters were the basic parameters for the 

convolutional layer. After each forward pass, filter’s 2D activation map is generated by 

sliding filter over the input volume. This is repeated to obtain the complete output volume. 

There are few hyperparameters required by each layer; filters 𝐾, stride 𝑆, receiver field 𝑅, 

spatial dimensions 𝐷 and zero padding 𝑍. The output volume can be calculated as: 

𝑊𝑂(𝐷) =  1 +
𝑊𝐼(𝐷)−𝑅+2𝑍)

𝑆
                                      (1) 

All convolutional layer use zero padding 𝑃 = 1, except for the first layer, which uses 

zero padding of 11 to avoid reduction of size after the max-pooling phase. Down-sampling 

along the spatial dimensions 𝑑 is done in the pooling layer. Pooling layer uses 𝑚𝑎𝑥 operation 

and resizes each input slice spatially.  Pooling layer required volume of input (weight, height, 

depth) 𝑤𝐼 × ℎ𝐼 × 𝑑𝐼  and other hyperparameters such as stride 𝑆 , receiver field 𝑅 , spatial 

dimensions 𝐷 . The purpose of pooling layer within the network is avoiding over-fitting, 

parameters reduction and overall fast computation of DFCNet. 

Last layer output is linked to the softmax layer which distributes the given input into 

two classes (nodule and non-nodule). Softmax function is applied to all the pixels one by one. 

For each given pixel, softmax function assigns two scores, one for each class (nodule and 

non-nodule) to provide class probabilities (𝑝𝑛 and 𝑝𝑛𝑜𝑛). These class probabilities (𝑝𝑛 and 

𝑝𝑛𝑜𝑛 ) are transferred to the large-margin loss layer [42]. In other words, this layer is a 

combination of softmax layer followed by the large margin softmax loss layer. DFCNet was 

trained for 50000 steps, with 16,384 members ( 128 × 128  pixels) per mini-batch. The 

performance of DFCNet depends on the network hyperparameters initialization. As these 

hyperparameters are initialized randomly therefore the performance can vary even if these 

hyperparameters are exactly the same. In order to avoid this wide variation in the 

performance with same hyperparameter, the model is trained multiple times with same 

hyperparameters to obtain the optimized performance and normalize the input image 𝐼 to 

each layer using the batch normalization technique. Batch Normalization [43] was applied to 

convolutional layer of the network. The normalized activations �̂� distribution mean value is 

expected to be 0 while the variance is expected to be 1. Once the DFCNet has been trained, 

we use the normalization function: 

�̂� =
𝑎−𝐸[𝑎]

√𝑉𝑎𝑟[𝑎]+𝜖
                                   (2) 
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If 𝜖 is neglected in the training of DFCNet then the normalized activations �̂� has variance 1 

and mean value of 0. The unbiased variance estimate could be used as, 𝑉𝑎𝑟[𝑎] =
𝑏

𝑏−1
. 𝐸𝑏[𝜎𝑏

2], 

where the mini-batch size of 𝑏 is over-trained and the sample variances are represented as 𝜎𝑏
2. 

During the training, the means and variances are fixed therefore we can consider the batch-

normalization as a linear transform which is applied to each activation step.  

In the large margin loss layer had a total loss equal to the average loss per pixel in 𝐼. 

Since the size of the nodule is 3mm or above, therefore it comprises of approximately 2.5% 

of the input image 𝐼 pixels. Therefore, in the loss 𝐿 equation, the nodule pixels are considered 

to be 0.975 and the non-nodule is considered to be 0.025. For improving the performance on 

the testing dataset, the regularization weight of was used.  

𝐿𝑖 = [0.975 ∑ 𝐿𝑖𝑖=𝑛 ][0.025 ∑ 𝐿𝑗𝑗=𝑛𝑜𝑛 ] + 𝑤𝑟𝑒𝑔                                    (3) 

For the given pixel (𝑖) of image 𝐼, the loss will be 0 (non-nodule Class 𝐶𝑛𝑜𝑛 ) or 1 (nodule 

Class 𝐶𝑛 ). The equation  𝐿𝐼 = − log (
𝑒

‖𝑓𝑖‖‖𝑥𝑖‖𝜃𝑓𝑖

𝑒
‖𝑓𝑖‖‖𝑥𝑖‖𝜃𝑓𝑖 +∑ 𝑒

‖𝑓𝑗‖‖𝑥𝑖‖ cos 𝜃𝑓𝑗
𝑗𝜖{0,1}

)  gives the score for 

each class for given pixel. 

 

3.4. Learning 

Any model using Batch Normalization can be optimized either by using the Stochastic 

Gradient Descent (SGD), or batch gradient descent (BGD) with a mini-batch size 𝑏 >  1 [44]. 

Normally SGD works better when the training data does not contain many subjects. For the 

lung nodule dataset, the SGD was used momentum of 0.9. Each convolutional layer was 

initiated by the weights proposed by Long et al. [26]. For each pixel of input image 𝐼, the 

weights can be considered as feature set generating method which is used by the DFCNet for 

learning the features to do classification.  The mini batch size 𝑏  was considered to be 

128 × 128. The learning rate 𝜆 was 1e-4, and ADAM update rule with learning rate of 1e-6 

is switched when the error plateaus. Weight decay regularization 𝑤𝑟𝑒𝑔  of 0.0005 . 

𝐷𝑒𝑐𝑜𝑛𝑣8 was initialized with bilinear interpolation weights. The learning rate 𝜆  for 

deconvolutional layer 𝐷𝑒𝑐𝑜𝑛𝑣8  was 0. Equal number of positive (containing nodule) and 

negative datasets (containing no nodule) for each batch were used to train the DFCNet in the 

training step. Random selection of the positive (containing nodule) half and negative half 

datasets (containing no nodule) was done for each batch samples. These datasets were 

shuffled prior to each of the SGD iteration in order to ensure that there is no overfitting case. 

The DFCNet is trained to get the probability of an image belongs to nodule or non-nodule 
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class. As there are multiple CT-Scan slices belonging to a single patient therefore the 

adjacency rejection method is used to minimize the repetitive nodule detection and maximize 

the probability of detection. Each network was trained for 50000 iterations which are equal to 

approximately 120 epochs of our training dataset. 

During the training phase, the batch normalization is applied to the network after 

convolutional or dense layers i.e. before the non-linearity while in the testing phase the batch 

normalization is applied to the network using a pre-defined sample mean and variance. 

During the training process for the nodule and non-nodule classification, this problem 

occurred. The reason being random hyperparameter initialization, the validation accuracy of 

our model was reduced. Later by adding batch normalization layers after each convolutional 

layer, this issue was mitigated. 

 

3.5. Data Augmentation 

Data Augmentation is a technique which is used to overcome the limitation of dataset 

overfitting. Due to limited training dataset labelled by radiologists, nodule classification step 

of DFCNet was compromised. To improve the classification of nodule, data augmentation 

techniques such as rotation about a fixed angle, random translation, spatial deformation of the 

training dataset was done in order to mitigate the problem of limited labelled dataset. 

DFCNet further used the enriched training dataset. With enhanced dataset, DFCNet was well-

trained on the data features and learning parameters. The main reason behind using the data-

augmentation techniques was to ensure the equal number of images for each class. 

 

3.6. Classification 

Image input 𝐼 is classified afterwards a DFCNet uses the output image 𝑂  in which 

nodule is detected (𝑂 ∈ 𝐶𝑛) and then it is classified as stage of the nodule 𝑇1, 𝑇2, 𝑇3 and 𝑇4. 

The nodule images are fed into the DFCNet which will have four classes (𝑇1, 𝑇2, 𝑇3 and 𝑇4), 

each class will provide the probability score for each input. During the testing phase, priority 

ranking technique is used to assign input image patch (voxel) to one of the four categories on 

the basis of its classification scores from each class. DFCNet assigns probability to each 

image patch for each of the four cancer stages (Stage 𝑇1,  Stage 𝑇2, Stage 𝑇3 and Stage 𝑇4), 

respectively indicated by 𝑝𝑇1
, 𝑝𝑇2

, 𝑝𝑇3
 and 𝑝𝑇4

. The probability of these four stages is a 

combination of average diameter, diameter range; morphological features such as volume, 

density, perimeter, area, energy, homogeneity (sphericity, texture); high level imaging signs 
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of GGO, L, CV, PI, BMP, C, OP and AB [37]. All these features combined together to give 

the prediction score for four stages of lung cancer (𝑝𝑇1
, 𝑝𝑇2

, 𝑝𝑇3
, 𝑝𝑇4

). Table 5 shows the 

details of these features for the stage classification of the nodules. 

 

Algorithm 1 Priority Ranking Decision 

𝑰𝒏𝒑𝒖𝒕: Classification scores from each class (𝑇1, 𝑇2, 𝑇3 and 𝑇4) 

𝑶𝒖𝒕𝒑𝒖𝒕: Label 𝐿𝑥𝐼
for given pixel 𝑥𝐼   

1: 𝒑𝒓𝒐𝒄𝒆𝒅𝒖𝒓𝒆 PRIORITY RANKING DECISION(Score)  

2:    if 𝑥𝐼  ∈  𝐶𝑛 (Nodule Class) 

3:  if  𝑝𝑇4
 >= 0.5 then  

4:   𝐿𝑥𝐼
← Stage 𝑇4 

5:  endif  

6:  if 𝑝𝑇3
 >= 0.5 then  

7:   𝐿𝑥𝐼
 ← Stage 𝑇3  

8:  endif  

9:  if𝑝𝑇2
 >= 0.5 then  

10:   𝐿𝑥𝐼
 ← Stage 𝑇2 

11:  endif  

12:  if 𝑝𝑇1
  >= 0.5 then  

13:   𝐿𝑥𝐼
← Stage 𝑇1 

14:  endif  

15:    endif 

15: endprocedure 

 

Classification of nodules into different stages is done in hierarchical manner 

i.e. Stage 𝑇4 Stage 𝑇3  Stage 𝑇2and Stage 𝑇1 . The reason behind this is that the malignant 

stages (Stage 𝑇4  and  Stage 𝑇3) have relatively wide range of diameter range with higher 

density values. If the probability of the given image patch is high for the malignant stages 

then the image patch (voxel) is marked as Stage 𝑇4 nodule. If the DFCNet gives positive 

classification for more than one nodule stage then the ranking is done on the basis of priority. 

The highest priority is given to the Stage 𝑇4  while Stage 𝑇1 has the lowest ranking. This 
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method improved the results of classification of nodules and overcome the problem of 

multiple positive classifications for one input.  

 

3.7. Performance Evaluation 

In case of classification techniques, receiver operating characteristics (ROC) curves or 

area under the curve (AUC) are used as evaluation parameters. AUC represents the 

probability that the given sample image will be classified correctly. The correct classification 

of the nodule and non-nodule is the objective of this research work.  

The basic performance evaluation metric used for this proposed work is Dice Coefficient 

(intersection over union). Dice score for given prediction is calculated by counting total 

pixels predicted as nodule both by the DFCNet and radiologists, divided by the sum of nodule 

pixels predicted by the DFCNet and radiologists.  

𝐷𝑖𝑐𝑒 𝑆𝑐𝑜𝑟𝑒 =
2|𝑃𝐹𝐶𝑁𝑁 ∩ 𝑃𝑅𝑎𝑑  |

𝑃𝐹𝐶𝑁𝑁 ∪ 𝑃𝑅𝑎𝑑
                    (4) 

where 𝑃𝐹𝐶𝑁𝑁 is the set of pixels considered as the region of interest (ROI) in the prediction 

and 𝑃𝑅𝑎𝑑  is the set of pixels considered as ROI in the annotation done by the expert 

radiologists. Dice score values ranges between 0 (no match) and 1 (perfect match). Dice score 

is comparatively better than the accuracy metric as the accuracy is tend to be higher for all 

images because of the non-nodule pixel prevalence.  

The median Dice score of the nodule detection was approximately 91.34 %. As there 

were four radiologists for the annotation of the given dataset thus the multiple-radiologist 

repetition was 86%. Figure 8 shows the comparison of the existing work with the proposed 

research work. 

 

4. Experimental Results 

The proposed research method is evaluated using the different datasets, LIDC-IDRI 

database, RIDER, LungCT-Diagnosis, and Lung Nodule Analysis (LUNA) 2016 Dataset. 

These are publicly available in the The Cancer Imaging Archive (TCIA), and the pulmonary 

nodules have been fully annotated by multiple radiologists. Expert radiologists drew outlines 

for the lung nodules with size of 3mm or more. 

Another dataset that we used specifically for testing is SPIE Challenge Dataset which 

was not annotated in order to test whether the DFCNet is able to detect nodule (malignant or 

benign) and non-nodule without annotations. There was information about the location on the 

largest cross-sectional area of the nodule CT-Scan which was only used for extracting the 
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CT-Scan slices and pre-processing of these images. SPIE-AAPM-LUNGx does not have any 

detailed information about the presence of nodules and thus it was considered to be real life 

scenario where the patient’s CT Scan is to be used to detect the nodules. For the training of 

DFCNet, only 22 were used whereas 46 were used for testing. There was one CT Scan in 

which the nodule location was ambiguous therefore this particular CT-Scan was not used.  

The dataset was retrospectively collected from the radiology department clinical practice 

Shanghai Hospital No. 6 considering the selection criteria (size to be within the range of 3-

30mm). These CT-Scan images were annotated by the radiologist and the stage of the lung 

cancer was diagnosed. For the training 11 CT-Scan dataset were used (10 lung cancer patient 

dataset and 1 healthy person dataset) while remaining 7 were used for testing. The testing 

dataset from Shanghai Hospital No. 6 includes 6 lung cancer patient dataset and 1 healthy 

person dataset. 

 

Table 3: Dataset for Training and Testing 

Dataset 

Total  CT-

Scans 

Cases 

CT Scans 

containing 

Nodules 

Total Number 

of Nodules 

Total Number of 

Slices/Images 

LIDC-IDRI 

database [32] 
1018 10,531 2669 244,527 

RIDER [33] 46 197 47 15,419 

SPIE Challenge 

Dataset [38] 
70 - - 22,489 

LUNA16 [35] 888 9120 1,186 551,065 

LungCT- 

Diagnosis [34] 
61 634 121 4,682 

Shanghai Hospital 

No.6 Dataset 
18 184 24 3,794 

 

In case of the RIDER and LungCT-Diagnosis, we used those lung CT scans which 

contained pulmonary nodules to evaluate the proposed method. All of the annotated 

pulmonary nodule segmentations are used. Pulmonary nodules’ diameter ranges from 3 to 30 

mm. Each lung CT scan has approximately 200 slices while each slice comprises of 512×512 

pixels (size of pixel is about 0.5 to 0.76 mm), and the reconstruction interval is about 1mm to 



19 

 

3 mm. The nodule candidates are considered as nodules or non-nodules using annotation 

provided by chest radiologists. The statistics of the dataset used in training and testing phase 

is given in Table 3. 

In the first step for enhancing the images, Gabor filter was applied on the CT images. 

For segmentation section, the images that have passed from enhancement step, were 

segmented by region growing algorithm, thus lung region or (ROI) is extracted. The 

processes that were applied on CT lung images are shown below in Figure 7.  

 

Table 4: Performance Evaluation of DFCNet on Various Dataset 

Dataset Method 
Accuracy 

(%) 

Sensitivity 

(%) 

Specificity 

(%) 

Average 

False 

Positive 

LIDC-IDRI 

database [32] 

CNN 77.61 75.35 80.59 4.4 

DFCNet 86.02 83.91 89.32 2.9 

RIDER [33] 
CNN 79.22 74.11 81.14 5.5 

DFCNet 80.64 74.58 86.54 3.7 

SPIE-Challenge 

Dataset [38] 

CNN 73.75 75.65 79.15 4.6 

DFCNet 84.87 81.22 82.97 3.5 

LUNA16 [35] 
CNN 74.01 70.23 79.47 4.7 

DFCNet 80.12 73.14 81.95 4.2 

LungCT-

Diagnosis [34] 

CNN 81.34 74.71 83.14 2.9 

DFCNet 89.52 82.54 93.60 2.8 

Hospital Dataset 
CNN 79.67 75.23 86.46 2.0 

DFCNet 86.32 83.67 96.17 1.17 

 

               

Figure 7: (a) Original image     (b) Image filtered by Gabor   (c) ROI Based segmented Image 
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After pre-processing of the CT-Scan images, the ROI are extracted and the DFCNet is 

trained using these lung CT image patches. The pre-processed images were fed to the 

DFCNet for training. Each of the dataset was divided into two parts, training dataset and 

testing dataset except for the SPIE Challenge dataset as there was no annotation provided. 

The overall accuracy, sensitivity, specificity and false positive (FP) rate were calculated both 

for the existing CNN approach and the proposed DFCNet method. There false positive results 

were observed in the classification due to the airways and the blood vessels which appear to 

be a nodule during local observations. In order to reduce the false positive (FP) detection, we 

used an elimination method [45]. This method considers the detected nodules and if the 

distance of the candidate nodule to any nodule is less than 3/2 of the radius of the detected 

nodule or greater than 2/3 of the radius of the nodule then it is considered as potential nodule, 

it is marked. If after re-training, it is again detected to be a potential nodule then it is a true 

positive result else it is a false positive result. Out of 4247 potential nodules only 3571 were 

classified as true positive results by the DFCNet. The true positive 𝑇𝑃 results detected by 

CNN was approximately 2984 (83%) while  𝑇𝑃  detected by DFCNet was 3179 (89%). 

DFCNet outperformed the CNN method. The overall sensitivity of CNN and DFCNet was 

74.21% and 80.65%, respectively. The performance evaluation of DFCNet and CNN on 

different dataset is provided in Table 4. 

 

 

Figure 8: Performance of DFCNet and CNN on different datasets 
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Table 5: Extracted Features for Stage Classification 

Features Stage 𝑇1 Stage 𝑇2 Stage 𝑇3 Stage 𝑇4 

Diameter 𝑑𝑎𝑣𝑔 17.4mm 23.1mm 55.56mm 81.93mm 

Area 206 341 491 608 

Perimeter 54.284 77.596 94.52 109.0122 

Eccentricity 0.7270 0.6897 0.7909 0.9225 

Entropy 0.0092379 0.014346 0.01967 0.023641 

Contrast 0.0056 0.0101 0.0131 0.0165 

Correlation 0.9271 0.9207 0.9286 0.9275 

Energy 0.9983 0.9972 0.9960 0.9950 

Homogeneity 0.999 0.998 0.998 0.997 

 

 

Figure 9: (a) Training Loss (𝐿𝑜𝑠𝑠𝑇) vs number of iterations, (b) Validation Loss (𝐿𝑜𝑠𝑠𝑉) vs 

number of iterations 

 

During the training phase, the training loss (𝐿𝑜𝑠𝑠𝑇 ) decreased as training iteration 

increase in number, while the validation loss (𝐿𝑜𝑠𝑠𝑉) increased and accuracy in turn does not 

improve significantly before attaining a plateau Figure 9(a). Using the learning techniques in 

training the DFCNet resulted in improved performance. Therefore, the validation loss is 
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comparatively low and thus the validation accuracy was improved notably as visible in 

Figure 9(b). Optimization is done in order to train the DFCNet to classify the dataset which 

was not annotated (SPIE Challenge dataset). Random initialization caused the validation loss 

(𝐿𝑜𝑠𝑠𝑉) to be within the range of 0.3-0.75 whereas the training loss (𝐿𝑜𝑠𝑠𝑇) was decreased to 

values approximately equal to zero and thus achieved higher final accuracy than the (𝐿𝑜𝑠𝑠𝑉). 

The Shanghai hospital No.6 dataset, RIDER, SPIE Challenge dataset showed the overfitting 

issue as the dataset was comparatively smaller. The LIDC-IDR and LUNA16 showed 

consistently better accuracy of classification. The results show that the proposed system 

DFCNet has suitable accuracy for both annotated and non-annotated dataset. 

 

 

Figure 10: Confusion matrix for Cancer Stage Classification by DFCNet 

 

The classification of the nodules into four stages was done using the DFCNet, 𝑇4 stage 

nodules (malignant) average diameter 𝑑𝑎𝑣𝑔  was 17.4mm and the diameter range was 

𝑑𝑚𝑎𝑥 3.6- 𝑑𝑚𝑖𝑛 29.3mm. In case of 𝑇3  stage nodules, 𝑑𝑎𝑣𝑔  was 13.1mm and the diameter 

range was 𝑑𝑚𝑎𝑥 7.7mm – 𝑑𝑚𝑖𝑛 26.4mm whereas  𝑑𝑎𝑣𝑔 of 𝑇2 was 9.56mm and the diameter 

range was 𝑑𝑚𝑎𝑥 3.4mm – 𝑑𝑚𝑖𝑛 15.3mm. The 𝑇1 (benign nodules) 𝑑𝑎𝑣𝑔 was 4.93mm and the 

diameter range was 𝑑𝑚𝑎𝑥 3.6mm- 𝑑𝑚𝑖𝑛 9.3mm. The morphological features that were 

considered during the stage classification of Nodule include the volume, density Hounsfield 

units (HU) of the nodule, perimeter, area and the energy. Other high-level features like 

sphericity, texture were added into homogeneity attribute. Apart from these features, DFCNet 
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was trained using the LISS database with nine different classes. Nodule is malignant if there 

are imaging signs of GGO, L, CV, PI classes while if there is BMP imaging sign then it 

indicates benign nodule in lung, whereas BMP. The remaining three classes C, OP and AB, 

can be present both in benign or malignant nodule. Furthermore, different classes of imaging 

signs can be seen in a single nodule thus the final stage classification is obtained considering 

all these features as well as these nine classes of imaging signs. Table 5 shows the features 

for the stage classification of the nodules. 

 

Table 6: Confusion matrix, precision, recall and F-score of Stage Classification by DFCNet 

Ground Truth 

Prediction 

Stage 𝑇1 Stage 𝑇2 Stage 𝑇3 Stage 𝑇4 

Stage 𝑇1 0.96 0.08 0.25 0.09 

Stage 𝑇2 0.25 0.89 0.44 0.27 

Stage 𝑇3 0.31 0.41 0.78 0.41 

Stage 𝑇4 0.11 0.05 0.12 0.91 

Precision 0.8992 0.7789 0.8221 0.9014 

Recall 0.7946 0.7546 0.8148 0.8507 

F-score 0.9144 0.8443 0.8596 0.8323 

 

The performance of the DFCNet for the stage classification is done by the help of 

confusion matrix. Figure 10 shows the confusion matrix of four stages of cancer classified by 

DFCNet. Table 6 gives the overall recall and precision of the classification phase. For 

comparison of the proposed work with the existing work, we randomly sampled 1700 images 

from the training dataset and used them for testing by the trained fully convolutional neural 

network. Same dataset was used for network model in [16] trained. Firstly, the features were 

extracted for the fully connected network layer then the Gaussian Process Regression (GPR) 

was applied to these features. The images were forwarded to the multi-view network to 

obtain the feature representation and afterward processed by GPR. The results were 

compared with those obtained by using CNN and Fully convolutional neural network. Table 

7 shows the performance comparison of proposed work and TumorNet. The overall accuracy 
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of TumorNet in case of LIDC-IDRI dataset was higher than the accuracy of DFCNet by a 

factor of 1.39 whereas for the hospital dataset DFCNet and TumorNet accuracies are 96.33 

and 81.11, respectively. The main reason behind this improved result of DFCNet was 

metastasis features for the classification for which different wearable sensors were used. The 

data collection for the metastasis features was done by using the IoT based personalized 

health-care systems both clinical system and remote monitoring system. The metastasis 

feature in addition to the training dataset has significant results as compare to TumorNet. 

 

Table 7: Performance Comparison of DFCNet and TumorNet 

Dataset Method 

Accurac

y 

(%) 

Sensitivity 

(%) 

Specificity 

(%) 

LIDC-IDRI 

Testing 

Dataset 

CNN 77.61 75.35 80.59 

DFCNet 86.02 80.91 83.22 

TumorNet 87.41 81.7 85.17 

Hospital 

Dataset 

CNN 89.67 75.23 86.46 

DFCNet 96.33 83.67 96.17 

TumorNet 81.11 81.49 89.94 

 

5. Conclusion and Future Work 

One of the benefits of IoT based health care systems is remote access to medical images 

such as Lung cancer CT-Scan images. IoT services have enabled that the data gathered by the 

remote machines can also be used for investigating the patterns of the disease and thus 

disease prediction could be done by using this data for training of CNN. In this paper, we 

proposed a novel classifier based on deep fully convolutional neural network. DFCNet is a 

generic classifier which can be used for detection and classification of biomedical images. 

However, in this paper DFCNet is used to detect and classify the pulmonary nodules in the 

CT-Scan images. The initial classification was done into two classes i.e. nodule (diseased-

Malignant or Benign) and non-nodule (normal). The images classified as nodules are further 

classified into four lung cancer stages. In order to overcome the problem of limited dataset 

we used data augmentation techniques. Data augmentation improved the training of DFCNet 

and enabled it to capture more classification features and learning parameters from enriched 
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training dataset. For the classification of nodule, it was necessary to have equal number of 

training images in each class, data augmentation techniques were used.  

Our method outperformed the existing research work on lung nodule detection. The 

performance of our proposed method was high even in low-density small-sized pulmonary 

nodules. The average FP was 3.1 for the DFCNet which was improved to 2.79 using 

elimination technique. Proposed method used large number of training samples which helped 

in the improving the performance on the dataset which was not annotated. The limitation of 

the proposed work is using different dataset with varying scan parameters leading to FP 

results in case of malignant nodules. Optimal classification results can be obtained if the 

dataset has same scan parameters. Although using CT-Scan images acquired from varying 

clinical environment provide more challenging classification for the DFCNet yet improved 

performance can be achieved using dataset with homogeneous scan parameters. Experimental 

results and our analysis show that DFCNet achieves better performance than state-of-the-art 

methods TumorNet. In future, we will focus on using DFCNet for other biomedical images 

such as MRI for detection and classification of diseases namely breast cancer, brain tumor, 

colon cancer and diabetic retinopathy. We will detect lung nodule with the proposed method 

using unseen dataset for testing. Future IoT enabled healthcare methods will be used which 

aim to provide highly-customized access to rich medical information particularly lung CT 

images and efficient clinical decision making by the lung cancer CAD system to each 

individual with unobtrusive and successive sensing and monitoring. The proposed IoT-

enabled CAD system could be used for the detection of other types of cancer as DFCNet is a 

generic method for detection. 
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