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Abstract—This paper addresses the joint relay, power splitting
ratio, and transmission power selection problem for an energy
harvesting (EH) cooperative network, where the source and the
relays can harvest energy from natural sources (e.g., solar) and
radio frequency (RF) signals, respectively. To effectively use
the harvested energy of the source, the relays are designed to
employ the power splitting technique to scavenge energy from
RF signals radiated by the source. The addressed problem is
considered in both offline and online settings, with the objective
to maximize system payoff, which is defined as the difference
between system transmission benefit and system energy cost, and
meanwhile to minimize system outage probability. In particular,
direct transmission is considered in our study and relay transmis-
sion is selected dynamically based on network channel conditions
and the available energy of EH nodes. Our simulation results
reveal that it is necessary to consider direct transmission and
select relay transmission and power splitting ratio dynamically
in some cases, which can greatly improve system performance.
Besides, simulations also verify that considering system energy
consumption is also meaningful for EH relaying systems, which
can lead to a desired system performance by choosing some
related parameters appropriately. In addition, we also show that
the resource allocation models and the corresponding resource
allocation schemes proposed can be extended to more general
communication scenarios, for instance, when some relays scavenge
energy from natural sources and others from RF signals.

Index Terms—Energy harvesting, cooperative networks, simul-
taneous information and energy transfer, power allocation, relay
and power splitting ratio selection, generalized outer approxima-
tion (GOA).

I. INTRODUCTION AND RELATED WORK

In cooperative communication networks, sources and coop-
erating relays are connected to the power grid or equipped
with pre-charged batteries conventionally. However, running the
power grid to supply energy is often impractical or cumbersome
in several scenarios, while the limited storage capacity of
pre-charged batteries always leads to the limited lifetime of
networks. Therefore, introducing energy harvesting (EH) nodes
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is attractive due to their long lifetime without continuous
monitoring and maintenance [1].

EH nodes use energy harvesting technologies to scavenge
energy so as to carry out their communication tasks [2].
Energy can be harvested from natural sources such as solar and
vibration, and can also be obtained using the wireless power
transfer (WPT) technology [3]. However, since the amount
of energy harvested by EH nodes is unpredictable and only
the energy available in batteries can be used in the current
time, EH communication networks motivate the need for the
design of novel transmission policies to meet specific network
requirements.

Recently, transmission policies for EH cooperative networks
have been provided in the literature, such as [4]-[11]. The use
of EH relays in cooperative communication was first introduced
in [4] for a relay selection EH network. In [5]-[7], assuming a
deterministic EH model under which the energy arrival time and
the amount of harvested energy are known prior to transmission,
several power allocation policies were proposed for the classical
three-node relay system. However, the deterministic EH model
is impractical because the energy arrival time and the harvested
amount are random in nature. Therefore, several transmission
policies were given in [8]-[11] under more general energy
harvesting profiles. In [8], several joint relay selection and
power allocation schemes were proposed under the assumption
that the energy harvesting process is ergodic and stationary.
Similarly, in [9]-[10], several power allocation schemes were
given for cooperative EH networks under the assumption that
energy can be harvested during any time of data transmission.
The work in [9]-[10] was extended in [11] for the buffer-aided
link adaptive EH relay system, which was shown to be more
robust to the change of EH rates.

However, [4]-[11] all focused on networks harvesting energy
from natural sources. In communication scenarios without
access to natural sources, this type of energy harvesting tech-
nology is not applicable. Therefore, a new energy harvesting
technology, i.e., WPT technology, has recently received con-
siderable attention [12], [13]. In WPT, energy can be harvested
through (i) strongly coupled magnetic resonances, or (ii) radio
frequency (RF) signals. But, energy transfer based on magnetic
resonances has some limitations. For example, it requires that
each energy receiver must mount a coil tuned to resonate at
exactly the same frequency as the coil on the energy transmitter,
and it is usually activated by near field induction from very
powerful nodes (e.g., base stations and vehicles).

Compared to strongly coupled magnetic resonances, energy
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transfer based on RF signals does not have the above limita-
tions and more importantly RF signals can carry energy and
information concurrently. Thus, a RF-based energy harvesting
technique, called simultaneous wireless information and power
transfer (SWIPT) has attracted much attention recently, since
network nodes can scavenge energy from incoming RF signals
and process the carried information simultaneously [14] by
using SWIPT. The concept of SWIPT was first proposed in
[14] for point-to-point communication networks with discrete
memoryless channels, and the work was extended in [15]
for point-to-point networks with frequency-selective channels.
However, the study in [14]-[15] is based on an ideal receiver
design which can observe and extract power simultaneously
from the same received signal, while practical circuits for har-
vesting energy cannot decode the carried information directly
[16]. Thus, [16]-[17] proposed a practical receiver design with
separate information decoding and energy harvesting receivers,
where receivers for information decoding and energy harvesting
are operated in a time switching or power splitting manner.

Based on the receiver design in [16]-[17], SWIPT for coop-
erative communication networks has also been studied in [18]-
[24]. In [18], two relaying protocols were proposed to enable
energy harvesting and information processing at the relay. In
[19]-[20], for cooperative EH networks using SWIPT, several
power allocation strategies for the relay were put forward
to distribute the harvested energy among multiple source-
destination pairs. In [21], Krikidis considered the application of
SWIPT for large-scale cooperative networks, and a cooperative
protocol was proposed. In [22]-[23], SWIPT has been applied to
multi-antenna cooperative systems, and information and energy
cooperation problem was considered. In [24], Wang, et. al.
studied the power allocation and rate adaption problem for
relay-assisted SWIPT systems where only imperfect channel
state information (CSI) is known at transmitters.

Although [4]-[11] and [18]-[24] have made significant con-
tributions on EH cooperative networks, there are still some
formidable shortcomings in these works. Firstly, all these works
only study the scenarios where all EH nodes can harvest energy
either from natural sources or RF signals. Therefore, it is
meaningful to consider the scenarios when some EH nodes
can scavenge energy from natural sources while others from
RF signals due to hardware design or environment limitations.
Secondly, direct transmission, which may be more efficient
than relay transmission sometimes, is generally not taken into
account, e.g, in [6]-[9], [18]-[20], [22]-[24]. However, in fact,
whether to use direct transmission or relay transmission should
be dynamically determined by network channel conditions and
the available energy of network nodes. Thirdly, the power
splitting ratio which determines the power used for energy
harvesting and information processing is usually taken as a
constant value, e.g., in [18] or is allowed to take any value
in the interval [0,1], e.g., in [19]-[22], but this parameter
may take only discrete levels in practice and should also be
optimized dynamically according to network conditions so as to
maximize system performance. Finally, the problem of energy
consumption is not sufficiently considered. Nevertheless, since

the amount of energy harvested by EH nodes is random and is
affected by many factors, such as weather, location, and channel
conditions, it is necessary to efficiently use the harvested energy
to combat some unpredictable events (e.g., rainy days) so that
network lifetime can be prolonged.

In this paper, we jointly consider all the above issues and
our contributions can be summarized as follows.

• We consider a relaying network with one EH source, one
destination, and multiple EH decode-and-forward relays,
where the source and the relays can harvest energy from
natural sources (e.g., solar) and RF signals, respectively,
because of their hardware design or surrounding environ-
ment limitations. To maintain normal network operation,
we integrate the above two energy harvesting technologies
together. Therefore, the source is designed to replenish
energy from natural sources, while the relays use the power
splitting strategy to scavenge energy from RF signals
radiated by the source.

• We study the joint relay, power splitting ratio, and trans-
mission power selection problem, which is considered
in both offline and online settings with only imperfect
CSI at hand. Particularly, direct transmission is taken into
account, and whether to use direct transmission or relay
transmission together with suitable power splitting ratio
selection is dynamically determined according to network
channel conditions and the available energy of network
nodes. In addition, the system energy consumption is taken
into consideration to efficiently use the harvested energy
and prolong the network lifetime.

• We obtain an offline and two online resource allocation
schemes, even though the proposed offline and online
problems are non-convex with integer variables. Simula-
tion results show that system performance can be greatly
improved by considering direct transmission in some cases
and dynamically choosing power splitting ratio. Further-
more, simulations also show that considering system en-
ergy consumption is also meaningful for EH cooperative
networks, which can lead to a desired system performance
by selecting some related parameters properly.

• In addition, we also show that the resource allocation
models and the corresponding resource allocation schemes
proposed have better scalability, and they can be extended
to more general communication scenarios, for example,
when part of relays replenish energy from natural sources
while others from RF signals.

The remainder of this paper is organized as follows. Section
II presents the system model. Section III formulates the offline
problem and designs an offline scheme. Section IV gives two
online schemes, and Section V provides numerical results.
Finally, Section VI concludes this paper.

II. SYSTEM MODEL

A. Network Model

Consider an EH decode-and-forward cooperative communi-
cation network with one source S, one destination D, and J



Fig. 1. Network model with one EH source and multiple EH relays.

relays Rj(1 ≤ j ≤ J) as shown in Fig. 1, where each node
has a single antenna. We assume that S and Rj can harvest
energy from natural sources and RF signals respectively due to
their hardware design or surrounding environment limitations1,
while D is not an EH node and has continuous supply of
energy. A potential communication scenario, for instance, when
an outdoor transmitter communicates with its receiver via
some indoor nodes in a smart-home system or some nodes
embedded in buildings. In fact, we will show in Section IV that
the optimization models and the resource allocation schemes
proposed in the paper can also be extended to more general
scenarios, for example, when some relays harvest energy from
natural sources while others from RF signals.

As mentioned, S can harvest energy from natural sources,
such as solar and thermoelectric, while each relay Rj can
replenish energy from its surrounding RF signals. Therefore, to
efficiently use the energy harvested by S and at the same time
help S forward information, we assume that the transmission is
carried out by the following two phases for each time interval
k (see Fig. 2). Particularly, the direct link between S and
D is considered and only one suitable relay is selected for
transmission when necessary.

Phase I: In the first time slot, S transmits while Rj and
D receive. All relays are half-duplex, which means that each
relay cannot transmit and receive data simultaneously. Besides,
each relay receiver consists of an energy harvesting unit and a
conventional signal processing core unit, as shown in Fig. 3.
In particular, each relay receiver employs the power splitting
technique [16]-[17] to harvest energy from RF signals radiated
by S, where the received signals are splitted into two power
streams with power splitting ratios 1− ρj and ρj , and the two
power streams are used for energy harvesting and the source to
relay information transmission, respectively. Note that since at
most one relay Rζ is selected to help S forward data in each
interval k, other relays only harvest energy from the received
source signal (i.e., ρj = 0, j ̸=ζ) and the harvested energy is
reserved for future use.

Phase II: In the second time slot, the selected relay Rζ (if
such a node exists and it successfully decodes the received
source message) transmits, and D exploits Maximum Ratio

1Note that in practice S and Rj may also be able to extract energy from
traditional power supply, such as pre-charged batteries, and the harvested energy
from natural sources or RF signals may be used as a supplement for the total
energy consumption so as to prolong the lifetime of S and Rj .

Fig. 2. Illustration of cooperation between network nodes, where T is the
duration of each interval k.

Fig. 3. Block diagram of the relay receiver.

Combining (MRC) [25] to receive the signals from S in the
first time slot and from Rζ in the second time slot, pertaining
to the same message.

The above mentioned single-relay selection scheme is rea-
sonable. The underlying reason is that it is much easier to be
implemented than traditional distributed space-time coding or
beamforming which requires the tight synchronization among
multiple geographically separated relays [4], since only one
relay is selected for data forwarding in the single-relay selection
scheme.

Define hSRj ,k, hRjD,k, and hSD,k as the channel gains of the
S−Rj , Rj−D, and S−D links in the kth interval, respectively.
In particular, large scale path loss will be considered only in the
simulation section so as to simplify the analytical expressions,
but this does not affect our analytical process. All channels are
assumed to be quasi-static and independent of each other within
each interval k, and they need not be identically distributed.
Besides, define σ2

Rj ,k
and σ2

D,k as the variances of Additive
White Gaussian Noise (AWGN) at Rj and D respectively. As
shown in [18], such noise consists of the baseband AWGN as
well as the sampled AWGN due to RF band to baseband signal
conversion, as shown in Fig. 3.

Since perfect channel state information (CSI) is often un-
available due to channel estimation errors, quantization errors
and so on [26]-[27], we will consider imperfect CSI in the
paper. To estimate network CSI, S can first transmit training
signals before data transmission in phase I, and then D and
each relay Rj can evaluate channel gains hSD,k and hSRj ,k

respectively. Similarly, Rj can transmit training signals to D
so that D is able to estimate hRjD,k. Then, S can obtain all
the measured channel gains by feedback from Rj and D.

In the paper, the dynamic power splitting ratio selection is
considered. Since the relay receiver can only split the received
signal into two power streams based on a finite discrete set of
power splitting ratios in practice [28], we assume that ρj can



take value from the following set:

ρj ∈
{
ρ1Rj

, . . . , ρnRj
, . . . , ρNRj

}
. (1)

A reasonable choice of ρj is very important for system perfor-
mance, because it determines the reliability of data reception
at Rj in Phase I and the energy of Rj reserved for Phase II.

B. System Throughput

With the above assumptions, the achievable end-to-end rate
r1S,k when one relay is selected to assist the source transmission
can be expressed as [25]

r1S,k = min 1
2{log(1 +

∑J
j=1

∑N
n=1 w

n
Rj ,k

ρnRj
PS,kτSRj ,k),

log(1 + PS,kτSD,k +
∑J

j=1

∑N
n=1 w

n
Rj ,k

Pn
Rj ,k

τRjD,k)},
(2)

where τSRj ,k = |hSRj ,k|2/σ2
Rj ,k

, τSD,k = |hSD,k|2/σ2
D,k, and

τRjD,k = |hRjD,k|2/σ2
D,k. wn

Rj ,k
is a binary variable to indi-

cate whether relay Rj(1 ≤ j ≤ J) is selected for transmission
in interval k with power splitting factor ρnRj

(1 ≤ n ≤ N).
PS,k and Pn

Rj ,k
are the transmission powers for S and Rj ,

respectively. Specifically, if wn
Rj ,k

= 1, then Pn
Rj ,k

> 0;
otherwise Pn

Rj ,k
= 0. Besides, since the decode-and-forward

relay strategy is considered, the selected relay Rζ must be able
to decode the source signal successfully. That is to say, the
SNR of S − Rζ link must be no less than γmin, where γmin

is the SNR threshold for correct decoding at Rζ . In general,
some relay may be used if S itself cannot transmit data to D
successfully, for example, when the channel gain hSD,k is weak
or the harvested energy of S is inadequate.

On the other hand, if no relay is selected to forward the
source information and only the direct transmission between S
and D is employed, the achievable end-to-end rate r2S,k can be
given by [25], [32]-[33]

r2S,k = log(1 + PS,kτSD,k). (3)

This scenario may occur, for instance, when hSD,k is very good
and S has sufficient energy so that D can decode the source
information correctly, where the SNR threshold required for
successful decoding at D is also assumed to be γmin.

Note that for mathematical tractability, we combine (2) and
(3) together and write the achievable end-to-end rate as rS,k by
introducing a virtual relay R0 with τSR0,k = τR0D,k = τSD,k,
where rS,k is given by

rS,k = min
1+w0

k

2 {log(1 + SNR1,k), log(1 + SNR2,k)},
(4)

SNR1,k = w0
kPS,kτSD,k

+
∑J

j=1

∑N
n=1 w

n
Rj ,k

ρnRj
PS,kτSRj ,k,

(5)

and

SNR2,k = (1 + w0
k)PS,kτSD,k

+
∑J

j=1

∑N
n=1 w

n
Rj ,k

Pn
Rj ,k

τRjD,k.
(6)

In (4), w0
k is a 0-1 binary variable and w0

k +∑J
j=1

∑N
n=1 w

n
Rj ,k

≤ 1. If w0
k = 1 , (4) reduces to (3) and R0

is selected, meaning that only direct transmission is employed.

If
∑J

j=1

∑N
n=1 w

n
Rj ,k

= 1, (4) reduces to (2) and some relay
Rj(1 ≤ j ≤ J) is chosen to assist the transmission of S. In the
following, unless otherwise specified, when the term “relay” is
involved, it also includes node R0.

C. Battery Dynamics

Denote the battery energy of a node N ∈ {S,R1, . . . , RJ}
at the beginning of each interval k as BN ,k. In general, the
battery energy is updated as follows [34]

BN ,k+1 = f(BN ,1, ..., BN ,k, PN ,1, ..., PN ,k,HN ,1, ..., HN ,k),
(7)

where the function f depends on the battery dynamics, such as
the storage efficiency and memory effects, and then BN ,k+1

may not increase linearly with respect to the variables in
(7), e.g., HN ,k. However, intuitively, BN ,k+1 should increase
or remain the same if BN ,k or HN ,k increases or if PN ,k

decreases. Therefore, similar to [1], [8]-[9], [16], [34], we
assume that BN ,k+1 increases and decreases linearly in the
extremely short time period T (duration of each interval k),
provided that the maximum storage capacity Bmax

N is not
exceeded, that is,

BN ,k+1 = min(BN ,k +HN ,k − PN ,kT/2− PN
C T,Bmax

N ),
(8)

where PN ,k ∈
{
PS,k, P

1
R1,k

, . . . , Pn
Rj ,k

, . . . , PN
RJ ,k

}
. PN

C is
the constant circuit power consumption at node N , which
is used for maintaining the routine operations, for example,
filters and frequency synthesizer. Moreover, HN ,k is the har-
vested energy at node N within interval k. In our work,
HN ,k is modeled as an ergodic random process with mean
HN = E {HN ,k}, where E {.} denotes the expectation. No
other limiting assumptions are made about it in our analysis.
Therefore, this general model can encompass several energy
harvesting profiles in the literature [29]-[30], for example, the
Markov model-based profile in [29]. Besides, BN ,1 = HN ,0

denotes the available energy at node N before transmission
starts. Specifically, for relay Rj , due to imperfect CSI, the
estimated energy2 HRj ,k harvested from source S during the
first time slot can be given by [16]

HRj ,k = η(1−
∑N

n=1 w
n
Rj ,k

ρnRj
)PS,k|hSRj ,k|2T/2, (9)

where 0 < η < 1 is the energy conversion efficiency which
depends on the rectification process and the energy harvesting
circuitry [18].

2Although relays can scavenge energy from RF signals emitted by different
energy providers, we still assume that S is the main renewable energy provider
in the considered time interval because it needs to transmit data in the above
mentioned time interval and then nearby relays can replenish energy from it.
In fact, if the energy harvested from other energy providers is considered,
we only need to plus this part of energy to (9), and this does not affect our
proposed resource allocation schemes below. Moreover, the energy replenished
from antenna noise is neglected, because antenna noise, whose variance is
generally much smaller than the average power of RF signals radiated by S
and other energy providers, has little impact on energy harvesting [31].



III. OFFLINE CASE

In this section, we aim at designing an offline resource
allocation scheme to provide a performance benchmark for
the system and to effectively use the harvested energy of S
and Rj . Our objective is to maximize system payoff, which is
defined as the difference between system transmission benefit
and system energy cost, and meanwhile to minimize system
outage probability by jointly selecting suitable relay, power
splitting factor, and transmission power.

A. Problem Formulation

We assume that non-causal knowledge of energy arrivals at
S and the estimated CSI of all network links is available.
However, since the harvested energy HRj ,k of each relay
is connected with the source power PS,k and the estimated
CSI hSRj ,k, HRj ,k cannot be known in advance but can be
calculated using (9). Thus, the offline optimization problem can
be formulated as

max νS,r
∑K

k=1 rS,kT − νS,PUTE(P,W ),
s.t.

(C1)
∑l

k=1(PS,k1/2 + PS
C )T ≤

∑l−1
k=0 HS,k, ∀l,

(C2)
∑l

k=1(
∑N

n=1 w
n
Rj ,k

Pn
Rj ,k

1/2 + P
Rj

C )T ≤
∑l

k=0 HRj ,k, ∀j,∀l,
(C3)

∑m
k=0 HS,k −

∑m
k=1(PS,k1/2 + PS

C )T ≤ Bmax
S , ∀m,

(C4)
∑m

k=0 HRj ,k −
∑m

k=1(
∑N

n=1 w
n
Rj ,k

Pn
Rj ,k

1/2 + P
Rj

C )T

≤ Bmax
Rj

,∀j,∀m,

(C5)w0
k +

∑J
j=1

∑N
n=1 w

n
Rj ,k

≤ 1,∀k,
(C6)w0

k, w
n
Rj ,k

∈ {0, 1}, ∀j,∀n, ∀k,

(C7)SNR1,k ≤ (w0
k +

∑J
j=1

∑N
n=1 w

n
Rj ,k

)γmax,∀k,

(C8)(w0
k +

∑J
j=1

∑N
n=1 w

n
Rj ,k

)γmin ≤ SNR1,k, ∀k,

(C9)SNR2,k ≤ (w0
k +

∑J
j=1

∑N
n=1 w

n
Rj ,k

)γmax,∀k,

(C10)(w0
k +

∑J
j=1

∑N
n=1 w

n
Rj ,k

)γmin ≤ SNR2,k, ∀k,

(C11)PS,k ≤ (w0
k +

∑J
j=1

∑N
n=1 w

n
Rj ,k

)Pmax
S , ∀k,

(10)
where W =

{
w0

k, w
n
Rj ,k

, ∀k, ∀j,∀n
}

, P = {PS,k, P
n
Rj ,k

, ∀k,
∀j,∀n}, and UTE(P,W ) is the overall system consumption
given by

UTE(P,W ) =
∑K

k=1(PS,kT/2 + (PS
C +

∑J
j=1 P

Rj

C )T

+
∑J

j=1

∑N
n=1 w

n
Rj ,k

Pn
Rj ,k

T/2).
(11)

Moreover, similar to [32]-[33], νS,r and νS,P are defined as the
equivalent revenue per unit throughput and the equivalent cost
per unit transmission energy3, respectively. Correspondingly,

3Similar to [33], νS,r and νS,P can be defined as concave functions of rS,k
and UTE(P,W ), respectively, and then the two parameters can be determined
dynamically according to system resource allocation. However, this will make
problem (10) more difficult to be solved. Therefore, like [32], we take νS,r and
νS,P as constants, and assume that they can be determined offline on the basis
of different weather and channel conditions and/or users’ QoS requirements
because these factors affect system resource allocation significantly.

νS,r
∑K

k=1 rS,kT and νS,PUTE(P,W ) are defined as system
transmission benefit and system energy cost, respectively. The
purpose of considering system energy consumption is to save
energy due to the intermittent and unpredictable nature of
energy arriving at S and Rj(1 ≤ j ≤ J) so that network
lifetime can be prolonged. C1 is the energy neutrality constraint
for S which mandates that the energy used by S so far cannot
exceed the energy harvested by it. C3 is the battery capacity
constraint for S which states that the energy level in the battery
of S should never exceed Bmax

S so as to prevent energy
overflow. For Rj(1 ≤ j ≤ J), C2 and C4 can be similarly
explained as C1 and C3. respectively. γmax is the maximum
SNR constraint, which can model the scenarios when D or Rj

has limited choices of modulation and coding schemes.
Furthermore, C7−C10 are the SNR constraints for all relays

and D. If w0
k +

∑J
j=1

∑N
n=1 w

n
Rj ,k

= 1, then D can receive
signals successfully regardless which relay (R0 or Rj(1 ≤ j ≤
J)) is selected. However, if w0

k+
∑J

j=1

∑N
n=1 w

n
Rj ,k

= 0, then
no relay is chosen. This means whichever relay is selected,
the reception rate rS,k at D cannot be guaranteed to be larger
than or equal to the target rate r0, which corresponds to the
minimum SNR γmin. Therefore, a system outage occurs. This
may occur, for instance, when the network suffers from poor
channel conditions or S and Rj(1 ≤ j ≤ J) do not have
adequate energy. In such cases, it can be seen from C11 that S
stops transmitting in the current interval k and in the meantime
reserves the newly harvested energy for future use. In this way,
the system outage probability, i.e., Prob(rS,k < r0) can be
reduced as much as possible.B. Iterative Algorithm for Offline Optimization

Problem (10) is a non-convex mixed integer and nonlinear
program (MINLP), which involves both integer variables and
real variables. The non-convexity arises due to the min function
in the objective function and the multiplicative form of integer
variables (i.e., w0

k’s and wn
Rj ,k

’s) and real variables (i.e., PS,k’s
and Pn

Rj ,k
’s) in the constraints and the objective function. In

general, it is very hard to solve this type of problem and high-
complexity algorithms are usually required. Therefore, to make
problem (10) easily solvable, we need to transform it into a
convex problem. We handle this issue by taking the following
two steps.

First, we define some new variables P̃R0

S,k = w0
kPS,k, P̃n

Rj ,k
=

wn
Rj ,k

Pn
Rj ,k

, and P̃n
SRj ,k

= wn
Rj ,k

PS,k, and add following
constraints

C12 P̃R0

S,k ≤ PS,k, P̃
R0

S,k ≤ w0
kP

max
S , (12)

C13 P̃n
SRj ,k ≤ PS,k, P̃

n
SRj ,k ≤ wn

Rj ,kP
max
S , (13)

C14 P̃n
Rj ,k ≤ wn

Rj ,kP
max
Rj

, (14)

where constraints C12−C14 are used to ensure the efficiency
of new variables P̃S,k, P̃n

Rj ,k
, and P̃n

SRj ,k
. In addition, variables

P̃S,k and P̃n
Rj ,k

represent the actual transmission powers of R0

and Rj(1 ≤ j ≤ J) respectively, and P̃n
SRj ,k

coupled with
ρnRj

(i.e., P̃n
SRj ,k

ρnRj
) represents the actual consumed power

of Rj(1 ≤ j ≤ J) used for the source to relay information
reception.



Second, we address the min function in the objective function
by introducing several extra auxiliary variables zk’s and ξk’s,
k ∈ {1, 2, . . . ,K} and transforming problem (10) into its
equivalent form (15):

max νS,r
∑K

k=1 r̃S,kT − νS,P ŨTE(P̃ ,W ),
s.t.

C1, C3, C5, C6, C11, C12, C13, C14,

(C2)
∑l

k=1(
∑N

n=1 P̃
n
Rj ,k

1/2 + P
Rj

C )T ≤
∑l

k=0 H̃Rj ,k, ∀j, ∀l,

(C4)
∑m

k=0 H̃Rj ,k −
∑m

k=1(
∑N

n=1 P̃
n
Rj ,k

1/2 + P
Rj

C )T

≤ Bmax
Rj

,∀j,∀m,

(C7)S̃NR1,k ≤ (w0
k +

∑J
j=1

∑N
n=1 w

n
Rj ,k

)γmax, ∀k,

(C8)(w0
k +

∑J
j=1

∑N
n=1 w

n
Rj ,k

)γmin ≤ S̃NR1,k, ∀k,

(C9)S̃NR2,k ≤ (w0
k +

∑J
j=1

∑N
n=1 w

n
Rj ,k

)γmax, ∀k,

(C10)(w0
k +

∑J
j=1

∑N
n=1 w

n
Rj ,k

)γmin ≤ S̃NR2,k, ∀k,

(C15)zk ≤ S̃NR1,k, ∀k,

(C16)zk ≤ S̃NR2,k, ∀k,
(15)

where P̃ =
{
PS,k, P̃

R0

S,k, P̃
n
Rj ,k

, P̃n
SRj ,k

, ∀k,∀j, ∀n
}

, ξk =

zkw
0
k,

r̃S,k = 1
2 log(1 + zk) +

w0
k

2 log(1 + ξk/w
0
k), (16)

ŨTE(P̃ ,W ) =
∑K

k=1(PS,kT/2 + (PS
C +

∑J
j=1 P

Rj

C )T

+
∑J

j=1

∑N
n=1 P̃

n
Rj ,k

T/2),
(17)

H̃Rj ,k = η(PS,k −
∑N

n=1 P̃
n
SRj ,k

ρnRj
)|hSRj ,k|2T/2, (18)

S̃NR1,k = P̃R0

S,khSD,k

+
∑J

j=1

∑N
n=1 ρ

n
Rj

P̃n
SRj ,k

τSRj ,k,
(19)

and
S̃NR2,k = (PS,k + P̃R0

S,k)τSD,k

+
∑J

j=1

∑N
n=1 P̃

n
Rj ,k

τRjD,k.
(20)

Now, problem (15) is a convex MINLP, that is, it is convex
when all integer variables, (i.e., w0

k’s and wn
Rj ,k

’s) are allowed
to take vales from the interval [0, 1]. Therefore, we can apply
the generalized outer approximation (GOA) algorithm to solve
this problem [34, pp. 175-182]. GOA decomposes problem (15)
into two sub-problems: a primal problem and a master problem.
The primal problem gives rise to Z, Γ, and P̃ for the fixed
integer assignment W , where Z = {zk, ∀k} and Γ = {ξk, ∀k}.
On the other hand, solving the master problem gives the new
W for previously obtained Z, Γ, and P̃ . GOA iteratively solves
the primal problem and the master problem until their solutions
converge. For the first iteration, a feasible initial vector is given
for the integer assignment W . In the following, we describe the
primal problem and the master problem for a given iteration
t ∈ {1, 2, . . . , Ite}, where Ite is the total number of iterations
required for the convergence of GOA.

Primal Problem (the tth iteration): The primal problem
corresponds to fixing the W variables in problem (15) to a
particular 0-1 combination. Then, for the given optimal W
obtained from iteration t − 1, i.e., W t−1, the primal problem
can be formulated as follows:

(PP(W t−1))

max νS,r
∑K

k=1 r̃S,k(Z,Γ,W
t−1)T − νS,P ŨTE(P̃ ,W t−1),

s.t.

C1, C2, C3, C4, C11, C12, C13, C14, C15, C16,

(C7)S̃NR1,k ≤ (w0,t−1
k +

∑J
j=1

∑N
n=1 w

n,t−1
Rj ,k

)γmax, ∀k,

(C8)(w0,t−1
k +

∑J
j=1

∑N
n=1 w

n,t−1
Rj ,k

)γmin ≤ S̃NR1,k, ∀k,

(C9)S̃NR2,k ≤ (w0,t−1
k +

∑J
j=1

∑N
n=1 w

n,t−1
Rj ,k

)γmax, ∀k,

(C10)(w0,t−1
k +

∑J
j=1

∑N
n=1 w

n,t−1
Rj ,k

)γmin ≤ S̃NR2,k, ∀k.
(21)

It can be observed that problem (21) is a convex optimization
problem, thus it can be optimally solved by any standard
algorithm, e.g., Lagrangian dual method [1]. However, the
primal problem may be infeasible for some W , that is, some
constraints may be violated. In this case, instead of solving
problem (21), a feasibility problem will be considered [35]-[36].
To formulate this problem, we first write the original problem
(15) into the following form:

max f(Z,Γ, P̃ ,W ),

s.t. g(Z,Γ, P̃ ,W ) ≤ 0,
(22)

where f(Z,Γ, P̃ ,W ) stands for the objective function in prob-
lem (15) and g(Z,Γ, P̃ ,W ) ≤ 0 is a vector which represents
all constraints of (15).

Then, the feasibility problem can be formulated as:

min
∑

i∈I′ θig
+
i (Z,Γ, P̃ ,W t−1),

s.t. gi(Z,Γ, P̃ ,W t−1) ≤ 0, ∀i ∈ I,
(23)

where θi is the nonnegative weight, g+i (Z,Γ, P̃ ,W t−1) =

max(0, gi(Z,Γ, P̃ ,W t−1)) is a component of g(Z,Γ, P̃ ,W ),
I is the set of feasible inequality constraints, and I ′ is the set
of infeasible inequality constraints. Note that problem (23) is
also convex since g+i (Z,Γ, P̃ ,W t−1) which is the maximum of
two convex functions is convex [37]. Infeasibility in the primal
problem (21) is detected when the solution of problem (23)
is obtained for which its objective value is greater than zero
[36]. Moreover, by solving (23), the constraints indexed by
i ∈ I ′ may be driven to be feasible gradually, whist maintaining
feasibility for constraints indexed by i ∈ I .

Master Problem (the tth iteration): The master problem
is derived using primal information which consists of the
previously obtained Z, Γ, and P̃ within the first t iterations,
and is based on an outer approximation (linearization) of the
nonlinear objective and constraints around the primal solutions
obtained within the first t iterations. Since all constraints in
problem (15) are linear, the master problem can be formulated



as follows: (MP)

maxZ,P̃ ,W,µGOA
µGOA,

s.t. µGOA ≤ f(Zm,Γm, P̃m,Wm−1)

+∇f(Zm,Γm, P̃m,Wm−1)T


Z − Zm

Γ− Γm

P̃ − P̃m

W −Wm−1

 ,

LBDt < µGOA,

g(Z,Γm, P̃ ,W ) ≤ 0,
(24)

where LBDt = {max fm,m ≤ t,m ∈ F t},

F t = {m|m ≤ t : PP(Wm−1) is feasible}, (25)

and (Zm,Γm, P̃m) is an optimal solution to PP(Wm−1).
By solving the master problem (24), a new integer as-

signment W t to be used in the next primal problem can be
obtained. Besides, any previously obtained integer assignment
W is prevented from becoming the solution of problem (24)
due to the second and third constraints in this problem [36].
The detailed description of the GOA algorithm can be seen in
Algorithm 1.

In Algorithm 1, on the one hand, it is worth noting that since
solving the primal problem (21) or the feasibility problem (23)
(if (21) is infeasible) gives rise to the variable vector P̃ for
fixed integer assignment W , the network power allocation, i.e.,
the value of variables PS,k’s and Pn

Rj ,k
’s can be obtained for

fixed W . On the other hand, since solving the master problem
(24) gives a new integer vector W , the new joint relay and
power splitting selection, that is, a new selection of relay Rζ ,
which forwards information for S, and the corresponding power
splitting ratio ρnζ can be known. Therefore, when Algorithm
1 converges, the solution for the offline problem (10) can be
obtained.

As for the computational complexity, we note that due
to the convexity, problems (21) and (23) can be solved in
polynomial time, and the complexity increase linearly with the
relay number J , the number of power splitting ratios N , and
the interval number K. However, the master problem (24) may
have non-polynomial complexity as it is a mixed integer linear
program (MILP) for K time intervals. Fortunately, we can use
the efficient optimization software, such as Mosek, Cplex, or
Gurobi, to solve problem (24) offline. In these softwares, there
exist some embedded functions which can be used to effectively
solve MILP problems with up to hundreds of thousands of
variables.

Remark 1: As shown in [35], the master problem (24)
provides an upper bound, denoted as µt

GOA on the solution
of problem (15) at each iteration t. Moreover, due to the first
constraint in (24), the newly obtained µt

GOA is always less than
or equal to the previously obtained µGOA within the first t− 1
iterations; thus the upper bound sequence is non-increasing. On
the other hand, the primal problem (21) provides the solution
for a given integer assignment W and thus its solution (if
feasible) can always provide a lower bound on the solution of
the original problem (15). In this paper, we let the lower bound

TABLE I
ALGORITHM 1: GENERALIZED OUTER APPROXIMATION METHOD FOR

OFFLINE CASE

1: Initialization: initial integer assignment W 0, converge parameter ϵ,
∆← ∅ and t← 1.

2: flag← 1.
3: while flag ̸=0 do
4: Solve the primal problem (21), or the feasible problem (23)

if (21) is infeasible. Denote the solution as (Zt,Γt, P̃ t) and
the lower bound as LBDt.

5: ∆← ∆ ∪ {t}.
6: Solve the master problem (24), and obtain the new integer

assignment W t and the upper bound UBDt.
7: if the master problem (22) is infeasible

or |LBDt − UBDt| ≤ ϵ then
8: flag = 0.
9: end if
10: Set t← t+ 1.
11: end while

at each iteration equals the maximum of the lower bounds of the
previous iterations and the lower bound of the current iteration.
Therefore, the sequence of the updated lower bound is non-
decreasing. In such a case, the GOA algorithm can be shown
to converge within a finite number of iterations [35].

IV. ONLINE CASE

In practice, the offline scheme proposed above may not be
applicable since the future CSI and the upcoming harvested en-
ergy are not available. Therefore, in the following, we consider
the more practical case when only causal information of CSI
and energy arrivals is known. In principle, the optimal online
solution can be obtained by using the dynamic programming.
However, dynamic programming suffers from the “curse of
dimensionality” and thus it is very difficult to be implemented
[1]. Therefore, we propose two suboptimal online schemes, i.e.,
the current-information-based online algorithm (CI-OA) and
the statistic-property-based online algorithm (SP-OA) in this
section.

A. CI-OA
In this scheme, we assume that S is the central node. At

the beginning of each interval, it executes the online algorithm
only on the basis of the evaluated instantaneous CSI and the
estimated stored energy of each node, as well as the potential
harvested energy HRj ,k of each relay Rj(1 ≤ j ≤ J) in the
current interval. Then, S broadcasts the optimal transmission
power and the optimal power splitting factor to each relay
Rj(1 ≤ j ≤ J) before data transmission. Specifically, in order
to guarantee that network nodes have sufficient energy for data
transmission (with high probability), system energy consump-
tion in the current interval is also considered. Therefore, for
CI-OA, the optimization problem for time interval k can be
formulated as follows:

max νS,rrS,kT − νS,PUTE,k(Pk,Wk),
s.t. (C1)(PS,kT/2 + PS

CT ) ≤ BS,k,

(C2)(
∑N

n=1 w
n
Rj ,k

Pn
Rj ,k

T/2 + P
Rj

C T )

≤ min{HRj ,k +BRj ,k, B
max
Rj

}, ∀j,
C5, C6, C7, C8, C9, C10, C11,

(26)



where C5−C11 are the same as those in the offline optimiza-
tion problem (15), and

UTE,k(Pk,Wk) = (PS,kT/2 + (PS
C +

∑J
j=1 P

Rj

C )T

+
∑J

j=1

∑N
n=1 w

n
Rj ,k

Pn
Rj ,k

T/2).
(27)

Moreover, C1 states that the total consumed energy at S
in interval k cannot exceed the current available energy BS,k

stored in the source battery. C2 can be similarly explained as
C1 except that the potential harvested energy HRj ,k of each
relay Rj(1 ≤ j ≤ J) is also considered. This is because the
selected relay needs this part of energy to forward the source
information in the second time slot of interval k. Moreover,
HRj ,k is a function of the source transmission power PS,k and
the estimated CSI hSRj ,k, and thus it needs to be calculated
dynamically. However, the harvested energy HS,k which is
generally unknown at the beginning of interval k needs not
to be considered.

Similar to the offline problem (10), the online problem
(26) can also be solved using the GOA algorithm. But the
complexity of the involved GOA algorithm for solving problem
(26) is much lower than that for problem (10). First, for (26), the
complexity of the primal problem and the feasibility problem,
which are also convex similar to problems (21) and (23), only
increases linearly with the relay number J and the number of
power splitting ratios N but not the interval number K, because
problem (26) only considers the resource allocation for one
fixed time interval k. Besides, for the same reason, the master
problem of (26) can be much more easily solved by using the
function mosekopt in Mosek, even though the above mentioned
master problem is also a MILP problem like problem (24).

B. SP-OA

For comparison purpose, similar to [8], we also consider
another online scheme (i.e., SP-OA) which is based on the
statistical property of the harvested energy of each node.
Specifically, to guarantee that S has sufficient energy for
transmission, we further limit the consumed energy of S based
on its transmission probability PbS and the average harvested
energy HS . Then, another energy consumption constraint of S
can be given and expressed as

PS,kT/2 + PS
CT ≤ αHS/PbS , (28)

where α is a scaling factor.
However, since it is generally difficult to determine PbS ,

we approximate αHS/PbS in (28) by σHS , where σ is also
a scaling factor. Similarly, another energy constraint (29) for
Rj(1 ≤ j ≤ J) is also given. In (29), the transmission
probability PbRj of Rj(1 ≤ j ≤ J) is approximated by
1/J for simplicity, and the scaling factor τ is similar to σ.
Furthermore, it is worth noting that as it is hard to know the
average energy HRj for each relay Rj(1 ≤ j ≤ J), we use the
average harvested energy within the first k−1 intervals instead
of HRj in (29).∑N
n=1 w

n
Rj ,k

Pn
Rj ,k

T/2 + P
Rj

C T ≤ τ
∑k−1

l=1 HRj ,l/((k − 1)PbRj ),
(29)

where the harvested energy HRj ,l(l ≤ k − 1) within the first
k − 1 intervals has already been known in the current interval
k. And, for given energy harvesting statistics, parameters σ and
τ can be optimized offline to improve system performance.

C. Model Extension

As mentioned in Section II, the proposed offline model (10)
and the online models, e.g., (26) can also be extended to
more general scenarios. For example, when some relays harvest
energy from natural sources and others from RF signals, or all
relays harvest energy from natural sources. In these scenarios,
we only need to make the following small changes. First, set
N = 1 and ρnRj

= 1 in the optimization models, e.g., (10) and
(26) for relays replenishing energy from natural sources, since
these nodes do not harvest energy from RF signals. Second, set
the energy constraints, e.g., C2 in (10) and (26), the battery
capacity constraints, e.g., C4 in (10), and the harvested energy
HRj ,k in each time interval k similar to those for the source. On
the other hand, if the source is not an EH node, then we only
need to delete the energy constraint and the battery capacity
constraint for it. Correspondingly, resource allocation schemes
similar to Algorithm 1 can be used for the above scenarios.

V. PERFORMANCE EVALUATION

In this section, we evaluate the performance of the proposed
offline and online resource allocation schemes through simula-
tions.

A. Simulation Environment and Parameters

As shown in Section II, we consider a scenario where an
outdoor transmitter communicates with its receiver through
some deployed indoor relays, for example in a smart-home
system. We assume that the distance from the source to the
destination is d1 m, and all relays are randomly distributed
within a circular area with a radius of d1/2 m, where the
center of the circular area is just the midpoint of the line
segment connecting the source and the destination. Since many
obstructions may exist between different nodes, all channels
are assumed to be Rayleigh fading and large scale path loss is
considered.

In the following experiments, unless otherwise specified,
the parameters are set as follows: d1=20 m, since RF-based
energy harvesting may only be possible for short-distance
communication nowadays. The energy conversion efficiency η
is taken as η = 0.5 similar to [16], [28], because it is affected by
antenna and rectenna circuit design and can only be achieved as
high as η = 0.7 [22]. Besides, for our considered scenario, we
assume all nodes are in small to medium size. Therefore, similar
to [28] which considers an indoor communication scenario,
we assume that Pmax

S = Pmax
R1

= · · · = Pmax
RJ

= 5 W,
Bmax

S = Bmax
R1

= · · · = Bmax
RJ

= 25 Joule, and the power s-
plitting ratio ρnRj

takes value from the set {0, 0.25, 0.5, 0.75, 1}.
Furthermore, just as shown in Section II, T takes a small value
which is set as T = 1 s and totally K = 100 intervals are
considered. For HS,k, which stands the energy harvested by the



source in each interval k, we assume that it independently and
randomly takes value in [0, 1] with the average harvesting rate
being HS = 0.5 Joule just as in [8], [11]. In addition, we set
γmax = 22 dB, and the number of indoor relays J = 8 which is
enough for our considered scenario. Specifically, νS,r and νS,P
are taken as 1.5 and 1 respectively so as to balance system
throughput and system energy consumption and meanwhile to
make these conflicting objectives comparable, a common way
which is adopted to treat multi-criteria optimization problems
[37].

B. Performance Comparison of Proposed Algorithms

In this part, we will compare the performance of the proposed
offline and online algorithms by choosing different network
parameters, such as the minimum SNR γmin, the maximum
transmission power Pmax

N ,N ∈ {S,R1, . . . , RJ}, and the
average harvesting rate HS of S. In addition, the effect of these
parameters on the performance of the proposed algorithms will
also be studied.

1) Algorithm performance versus γmin: Fig. 4(a) shows
the difference between system transmission benefit and system
energy cost, which is defined as system payoff, versus the
minimum SNR γmin. And, Fig. 4(b) shows system outage
probability as γmin changes. We can observe that for all
considered algorithms, system payoff decreases and system
outage probability increases when γmin increases. The reason
for this is that the destination (i.e., D) may not be able to
decode signals successfully for large γmin, especially when
network channels are in deep fading, and then in this situation
S stops transmitting and system performance becomes poor. In
addition, we can also see that the offline algorithm achieves
the best performance, and it provides a performance bound for
both online algorithms. This is because we assume that the
non-causal knowledge of channel gains of all network links
and energy arrivals at S is available in the offline algorithm,
whereas the online algorithms are based mainly on the causal
information of the harvested energy and the CSI.

However, it is surprising to see that CI-OA performs close to
the offline algorithm, and it has a better performance compared
to SP-OA especially when σ and τ take small values, e.g., 0.8.
Moreover, the performance gain obtained by CI-OA over SP-
OA gradually degrades as σ and τ increase for all considered
γmin. The reasons for these are that (i) system energy consump-
tion has already been taken into account in CI-OA similar to the
offline algorithm, so for maximizing system payoff, the network
will transmit as much data as possible while saving as much
energy as possible; (ii) SP-OA limits the transmission powers
of network nodes by considering the statistical property of the
harvested energy (see (28) and (29)), so the required minimum
SNR γmin at D may not be satisfied when σ and τ are small,
and then system performance becomes very poor. However, the
effect of (28) and (29) becomes less and less evident with σ and
τ increasing, and therefore the performance of SP-OA becomes
close to that of CI-OA.

2) Algorithm performance versus Pmax
N : Fig. 5 depicts sys-

tem payoff and system outage probability when the maximum
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Fig. 4. Algorithm performance versus minimum SNR γmin (a) System payoff;
(b) System outage probability.
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Fig. 5. Algorithm performance versus maximum transmission power Pmax
N

(a) System payoff; (b) System outage probability.

transmission power Pmax
N ,N ∈ {S,R1, . . . , RJ} changes,

where γmin is set as 12 dB. Similar to the results in Fig.
4, the offline algorithm has the best performance and CI-OA
generally performs better than SP-OA. In particular, we can
observe that for all the three algorithms, system performance
is first improved obviously with increasing Pmax

N , but starting
at a certain value of Pmax

N , system performance becomes
almost unchanged. This can be explained by the facts that (i)
small values of Pmax

N limit the performance of all algorithms
since the required minimum SNR γmin at D may not be
satisfied in this situation even when channel states are not very
weak; (ii) the network nodes stop increasing the transmission
powers if the system throughput gain due to higher transmission
powers cannot neutralize the associated energy consumption
increase. Therefore, the constant system payoff and system
outage for large Pmax

N indicate that, for given parameters,
only increasing Pmax

N beyond a certain value may not improve
system performance.

3) Algorithm performance versus HS: Fig. 6 shows sys-
tem payoff and system outage probability versus the average
harvesting rate HS of S, where we take γmin = 12 dB and
Pmax
N = 3 W as an example. As expected, we can see that

system performance is improved as HS increases for all the
considered algorithms. However, the slope of the system payoff
curves is large for small HS and gradually decreases to zero
with increasing HS , and similarly system outage probability
first decreases sharply with increasing HS but remains un-
changed after HS goes beyond a certain value. This is due
to the fact that the performance of all considered algorithms
is limited by the finite storage capacity of the batteries. For
large HS , additional harvested energy cannot be stored in the
batteries and therefore the extra amount of energy is wasted.
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Fig. 6. Algorithm performance versus average harvesting rate HS (a) System
payoff; (b) System outage probability.

Furthermore, it can also be observed that the difference gap
between CI-OA and SP-OA is very large at small HS even
when σ and τ are both taken as a large number 1.8. The
reason for this is that in SP-OA, the constraints (28) and (29)
further limit the consumed energy of network nodes especially
at small HS , and then the performance of SP-OA is limited
ulteriorly. Furthermore, as mentioned in section III, relays may
also replenish energy from RF signals emitted by other energy
providers. In fact, like the effect of HS on system performance,
a similar performance trend can be seen if this part of energy
is considered.

C. Effect of Dynamic Selection of Direct Transmission and
Relay Transmission on System Performance

In this subsection, we verify the effect of dynamic selection
of direct transmission and relay transmission on system per-
formance. We consider short-distance communication and take
d1=10 m as an example4. For comparison, a baseline algorithm
(i.e., baseline I) similar to CI-OA but without considering direct
transmission is considered. Fig. 7 illustrates system payoff,
system outage probability, and direct transmission probability.
It can be seen that our proposed algorithms provide significant
performance gain compared to baseline I for small γmin and the
performance advantage becomes smaller for large γmin. This is
due to the fact that compared to baseline I, direct transmission is
taken into consideration in our proposed algorithms, and thus
direct transmission instead of relay transmission can be used
(seen from Fig. 7(c)), for example, when the channel gain of
S − D link is much better than that of Rj − D link or the
relays do not have enough energy. However, if the minimum
reception SNR γmin also cannot be satisfied through direction
transmission for large γmin, the performance of our algorithms
becomes close to that of baseline I. Therefore, simulation
results confirm that in some cases5, it is necessary to take
account of direct transmission, and select direct transmission

4In fact, d1 can also be set as other values. However, we find the advantage
of our algorithms over Baseline I decreases with the increase of d1. Therefore,
for RF-based energy harvesting, a representative and medium size value is taken
for d1, i.e., d1=10 m similar to [28].

5As mentioned above, the advantage of our proposed algorithms over
Baseline I decreases as d1 increases. The reason is that the channel condition
of S −D link decreases with the increase of d1, and then direct transmission
may not be considered in some cases. Therefore, we conjecture that direct
transmission needs to be considered especially for small d1.

and relay transmission dynamically for the EH decode-and-
forward cooperative communication networks.

D. Effect of Parameters νS,r and νS,P on System Performance

In this part of simulation, we examine the effect of param-
eters νS,r and νS,P on system performance. Specifically, only
the typical algorithm, CI-OA, is studied. Fig. 8 illustrates the
simulation results for different pairs of νS,r and νS,P . It can be
observed that system throughput and system consumed energy
generally increase as the ratio of νS,r and νS,P increases, while
system outage probability first decreases for small γmin and
then keeps almost unchanged for large γmin. The reasons for
these are: (i) the increase of the ratio between νS,r and νS,P
means that energy cost is not the main factor needing to be con-
sidered and less attention is paid on energy saving. Therefore,
much energy will be consumed generally, and correspondingly
system throughput will increase and system outage probability
will not increase; (ii) However, as γmin becomes large, the
transmitters may not increase transmission powers in time
intervals if channel gains are not very good so as to save energy.
Thus system outage probability remains almost unchanged in
this situation. Anyway, a desired system performance can be
achieved by a reasonable choice of νS,r and νS,P . For instance,
if energy is insufficient and/or user’s QoS requirement is not
strict, then a high νS,P can be chosen; otherwise, a relatively
high νS,r may need to be chosen. Generally, this can be
obtained by the offline algorithm for different weather and
channel conditions and/or QoS requirements.

E. Effect of Dynamic Power Splitting Ratio Selection on System
Performance

We now examine whether it is necessary to select the power
splitting ratio ρnRj

dynamically. For the purpose of comparison,
another baseline algorithm (i.e., baseline II), which is similar
to CI-OA but uses a fixed power splitting ratio for the selected
relay in all cases, is also considered. Fig. 9 depicts the simula-
tion results for different γmin. We can observe that no matter
what ρnRj

is, baseline II always has the worst performance
among all the considered algorithms. This is due to the fact
that the power splitting ratio ρnRj

is selected dynamically for
all relays in our three proposed algorithms according to the
CSI and the stored energy of nodes, so as to achieve the best
system performance. However, baseline II cannot adjust the
parameter ρnRj

so that a suboptimal resource allocation strategy
has to be chosen sometimes, and thus system performance is
degraded. Therefore, simulation results verify that choosing an
appropriate power splitting ratio dynamically is required for
EH decode-and-forward cooperative communication systems.
Moreover, since information and energy receivers operate with
very different sensitivity in practice (e.g., -10dBm for energy
receivers versus -60dBm for information receivers [16]) and
wireless transmission may suffer deep channel fading especially
in dense urban areas, we conjecture that a relatively large
ρnRj

may be needed in dense urban areas considering the
energy/information receiver power sensitivity difference. In this
way, the energy receiver may be able to harvest enough energy
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Fig. 7. System performance comparison between algorithms with and without direct transmission (a) System payoff; (b) System outage probability; (c) Direct
transmission probability.

10 12 14 16 18 20
0

50

100

150

200

Minumum reception SNR (dB)

S
ys

te
m

 th
ro

ug
hp

ut
 (

K
bi

ts
)

 

 v
S,r

=2.0,v
S,P

=0.4

v
S,r

=1.5,v
S,P

=1.0

v
S,r

=1.0,v
S,P

=1.0

v
S,r

=1.0,v
S,P

=1.5

v
S,r

=0.4,v
S,P

=2.0

10 12 14 16 18 20
0

20

40

60

80

100

120

Minumum reception SNR (dB)

S
ys

te
m

 e
ne

rg
y 

co
ns

um
pt

io
n 

(J
ou

le
)

 

 v
S,r

=2.0,v
S,P

=0.4

v
S,r

=1.5,v
S,P

=1.0

v
S,r

=1.0,v
S,P

=1.0

v
S,r

=1.0,v
S,P

=1.5

v
S,r

=0.4,v
S,P

=2.0

10 12 14 16 18 20
0

0.2

0.4

0.6

0.8

1

Minumum reception SNR (dB)

S
ys

te
m

 o
ut

ag
e 

pr
ob

ab
ili

ty

 

 
v

S,r
=2.0,v

S,P
=0.4

v
S,r

=1.5,v
S,P

=1.0

v
S,r

=1.0,v
S,P

=1.0

v
S,r

=1.0,v
S,P

=1.5

v
S,r

=0.4,v
S,P

=2.0

(a) (b) (c)

Fig. 8. System performance for different νS,r and νS,P (a) System throughput; (b) System energy consumption; (c) System outage probability.
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Fig. 9. System performance comparison between algorithms with and
without dynamic splitting ratio selection. (a) System payoff; (b) System outage
probability.

for data transmission; contrarily, a relatively small ρnRj
may be

needed in non-dense areas.

VI. CONCLUSIONS

In this paper, the problem of joint relay and power splitting
ratio selection along with power allocation is studied for an EH
relaying system, where the source and the relays can harvest
energy from natural sources and RF signals, respectively. To
effectively use the harvested energy of the source, the relays are
designed to employ the power splitting technique to scavenge
energy from RF signals radiated by the source. The addressed
problem is considered in both offline and online settings,
with the objective to maximize system payoff and meanwhile
to minimize system outage probability. In particular, direct
transmission is considered, and whether to use a relay for
transmission is determined by network channel states and avail-

able energy of EH nodes. An offline and two online resource
allocation schemes are proposed. Simulations show that system
performance can be improved by choosing suitable power
splitting ratios and dynamically selecting direct transmission
and relay transmission. Moreover, simulations also show that
considering system energy consumption is also necessary for
EH relaying systems, where a desired system performance can
be achieved by choosing energy related parameters, i.e., νS,r
and νS,P appropriately.

Finally, in future, we will consider some more complex
scenarios, such as the scenario with multiple EH sources and
multiple EH relays, where sources and/or relays can harvest
energy from both natural sources and RF signals simultane-
ously. For these scenarios, we will further address the joint
relay, power splitting ratio, and power allocation problem along
with considering some other aspects, such as network admission
control.
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