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Probabilistic Time-Constrained Paths Search
over Uncertain Road Networks
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Abstract—With the proliferation of positioning technologies and GPS-enabled mobile devices, it has become very important to search
for optimal paths to cover required points of interest (POIs, e.g., banks and restaurants) over road networks in many location-based
services. In practice, however, traffic conditions are inherently uncertain and dynamically changing over time, which makes it rather
challenging to provide accurate results for path queries based on travelling time. Inspired by this, we consider the practical settings of
road networks and model them by uncertain road networks (URNs) on which the travelling time of each road is uncertain and captured
by a set of travelling time samples. Then, we formalize the probabilistic time-constrained path (PTP) query over uncertain road
networks to retrieve those paths that not only cover required POIs with constrained service time but also have the minimum travelling
times in high confidence. We prove that PTP query problem is NP-hard. In order to answer PTP queries efficiently, we propose an
efficient PTP query approach with effective pruning strategies regarding the time constraints on POIs and the probabilistic/rank
requirements of queries. Extensive experiments on real road networks validate the efficiency and effectiveness of our PTP query
approach.

Index Terms—Location-based service, uncertain road network, service time-constrained POI, path search
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1 INTRODUCTION

T HE path computation has always been an important part in
service-oriented computing such as conventional map and

navigation services. Particularly, with the increasing popularity
of GPS-enabled mobile devices, computing a path over road
networks to cover required services becomes a fundamental op-
eration in many location-based applications and location-aware
recommendation systems [1].

Figure 1 shows an example of road network on which edges
and vertices represent road segments and intersection points of
road segments, respectively. In addition, a set of points of interest
(POIs), o1 ∼ o6, such as restaurants, banks, and supermarkets
(represented by white circles) reside over road segments and
provide certain services described by keywords (ki). A particular
path query is to find paths between given source and destination
locations that pass through a number of user-specified POIs on
the road network with some criteria (e.g., small travelling distance
or time). Assuming that v4 is the current location of a user who
has a destination of v5, one example of path query is: “Give me
a driving path from v4 to v5 that sequentially passes a bank
offering exchange (k1, k2) service and a supermarket (k6) with
the minimum travel time”.

While many existing works [2], [3], [4], [5] on path query
assumed that the traffic on road networks was deterministic,

Wengen Li is jointly with the Department of Computer Science and Tech-
nology, Tongji University, Shanghai, China, and the Department of Comput-
ing, Hong Kong Polytechnic University, Hong Kong, China. E-mail: 8lwen-
gen@tongji.edu.cn
Jihong Guan is the correspondence author and with the Department of
Computer Science and Technology, Tongji University, Shanghai, China. E-
mail: jhguan@tongji.edu.cn
Xiang Lian is with the Department of Computer Science, Kent State University,
Ohio, USA. E-mail: xiang.lian@utrgv.edu
Shuigeng Zhou is with Shanghai key Lab of Intelligent Information Processing,
and the School of Computer Science, Fudan University, Shanghai, China. E-
mail: sgzhou@fudan.edu.cn
Jiannong Cao is with the Department of Computing, Hong Kong Polytechnic
University, Hong Kong, China. E-mail: csjcao@comp.polyu.edu.hk

v1

v3

v2

v4

k1

q=(v4(s), v5(e), 12:00, {<k1, k2; 30min>, <k6; 20min>}, 1, 0.5)

k1, k2 k3, k6, k7

k6, k7

k4, k5

k1, k2

4min(1.0)

4min(0.3) 
6min(0.7)

5min (1.0)

3min (0.6) 
6min (0.4)

8min(1.0)

4min (0.8)
5min (0.2) 3min(1.0)

o1
o3

o2

o5

o4

o6

v5

4

3

3

4

4

3

2

Fig. 1. An example of uncertain road network, where circles are POIs
with keyword description. The length and travel time of each edge are
labeled beside. For example, the length of edge e1,2 = (v1, v2) is 4 and
the travelling time is 4 minutes in a probability of 0.8 and 5 minutes in a
probability of 0.2. In addition, A PTP query q=(v4, v5, 12:00, {⟨k1, k2 ∶
30min⟩, ⟨k6 ∶ 20min⟩},1,0.5) to find the optimal paths from v4 to v5 to
cover keywords “k1, k2” and “k6” sequentially is also illustrated.

however, this is not the real scenario. In practice, vehicle speeds
collected on roads are uncertain and imprecise since different
vehicles may have various possible speeds on the same road.
Although there are some existing works studying the path query
on uncertain road networks [6], [7], [8], [9], [10], however, they
only compute probabilistic paths with the optimal travelling time
between two locations and did not consider retrieving paths to
cover POIs.

In addition, it is often necessary to consider the time con-
straints, i.e., the service time, of POIs. For example, in Figure 1,
one may want to find a path from v4 to v5, and drop by a bank (k1)
for some exchange (k2) on the path. Starting from v4, we consider
two paths P1=(v4, o2, v1, v3, v5) and P2=(v4, o5, v5) that cover
o2 and o5, respectively. Assume that the departure time is 12:00
and the business hours of o2 and o5 are {9:00-13:00, 14:00-18:00}
and {8:00-12:00, 13:00-17:00}, respectively. Without considering
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the service time constraints of banks, o5 is better than o2 since
P2 is much shorter than P1. However, one will find that o5 is
closed (the earliest arrival time is 12:02 which will be discussed
in Example 4) if s/he chooses P2. In this case, bank o2 is the
better choice. Therefore, we can see that it is important to consider
service time constraints of POIs for path query.

Inspired by the practical requirements of path query over
road networks above, in this paper, we model road networks as
uncertain road networks (URNs) over which the travelling time
of each edge is captured by a set of time samples. Moreover,
based on URNs, we propose a probabilistic time-constrained path
(PTP) query to find the best paths that sequentially pass through a
number of POIs containing user-specified query keywords (i.e.,
types of services provided by POIs), satisfy the service time
constraints of POIs, and have the smallest travel times with high
confidence.

PTP query is particularly useful in location-based services.
When touring a city, a tourist may be unfamiliar with the service
hours of POIs (the exhaustive manual checking is boring) and the
traffic condition of the road network there. In this case, the PTP
query can help the tourist find the paths that satisfy both keyword
and service time constraints of POIs, and have the optimal travel
times with high confidence.

However, efficient answering of PTP queries is rather chal-
lenging. Actually, as discussed in Section 3.3, PTP query is NP-
hard.

In order to tackle the PTP problem, we design effective
pruning strategies to filter out false alarms and obtain a small set
of candidate paths. After that, a refinement step based on sampling
is conducted to calculate the final query results. To summarize, in
this paper, we make the following contributions.

● We model real road networks by uncertain road networks
over which we formulate the PTP query (Section 3).

● We build efficient indices for both POIs and uncertain road
networks, and design three effective pruning strategies,
i.e., time constraint pruning, probabilistic pruning, and
travel time pruning, w.r.t. POI time constraint, probability
threshold and travel time requirement to reduce the search
space of the PTP problem. In addition, we propose an effi-
cient PTP query processing algorithm that utilizes the built
indices and the proposed pruning strategies (Section 4).

● We demonstrate, through extensive experiments on differ-
ent real data sets, the efficiency and effectiveness of our
PTP approach (Section 5).

In addition, Section 2 reviews related work and Section 6 con-
cludes the paper.

2 RELATED WORK

In this section, we review the literature on path queries to
cover POIs over deterministic road networks and path queries
on uncertain road networks.

2.1 Path queries to cover POIs on deterministic road
networks
Some works have been conducted to compute the optimal paths to
cover required POIs on deterministic road networks. Sharifzadeh
et al. [3] proposed the optimal sequence route query to cover
specified types of POIs sequentially, i.e., a total order is imposed
on the POIs to be visited. Levin et al. [5] proposed a similar

query but considered partial order of POIs. In addition, some prior
works also use keywords to describe required POIs instead of
using the types of POIs. For example, Yao et al. [4] proposed
to find the shortest path between two locations to cover some
POIs that had all specified query keywords. In addition to the
keywords requirement, Cao et al. [2] imposed a budget constraint
over the path and used an objective score to optimize the final path
answers. Compared with type description, keyword description
is more flexible because it allows users to specify more detailed
requirements for POIs.

The techniques in above work are designed for the determinis-
tic road networks without any time constraints of POIs. Therefore,
we cannot directly apply them to our PTP query which considers
both of the uncertainty of road networks and the time constraints
of POIs.

In addition, though the service time of POIs is considered
in the nearest neighbor query in [11], the uncertainty of road
networks is out of their consideration, which makes it different
from our work.

2.2 Path queries on uncertain road networks
In the literature, the uncertainty of travel times over road networks
are mainly represented with two methods, i.e., discrete probability
distribution functions [6], [7], [9], [12], [13] and sample-based
representation [8], [10], [12], [14], [15], [16]. With these repre-
sentations, we have different definitions of the optimality of a path
over uncertain road networks. Roughly, these existing works can
be put into following two categories.

● Least expected travel time path query [6], [7], [9], [10],
[12], [14]

● Reliable path query [8], [13], [17], [18], [19], [20], [21]

We detail these existing works as below.
Least expected travel time path query: Least expected travel
path query retrieves the optimal path that has the minimum
expected travel time. Both Hall [6] and Miller-hooks [7] used
discrete probability distribution to represent the travel time of
roads and compute the optimal path between two locations based
on the expected travel time. [9] used a set of random travel times to
capture the uncertainty of the travelling time of roads and proposed
an efficient multicriteria A* algorithm to exactly determine the
least expected time path in uncertain time-dependent networks.
Yang et al. [10] leveraged a sampled-based representation scheme
to construct an integer programming model for finding the a priori
least expected time path. In their work, some reformulations are
proposed to establish linear inequalities that can be easily dualized
by a Lagrangian relaxation. A moment-based characterization for
continuous link travel times through variance is presented in [22]
which computes the expected travel time for a given departure time
with an ensemble mean travel time over a number of days. Chen et
al. [12] proposed three three definitions of optimality for finding
the optimal path under an uncertain environment, i.e., expected
value model, dependent-chance model, and chance-constrained
model. They designed a simulation-based generic algorithm to
compute the final result. Huang et al. [14] assumed that link travel
times were uncertain and correlated over time and space. They
defined a disutility function of travel time to evaluate the paths
and returned the path with the minimum expected disutility as
the optimal paths. Different from these works, our PTP query
computes the probability that one path has the optimal travelling
time directly instead of using the expected value.
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Reliable path query: Reliable path query aims at finding these
paths that can be travelled within certain time in high confidence.
Hua et al. [8] applied random variables approximated by a set of
samples to capture the uncertainty of road networks and proposed
three types of probabilistic queries, i.e., a probabilistic path query,
a weighted-threshold top-k path query, and a probability-threshold
top-k path query. These queries can be computed with joint prob-
ability distribution directly due to the absence of POI constraints.
Wu et al. [13] studied the problem of finding a priori optimal path
to guarantee a given likelihood of arriving on-time over uncertain
networks. Xing et al. [15] used Lagrangian substitution approach
to estimate the lower bound of the most reliable path solution
through solving a sequence of standard shortest path problems.
Zhou et al. [16] discussed two models to evaluate the travel time
robustness, i.e., absolute and α-percentile robust shortest path
problems. They proposed a Lagrangian relaxation approach to deal
with the problem.

All these works described above considered computing the
optimal paths between two locations without the constraints of
POIs, which thus cannot be directly applied to our PTP problem.
Lian et al. [23] proposed the trip planner query to retrieve a route
to traverse a set of points over probabilistic time-dependent road
networks. This work, however, also did not consider the service
time constraint of POIs. Thus the proposed techniques cannot be
applied to tackle our PTP query directly.

3 PROBLEM STATEMENT

3.1 Data Models
3.1.1 Uncertain Road Networks
Uncertain road network model captures the inherent uncertainty
of the travel times over road networks and is formally defined as
below.
Definition 1. (Uncertain Road Networks, URNs) An uncertain

road network is denoted by G = (V (G),E(G)), where:

● V (G) is a set of vertices and each vertex vi ∈ V (G)

represents an intersection of roads or a road terminal;
● E(G) is a set of directed edges ei,j (i.e., the road segment

from vi to vj) with length ∣ei,j ∣, each associated with a
random variable t(ei,j) representing the uncertain times
for vehicles to travel from vi to vj ,

where the distribution t(ei,j) is captured by T discrete random
samples collected on edge ei,j . ◻

Example 1. Figure 1 illustrates an example of uncertain road
network with 5 vertices and 7 edges, near which lengths and
travel times are marked beside. In particular, the travel time on
edge e1,2 is 4 minutes with probability 0.8 and 5 minutes with
probability 0.2, which means 80% of T samples are 4 minutes
while 20% are 5 minutes. For simplicity, in this example, only
three edges are uncertain and the others are assumed to be
deterministic.

In this paper, we assume that edges ei,j and ej,i have the
same travel time, i.e., t(ei,j)=t(ej,i). Nonetheless, our proposed
approaches can be also applied to roads with asymmetric travel
time. In addition, the travelling time samples for adjacent edges
are collected independently in the same time period as discussed in
Section 4.6. Thus, in some ways, the correlation between adjacent
edges has been implicitly considered with respect to the temporal
relationship.

TABLE 1
The possible worlds of URN G in Figure 1.

possible world the travel time of edges Pr(wi) P
1
wi

w1(G) t(e1,2) = 4, t(e1,4) = 4, t(e3,5) = 3 0.144 P1

w2(G) t(e1,2) = 4, t(e1,4) = 4, t(e3,5) = 6 0.096 P2

w3(G) t(e1,2) = 4, t(e1,4) = 6, t(e3,5) = 3 0.336 P1

w4(G) t(e1,2) = 4, t(e1,4) = 6, t(e3,5) = 6 0.224 P2

w5(G) t(e1,2) = 5, t(e1,4) = 4, t(e3,5) = 3 0.036 P1

w6(G) t(e1,2) = 5, t(e1,4) = 4, t(e3,5) = 6 0.024 P2

w7(G) t(e1,2) = 5, t(e1,4) = 6, t(e3,5) = 3 0.084 P1

w8(G) t(e1,2) = 5, t(e1,4) = 6, t(e3,5) = 6 0.056 P2

Obviously, the travel time t(ei,j) on edge ei,j is bound-
ed by [t−(ei,j), t

+
(ei,j)], where t−(ei,j)=mint∈t(ei,j) t and

t+(ei,j)=maxt∈t(ei,j) t. For a path P = (v1, v2, . . . , vl), its travel
time over uncertain road network G is t(P ) = ∑

l−1
i=1 t(ei,i+1).

The minimum and maximum travel time of P are t−(P ) =

∑
l−1
i=1 t

−
(ei,i+1) and t+(P ) = ∑

l−1
i=1 t

+
(ei,i+1), respectively.

3.1.2 Possible Worlds of URNs
Possible worlds [24] semantics are widely used in probabilistic
databases, where each possible world is a materialized instance
of the database that can appear in the real world. Similarly, the
possible worlds of an uncertain road network G are defined below.

Definition 2. (Possible Worlds of G) A possible world, w(G), of
uncertain road network G is a deterministic graph on which
the random variable t(ei,j) of each edge ei,j takes a certain
value x(ei,j) and its appearance probability, Pr{w(G)} is:

Pr{w(G)} = Pr

⎧⎪⎪
⎨
⎪⎪⎩

⋀
∀ei,j∈E(G)

t(ei,j) = x(ei,j)
⎫⎪⎪
⎬
⎪⎪⎭

. (1)

All possible worlds of G are recorded asW(G). ◻

In Definition 2, the appearance probability of possible world,
Pr{w(G)}, is the joint probability that each variable t(ei,j) takes
value x(ei,j). Considering the assumption that random variables
t(ei,j) are independent, we have

Pr{w(G)} = ∏
∀ei,j∈E(G)

Pr{t(ei,j) = x(ei,j)}. (2)

Therefore, the number of possible worlds of G is exponential with
respect to the number of edges of G, i.e., ∏ei,j∈E ∣t(ei,j)∣ (= T ∣E∣

in the worst case), where ∣t(ei,j)∣ is the number of different values
in t(ei,j).

Example 2. Table 1 presents 8 possible worlds, w1(G) ∼ w8(G),
of the uncertain road network in Figure 1. For example, possi-
ble world w1(G) takes t(e1,2)=4, t(e1,4)=4, and t(e3,5)=3
(the travel times of other edges are deterministic and we
can regard that the collected samples have the same val-
ue). From Figure 1, we have Pr{w1(G)}=Pr{t(e1,2)=4} ×
Pr{t(e1,4)=4} × Pr{t(e3,5) = 3} = 0.8 × 0.3 × 0.6 = 0.144.

3.1.3 Service Time Constrained POI
On an uncertain road network G, there exist many service time
constrained points of interest (POI), which represent facility and
service providers such as banks and hotels.

Definition 3. (Service Time Constrained Points of Interest) Each
service time constrained point of interest (POI) is in the form
of oi = (e, d,K, I), where

● e is the edge on which POI oi resides;
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● d is the offset distance of object oi on edge e with regard
to the start vertex of e;

● K is a set of keywords describing the properties of oi or
the services that oi provides; and

● I is a set of time intervals {I1, I2, . . . } in which oi is
valid for providing services.

The whole collection of POIs is denoted as O. ◻

In Definition 3, the interval set oi.I ={I1, I2, . . .} specifies the
service time constraints of oi (e.g., the duration of service time)
on a 24-hour cycle. For simplicity, in this paper, we use POIs and
time constrained POIs interchangeably when the context is clear.
Example 3. Table 2 lists the details of the 6 POIs, o1 ∼ o6,

in Figure 1. For example, POI o2 is on edge o2.e=e1,4,
has offset distance o2.d=∣o2, v1∣=1.5, contains 2 keyword-
s o2.K=“k1, k2”, and is associated with 2 time intervals
o2.I={9:00-13:00, 14:00-18:00}, i.e., valid time intervals of
services.

TABLE 2
The POIs in Figure 1.

POIs oi.e oi.d oi.K oi.I
o1 e1,2 ∣o1, v1∣ =3.0 k4, k5 {11:00-13:00, 17:00-21:00}
o2 e1,4 ∣o2, v1∣ =1.5 k1, k2 {09:00-13:00, 14:00-18:00}
o3 e2,5 ∣o3, v2∣ =1.0 k1 {09:00-11:00, 13:00-16:00}
o4 e3,5 ∣o4, v3∣ =1.0 k6, k7 {08:00-20:00}
o5 e4,5 ∣o5, v4∣ =1.0 k1, k2 {08:00-12:00, 13:00-17:00}
o6 e4,5 ∣o6, v4∣ =2.0 k3, k6, k7 {08:00-21:00}

3.2 Probabilistic Time-constrained Path Query
A probabilistic time-constrained path (PTP) query is denoted
by q=(s, e, td,K, h, τ), where s and e are the start and end
locations, respectively; td is the departure time; K specifies the
query keywords along with the staying times at the correspond-
ing POIs containing query keywords; h is an integer parameter
w.r.t. the number of the returned paths; and τ ∈ (0,1] is a
probability threshold to ensure minimum travel time in high
confidence. Particularly, K={⟨K1, t1⟩, ..., ⟨Kψ, tψ⟩}, where Ki

and ti (i = 1, . . . , ψ) are keywords and the expected staying time
at the i-th POI, respectively.

For simplicity, we use P (s, e) = ⟨s, ox1 , . . . , oxψ , e⟩ to repre-
sent any path from s to e that sequentially covers ψ POIs with the
ψ sets of query keywords, i.e., Ki ⊆ oxi .K. All these paths are
recorded as P(s, e). Now we have the definition of PTP query as
below.
Definition 4. (Probabilistic Time-Constrained Path, PTP, Query)

Given an uncertain road network G, the objective of a PTP
query q is to retrieve a subset, Ph(s, e), of paths from P(s, e),
i.e.,

Ph(s, e) = {P ∣P ∈ P(s, e) ∧ Prh{P} ≥ τ} (3)

where

Prh{P} =

⎧⎪⎪
⎨
⎪⎪⎩

∑
∀w(G),P ∈Phw(s,e)

Pr{w(G)}

⎫⎪⎪
⎬
⎪⎪⎭

(4)

and Phw(s, e) are the top-h optimal paths in possible world
w(G) such that for ∀P ∈ P

h
w(s, e)

Ki ⊆ oxi .K, i = 1,2, . . . , ψ (5)

[a(oxi), a(oxi) + q.ti] ⊆ oxi .I (6)

∀P
′
∈ P(s, e)/P

h
w(s, e), tw(P ) ≤ tw(P

′
) (7)

where tw(⋅) is the travel time of a path in possible world
w(G). ◻

In Definition 4, Prh{P} is the probability that path P is a-
mong the top-h optimal paths in all possible worlds. Therefore,
PTP query retrieves those paths, Ph(s, e), that are top-h time-
constrained paths in all possible worlds W(G) with probability
not less than threshold τ . In other words, the returned PTP paths
satisfy keyword/time constraints on POIs, and have top-h smallest
travel times with high confidence.

Example 4. Figure 1 shows an example of a PTP query
q, where s=v4, e=v5, td=12:00, K={⟨“k1, k2”,30min⟩,
⟨“k6”,20min⟩}, h=1, and τ=0.5. There are two POIs
(o2 and o5) containing “k1, k2” and two POIs (o4
and o6) containing “k6”, which produce four candi-
date paths, i.e., P1=(v4, o2, o4, v5), P2=(v4, o2, o6, v5),
P3=(v4, o5, o4, v5), and P4=(v4, o5, o6, v5). The arrival time
at o5 is 12:00+t(e4,5) ⋅ o5.d∣e4,5∣=12:02, which is out of the time
intervals of o5. Therefore, both P3 and P4 cannot satisfy the
service time constraints of o5 and are pruned.
Considering P1 in possible world w1(G), the arrival time at
o2 is 12:00+t(e4,1) ⋅

∣e4,1∣−o2.d
∣e4,1∣ =12:02 which is within the time

interval of o2, i.e., o2.I={9:00-13:00, 14:00-18:00}. After
staying at o2 for 30 minutes, the arrival time at o4 is 12:39
which satisfies the time constraint of o4, i.e., {8:00-20:00}.
Finally, we have t(P1)=11. Similarly, we have t(P2)=12 in
w1(G). Therefore, we obtain P1

w1
(s, e) = {P1}.

The top-1 time-constrained paths, P1
w(s, e), in other pos-

sible worlds can be computed in the same way and the
results are listed in Table 1. Then, we have Prh{P1}=

0.144+0.336+0.036+0.084=0.6>τ (=0.5) and Prh{P2}=

0.096+0.224+0.024+0.056=0.4 <τ (=0.5). Therefore, P1 is the
only PTP query answer. ◻

3.3 Problem Complexity
The objective of PTP query is to find a subset of paths Ph(s, e) ⊆
P(s, e) such that these path are among the top-h optimal paths in
high confidence. Without loss of generality, we assume a specific
case of PTP query where q.h = 1 and the appearance probabilities
of all possible worlds are equal.

We can prove that PTP query problem is NP-hard by a
reduction from partial covering problem [25] which has set-
cover problem as one of its specific cases. Given the global set
U = {e1, e2,⋯, em} and a set of subsets S = {U1, U2,⋯, Un}
where Ui ⊆ U , a partial covering problem find whether there exist
k subsets S′ ⊆ S such that S′ covers at lest x elements of U .

First, we define the decision problem of PTP query problem
as below.

Definition 5 (Decision-PTP). A Decision-PTP problem is to
determine whether there exists k paths in P(s, e) such that
these k paths contain the top-1 path in at least x possible
worlds.

Then, we have the following theorem.

Theorem 1. PTP query problem is NP-hard.

Proof: Assume P(s, e) = {P1, P2,⋯, Pn} and W(G) =

{w1,w2,⋯,wm}. Now we convert a partial covering instance to
an instance of PTP-Decision problem. We regard each subset Ui ∈
S as a path Pi and each element ej ∈ U as a possible world wj . If
ej ∈ Ui, we have the travelling time of path Pi in possible world
wj , twj(Pi) = 1, otherwise twj(Pi) = +∞. Thus, we can find k
subsets S′ from S to cover at least x elements of U if and only
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TABLE 3
Frequently used notations and their meanings.

notation meaning
G = (V (G),E(G)) uncertain road network
vi a vertex
ei,j (∣ei,j ∣) an edge (and its length) from vi to vj
t(ei,j) the traveling time of ei,j
t−(ei,j) (t+(ei,j)) the minimum (maximum) traveling time of ei,j
t(P ) the traveling time of a path P
t−(P ) (t+(P )) the minimum (maximum) travelling time of path P
w(G) a possible world of G
W(G) all possible worlds of G
oi = {e, d,K, I} a POI
a(oi) the arrival time at POI oi
ac(oi) the constrained arrival time at POI oi
P (s, e) a path from s to e covering required POIs
Q = (s, e, td, K, h, τ) a PTP query
P
h
w(s, e) top-h time-constrained paths in w(G)

if we can find k paths that are the top-1 optimal path in at least x
possible worlds. We can prove this from the following two sides.

● Assume that we find k subsets S′ from S such that S′

covers at least x elements of U . Therefore, in each of
the corresponding x possible worlds, the corresponding k
paths must contain the top-1 optimal paths considering that
twj(Pi) = 1 if ej ∈ Ui, otherwise twj(Pi) = +∞. Thus,
we have at least x possible worlds ofW(G) in which the
corresponding k paths have the top-1 path.

● Assume that we find k paths such that they contain the
top-1 path in at least x possible worlds. In each of these
possible worlds, we must have that the corresponding
element is covered by the corresponding k subsets since
we can always find a path with travelling time of 1, i.e., the
top-1 path. Thus, there are at least x elements are covered.

Now we can conclude that PTP-Decision problem is NP-hard.
Therefore, the efficient answering of PTP queries is chal-

lenging due to an exponential number of possible worlds. One
straightforward method is to enumerate all possible worldsW(G),
obtain Phw(s, e) under each w(G), and aggregate all obtained
results to generate the PTP query result. However, this method is
rather inefficient due to exponential number of possible worlds that
are computationally expensive to materialize. Therefore, in this
paper, we propose to process PTP query in a two-phase fashion.
First, we propose effective pruning strategies to filter out false
alarms without enumerating all possible worlds and produce a
small set of candidate paths. Second, a refinement step based on
Monte Carlo theory [26] is conducted to compute the final result.

Table 3 summarizes the frequently used notations and their
meanings in this paper.

4 SOLUTIONS

4.1 Overview of the solution
Figure 2 illustrates the flow chart of our proposed solution. In a
nutshell, the solution covers the following three tasks.

● First, we generate the path search space according to the
PTP query, POIs and uncertain road network (URN).

● Second, efficient pruning strategies are designed to filter
out infeasible paths to obtain a small set of candidate paths.

● Third, we conduct a refinement step to refine the candidate
routes and get the final results.

The details of these tasks are elaborated in the following
sections. In section 4.2, we first build indices for POIs and road

 

POI (IF) 

 

URN (CH) 
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Query 

Generate search 

space 

Filter infeasible 

routes 

Refine candidate 

routes 

Final 

Result 

T-pruning 

P-pruning 

T2-pruning 

… 

Fig. 2. The flow chart of the proposed solution.

network, respectively, to accelerate query processing. Section 4.3
talks about the generation of search space. In section 4.4, the
details of three pruning strategies are presented. Section 4.5 talks
about how to compute candidate routes with the proposed pruning
strategies and how to refine the obtained candidate routes to
generate the final results as well. In addition, we also discuss about
the updates of travelling time samples in uncertain road network
in Section 4.6.

4.2 Indexing POIs and Road Networks
In order to efficiently retrieve those POIs that satisfy the query
keywords during the PTP query answering, we utilize an inverted
file [27] to index keywords as well as the relevant POIs. We
denote Inv(k) as the set of POIs containing k, with cardinality
∣Inv(k)∣. Given a set of query keywords Ki={k1, . . . , kl}, the
set Inv(k1) ∩ ⋯ ∩ Inv(kl) contains POIs that have all query
keywords in Ki. Note that, to further improve the query efficiency
of accessing query keywords, we also index keyword entries in
the inverted file with a B+-tree, where the keys in the B+-tree are
unique values transformed from keywords.

In addition, in order to efficiently compute the shortest path
between two POIs, we index the road networks with Contraction
Hierarchy(CH) [28], which imposes a total order on the vertices
V according to their importance1, and pre-computes the distances
among vertices based on this order. Initially, the least important
vertex, say vi, is removed and its adjacent vertices are checked.
If the shortest path of a pair of adjacent vertices, say vj and
vk, passes through vi, a virtual edge with the weight of the
shortest distance between vj and vk is introduced. For example,
in Figure 1, v4 (which has the smallest degree) is first removed
and no virtual edges are introduced because the shortest path
(v1, v3, v5) between v1 and v5 does not pass v4. Then, the second
least important vertex is removed and processed in the same way.
By doing this repeatedly until all vertices are processed or the
entire road network are reduced to an appropriate scale, we can
build a hierarchical index for the road network. During the shortest
distance/path computation, bidirectional Dijkstra’s algorithm with
some modifications, i.e., only those unvisited vertices (adjacent to
current vertex) ranking higher (lower) than the current expanding
vertex are considered during the forward (backward) traversal, is
employed. Thus, numerous vertices are avoided, which greatly
accelerates the query processing. Note that, CH index is adopted

1. We use the degrees of vertices in this paper because vertices with large degrees
usually correspond to busy traffic points on road networks.
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because we only consider the shortest distance path between each
pair of POIs and the objective of PTP query is to find a sequence
of required POIs with the least travelling time in high confidence.

4.3 Generating search space
Given a PTP query q=(s, e, td,K, h, τ), those relevant POIs
with respect to the query keywords are retrieved. For Ki ∈ K

(i = 1, . . . , ψ), all POIs containing Ki are computed by using
the inverted index as discussed in Section 4.2. If no ambiguity,
we also record those POIs containing all keywords in Ki as
Inv(Ki) and use ∣Inv(Ki)∣ to represent its cardinality. Then
we have the total number of combinations ∏ψ

i=1 ∣Inv(Ki)∣ which
increases exponentially with respect to the number of required
POIs. Therefore, to enumerate all these combinations will be
time-consuming. Our objective is to greatly reduce the size of
these combinations with novel pruning strategies as detailed in
Section 4.4.

4.4 Pruning Mechanisms
In this section, we will design effective pruning methods to reduce
the PTP search space, which can produce a small set of candidate
paths for further refinement. Concretely, we first present time con-
straint pruning (T-pruning) to prune those paths that violate the
time constraints of POIs. Then, probabilistic pruning (P-pruning)
is proposed to enable the pruning by utilizing the probability
threshold τ . Furthermore, since only top-h time-constrained paths
are requested under possible worlds, we also propose the travel
time pruning (T2-pruning) that directly filters out false alarms
that cannot be top-h time constrained paths.

4.4.1 Time Constraint Pruning
Recall that P (s, e) represents any path that sequentially passes
POIs ox1 , ox2 , . . . , and oxψ , as illustrated in Figure 3, where oxi
(i = 1, . . . , ψ) represents any POI containing query keywords Ki.
Thus, if P (s, e) does not satisfy the time constraints, oxi .I , of
some POI oxi for any possible world, then P (s, e) cannot be a
PTP answer (i.e., Prh{P (s, e)} = 0), and thus should be pruned.

☆ ☆ox1 ox2 oxψ

s q.t1 q.t2 q.tψ e

⋯⋯
t(s, ox1) t(o1, ox2) t(oxψ , e)

td

a(ox1) a(ox2) a(oxψ)
ac(ox1) ac(ox2) ac(oxψ) a(e)

Fig. 3. The arrival times at different POIs along path P (s, e).

Specifically, let a(oxi) be the arrival time at the i-th POI oxi ,
and we have:

a(oxi) = td + t(P (s, oxi)) +
i−1
∑
j=1

q.tj (8)

where P (s, oxi) is the subpath of P (s, e) that from s to
oxi , t(P (s, oxi)) is the travel time of P (s, oxi) and q.tj
(j=1, . . . , i − 1) is the staying time at POI oxj . Due to the
uncertainty of t(P (s, oxi)), a(oxi) is uncertain and falls into the
time interval [a−(oxi), a

+
(oxi)], where a−(oxi) and a+(oxi) are

the earliest and latest arrival times at oxi , respectively. Then, we
denote the constrained arrival time, ac(oxi), as the set of possible
arrival times within the service time of oxi , i.e.,

ac(oxi) = {x∣x ∈ a(oxi) ∧ [x,x + q.ti] ⊆ oxi .I} (9)

Intuitively, constrained arrival time ac(oxi) computes arrival
times such that they and their staying times are within the
time intervals of oxi . Assuming that the interval of ac(oxi) is
[a−c (oxi), a

+
c (oxi)], we have [a−c (oxi), a+c (oxi)] ⊆ [a−(oxi),

a+(oxi)]. Then, we have the following lemma about T-Pruning:

Lemma 1. (Time Constraint Pruning, T-Pruning) Given an URN
G and a PTP query q, if a path, P (s, e), passes some POI
oxi(1 ≤i ≤ψ) in G, and ∣ac(oxi)∣ = 0, then P (s, e) can be
safely pruned.

Proof: According to the lemma assumption that
∣ac(oxi)∣=0, P (s, e) cannot be among the top-h time-constrained
paths Phw(s, e) under any possible world w(G) (due to the
violation of POI time constraints). Thus, the PTP probability,
Prh{P (s, e)} is equal to 0, which is smaller than the nonzero
τ . Therefore, P (s, e) cannot be a PTP query answer and can be
pruned.

Note that, both arrival and departure times at POIs oxi must
fall into some single time interval oxi .I so that the staying time
q.ti can be satisfied without an interruption.

To conduct T-pruning, we need to compute ac(oxi) efficiently.
With Eqs. (8) and (9), the arrival time and constrained arrival time
at each POI can be computed iteratively as follows.

a(oxi) =
⎧⎪⎪
⎨
⎪⎪⎩

td + t(s, oxi), i = 1

ac(oxi−1) + q.ti−1 + t(oxi−1 , oxi), i > 1
(10)

where t(x, y) is the travel time of the shortest path from x to y.
In addition, a(q.e) = ac(oxψ) + q.tψ + t(oxψ , q.e).

In general, however, it is not trivial to enumerate all values of
a(oxi) and ac(oxi) due to their numerous instances. Instead, to
avoid costly computations, we compute lower/upper bounds for
a(oxi) and ac(oxi). To obtain lower/upper bounds, a−(oxi) and
a+(oxi), of the arrival time a(oxi) for POI oxi , we aim to obtain
lower/upper bounds of t(oxi−1 , oxi). Denote the bounds of travel
time t(x, y) as [t−(x, y), t+(x, y)]. Initially, for the subpath from
s to ox1 on path P (s, e), we have a−(ox1) = td + t

−
(s, ox1) and

a+(ox1) = td + t
+
(s, ox1) Accordingly, the constrained arrival

time interval at ox1 is computed as:

[a−c (ox1), a
+
c (ox1)] = [a−(ox1), a

+
(ox1)] ∩ ox1 .I

′, (11)

where ox1 .I
′ is computed by subtracting q.t1 from the upper value

of each sub-interval of ox1 .I so that the required staying time q.t1
can be satisfied. For example, if ox1 .I={8-12,13-16} and q.t1=1,
we have ox1 .I

′={8-11,13-15}.
Similarly, for the i-th POI oxi on P (s, e) (2 ≤ i ≤ ψ), we

have:

[a−c (oxi), a
+
c (oxi)] = [a−(oxi), a

+
(oxi)] ∩ oxi .I

′

where

a−(oxi)=a
−
c (oxi−1) + q.ti−1 + t

−
(oxi−1 , oxi),

a+(oxi)=a
+
c (oxi−1) + q.ti−1 + t

+
(oxi−1 , oxi).

With the bounds of constrained arrival times at POIs, a path
P (s, e) can be pruned if there exists some POI oxi such that
[a−(oxi), a

+
(oxi)] ∩ oxi .I

′
= ∅, i.e., ∣ac(oxi)∣ = 0. Thus, with

T-pruning, those paths that violate the time constraints of POIs
can be pruned to reduce the search space.
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4.4.2 Probabilistic Pruning
The basic idea of probabilistic pruning is as follows. Intuitively, if
an upper bound of the PTP probability, Prh{P (s, e)} for P (s, e)
is smaller than the specified probability threshold τ , then P (s, e)
can be pruned.
Lemma 2. (Probabilistic Pruning, P-Pruning) Denote the up-

per bound of the PTP probability, Prh{P (s, e)}, as
Pr+h{P (s, e)}. If Pr+h{P (s, e)}<τ holds, then P (s, e) can
be safely pruned.

Proof: It can be easily pruned by the inequality transition
of Prh{P (s, e)} ≤ Pr+h{P (s, e)} and Pr+h{P (s, e)} < τ .

Now, the task turns out to be the derivation of a probability
upper bound, Pr+h{P (s, e)}. According to the definition of the
PTP query, a PTP path should satisfy the time constraints of POIs
and have the top-h smallest travel times with a probability above
τ . Therefore, for path P (s, e), we need to consider two factors,
i.e., the time constraints of POIs and ranking probability (having
the top-h smallest travel time). Note that, for path P (s, e), satisfy-
ing the time constraints of POIs is the precondition of considering
its ranking probability. Therefore, we will first use the constraint-
based probability upper bound of P (s, e) to prune this path. If
P (s, e) survives, its ranking probability will be further considered
to compute another rank-based probability upper bound to prune
this path.

A. Constraint-based probability upper bound
According to Eq. (8), the arrival time at each POI oxi , a(oxi),

is a set of discrete values within [a−(oxi), a+(oxi)]. In general,
we have [a−c (oxi), a+c (oxi)] ⊆ [a−(oxi), a+(oxi)], i.e., only a
subset of values in a(oxi) satisfy the time constraints of oxi . We
assume that E(oxi) is the event that p(s, e) satisfies the time
constraints of oxi , i.e.,

Pr{E(oxi)} = Pr{a
−
c (oxi) ≤ a(oxi) ≤ a

+
c (oxi)}

Hence, we have the constraint-based probability, Prc{P (s, e)},
i.e., the probability that P (s, e) satisfies the time constraints at all
ψ POIs, as below.

Prc{P (s, e)} = Pr{
ψ

⋀
i=1
E(oxi)} . (12)

If Prc{P (s, e)} ≥ τ , we call P (s, e) an effective path. Then, we
have the following lemma.
Lemma 3. Given a subpath P (s, oxi) of P (s, e), we have:

Prc{P (s, e)}≤Prc{P (s, oxi)}

≤ min
j=1,...,i

Pr{a−c (oxj) ≤ a(oxj) ≤ a
+
c (oxj)}

Proof: we have

Prc{P (s, oxi)} = Pr
⎧⎪⎪
⎨
⎪⎪⎩

i

⋀
j=1

E(oxj)
⎫⎪⎪
⎬
⎪⎪⎭

. (13)

Given i ≤ ψ, Pr {⋀ψj=1E(oxj)} ≤ Pr {⋀ij=1E(oxj)} holds

because⋀ψj=1E(oxj) has more events (i.e., more constraints) than
⋀
i
j=1E(oxj). Therefore, by combining Eqs. (12) and (13), we

have Prc{P (s, e)} ≤ Prc{P (s, oxi)}. Furthermore, we have:

Prc{P (s, e)} ≤ Prc{P (s, oxi)} = Pr{
i

⋀
j=1

E(oxj)}

= Pr{
i

⋀
j=1

a−c (oxj) ≤ a(oxj) ≤ a
+
c (oxj)}

≤ min
j=1,...,i

Pr{a−c (oxj) ≤ a(oxj) ≤ a
+
c (oxj)}.

Hence, Lemma 3 holds.
Lemma 3 indicates that a longer path has a low-

er constraint-based probability and an upper bound of
the PTP probability Prh{P (s, e)} can be computed by
minj=1,...,i Pr{a

−
c (oxj) ≤ a(oxj) ≤ a

+
c (oxj)}. To compute this

upper bound, we need to calculate Pr{a−c (oxj) ≤ a(oxj) ≤

a+c (oxj)} for each POI oxj . A straightforward method is to
compute the probabilistic distribution of a(oxj), and aggregate
these samples that are within [a−c (oxj), a

+
c (oxj)] to obtain the

constraint-based probability. However, this incurs a very high
computation cost due to exponential number of possible instances.
Instead of computing a(oxj) directly, we compute an upper bound
for Pr{a−c (oxj) ≤ a(oxj) ≤ a+c (oxj)} without computing the
actual probability distribution.

We denote the cumulative distribution function (CDF) of
t(p(s, oxi)) as FP (z)=Pr{t(P (s, oxi)) ≤ z} whose lower and
upper bounds are accordingly assumed to be F −

P (z) and F +
P (z),

respectively. Then, we have:

Pr{a−c (oxj) ≤ a(oxj) ≤ a
+
c (oxj)} ≤ F

+
P (b) − F −

P (a) (14)

where a=a−c (oxj) − td − ∑
j−1
l=1 q.tl, b=a

+
c (oxj) − td − ∑

j−1
l=1 q.tl,

and q.tl is the staying time at POI ol. Eq. (14) can be proved by
the following derivation:

Pr{a
−
c (oxj ) ≤ a(oxj ) ≤ a

+
c (oxj )} =Pr{a ≤ a(oxj ) − td −

j−1
∑
l=1

q.tl ≤ b}

= Pr{a ≤ t(P (s, oxj )) ≤ b}

≤ F
+
P (b) − F

−
P (a).

Next, we discuss how to compute the bounds of FP (z), i.e.,
F −
P (z) and F +

P (z). Assume the CDF of t(e) is Fe(x)=Pr{t(e) ≤
x}. Generally, Fe(x) can be computed easily, since the distribu-
tion of t(e) is known to be represented by samples. However,
FP (z) is difficult to compute due to the unknown distribution
of t(p(s, oxi)). Therefore, our basic idea is to generate bounds
of FP (z) based on Fe(x) instead of the detailed distribution
of t(P (s, oxi)). To this end, we set a certain threshold for t(e)
(e ∈ P (s, oxi)) according to z and t(e) such that the summation
of these thresholds is less than z. Further, these thresholds are
used to compute the corresponding Fe(x) and FP (z) as discussed
below.

We assume p(s, oxi) = e1 → e2⋯ → el and specify each
e ∈ P (s, oxi) a threshold:

t△(e) = t
−
(e) +

(t+(e) − t−(e)) ⋅ (z −∑
l
j=1 t

−
(ej))

∑
l
j=1(t

+(ej) − t−(ej))
(15)

Then, we have the following lemma to compute bounds of
Fp(z):
Lemma 4. Given t△(ej) (j=1, . . . , l) in Eq. (15), we have three

cases as follows:

● Case 1: If ∑lj=1 t
−
(ej) > z, we have FP (z) = 0.

● Case 2: If ∑lj=1 t
+
(ej) < z, we have FP (z) = 1.

● Case 3: If ∑lj=1 t
−
(ej) ≤ z ≤ ∑

l
j=1 t

+
(ej), we have

l

∏
j=1

Fej(t△(ej)) ≤ FP (z) ≤ 1 −
l

∏
j=1

(1 − Fej(t△(ej)))

(16)

Proof: According to the definition of t(P ), we have
l

∑
j=1

t−(ej) ≤ t(P ) ≤
l

∑
j=1

t+(ej),
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thus, both Cases 1 and 2 hold. As for Case 3, we first prove the
lower bound of FP (z) as follows.

FP (z) = Pr{t(s, oxi) ≤ z} (17)
= ∑
y1+⋯+yl≤z

Pr{t(e1) = y1 ∧ ⋅ ⋅ ⋅ ∧ t(el) = yl}

≥ ∑
y1+⋅⋅⋅+yl≤z∧yj≤t△(ej)

Pr{t(e1) = y1 ∧ ⋅ ⋅ ⋅ ∧ t(el) = yl}

According to the definition of t△(ei), if yi ≤ t△(ei) holds for
i = 1, . . . , l, we have ∑li=1 xi ≤ ∑

l
i=1 t△(ei) and further:

l

∑
i=1
t△(ei) =

l

∑
i=1

(t
−
(ei) +

(t+(ei) − t
−
(ei)) ⋅ (z −∑

l
j=1 t

−
(ej))

∑
l
j=1(t

+(ej) − t−(ej))
)

=
l

∑
i=1
t
−
(ei) +

(z −∑
l
j=1 t

−
(ej)) ⋅∑

l
i=1 (t

+
(ei) − t

−
(ei))

∑
l
j=1(t

+(ej) − t−(ej))

=
l

∑
i=1
t
−
(ei) + z −

l

∑
j=1

t
−
(ej)

= z

Therefore, inequality ∑
l
i=1 xi ≤ z always holds when yi ≤

t△(ei)(1 ≤ i ≤ l). Moreover, according to Eq. (17), we have:

FP (z) ≥ ∑
y1+⋅⋅⋅+yl≤z∧yj≤t△(ej)

Pr{t(e1) = y1 ∧ ⋅ ⋅ ⋅ ∧ t(el) = yl}

= Pr{t(e1) ≤ t△(e1) ∧ ⋅ ⋅ ⋅ ∧ Pr(t(el) ≤ t△(el)}

=
l

∏
j=1

Pr{t(ej) ≤ t△(ej)} =
l

∏
j=1

Fej (t△(ej))

the left hand side of Eq. (11) holds.
To prove the right hand side of Eq. (11), we need to prove that

1 − FP (z) ≥∏l
i=1(1 − Fei(t△(ei))), i.e.,

Pr{t(P (s, oxi)) ≥ z} ≥
l

∏
i=1

(1 − Fei(t△(ei))). (18)

Similarly, we have:

Pr{t(s, oxi) ≥ z} = ∑
y1+⋯+yl≥z

Pr{t(e1) = y1 ∧ ⋅ ⋅ ⋅ ∧ t(el) = yl}

≥ ∑
y1+⋅⋅⋅+yl≥z∧yj≥t△(ej)

Pr{t(e1) = y1 ∧ ⋅ ⋅ ⋅ ∧ t(el) = yl}

= Pr{t(e1) ≥ t△(e1), . . . , P r(t(el) ≥ t△(el)}

=
l

∏
i=1

(1 − Fei(t△(ei))),

and the right hand side of Eq. (11) also holds.
From Lemma 4, we obtain bounds for FP (z), i.e., in Cases

1 and 2, we have F −
P (z)=F +

P (z)=0 (or 1); in Case 3, we
have F −

P (z)=∏l
i=1 Fei(t△(ei)) and F +

P (z) = 1 − ∏l
i=1(1 −

Fei(t△(ei))). Further, since it holds that Pr{a ≤ t(P (s, oxi)) ≤
b} = FP (b) − FP (a), we can obtain bounds for Pr{a ≤

t(P (s, oxi)) ≤ b} below:

Pr{a ≤ t(P (s, oxi)) ≤ b} ≥ F
−
P (b) − F +

P (a), and (19)

Pr{a ≤ t(P (s, oxi)) ≤ b} ≤ F
+
P (b) − F −

P (a). (20)

Then, with Eq. (14), P (s, e) can be pruned if there exists a
subpath P (s, oxj) (j=1, . . . , i) such that F +

P (b) − F −
P (a) ≤ τ .

B. Rank-based probability upper bound
The constraint-based upper bound only considers the time

constraints of POIs. In this subsection, we will derive a rank-based
probability upper bound for filtering out false alarms further.

Assume that we have obtained a set of effective paths (as dis-
cussed in Section 4.4.3), U={P1,⋯, Pn}, sorted by t−(⋅) where
Prc{Pi} ≥ τ(1 ≤ i ≤ n). We record Ui={P1,⋯, Pi}(i ≤ n). For

path Pi, if there are at least h paths in Ui−1 having travel time less
than Pi, then Pi has a rank larger than h. However, a strict ranking
among these paths cannot be implemented because the travel time
of each path is a random variable bounded by an interval. Our idea
is to compute the probability that there are at least h paths in Ui−1
having travel time less than Pi, i.e.,

∑
A⊆Ui−1∧∣A∣≥h

Pr{⋀
P ∈A

t(P ) ≤ t(Pi)} ⋅ Pr{ ⋀
P ∈Ui−1∖A

t(P ) > t(Pi)}

Generally, it is not trivial to enumerate all such subsets to
compute the exact probability. Here, we reduce to consider the
first h paths and have the following lemma.

Lemma 5. Given a set of constraint-based paths
U={P1,⋯, Pn} sorted by t−(.), for path Pi(i > h), if
1−∏P ∈Uh LB FP (t−(Pi))<τ , then paths in U ∖ Ui−1 can
be pruned.

Proof: First, we have

∑
A⊆Ui−1∧∣A∣≥h

Pr{⋀
P ∈A

t(P ) ≤ t(Pi)} ⋅ Pr{ ⋀
P ∈Ui−1∖A

t(P ) > t(Pi)}

≥ Pr{ ⋀
P ∈Uh

t(P ) ≤ t(Pi)} ≥ ∏
P ∈Uh

Pr{t(P ) ≤ t(Pi)}

≥ ∏
P ∈Uh

Pr{t(P ) ≤ t
−
(Pi)} ≥∏

P ∈Uh
F
−
P (t

−
(Pi))

Therefore, we further have Prh{Pi}≤1 −∏P ∈Uh F
−
P (t−(Pi)). If

1 −∏P ∈Uh F
−
P (t−(Pi))<τ , by the inequality transition, we have

Prh{Pi} < τ , thus Pi can be safely pruned. Meanwhile, for each
path Pt in U ∖Ui = {Pi+1,⋯, Pn}, we have

Prh{Pt}≤1 − ∏
P ∈Uh

F
−
P (t

−
(Pt)) ≤1 − ∏

P ∈Uh
F
−
P (t

−
(Pi)) < τ

Therefore, U ∖Ui−1 can be pruned if 1−∏P ∈Uh F
−
P (t−(Pi)) < τ .

Thus, a candidate path that cannot be pruned by the constraint-
based probability upper bound might be filtered out by using this
rank-based bound. In addition, a sub-path can also be pruned by
using this bound as described below.

Lemma 6. Given a set of constrained paths U={P1, . . . , Pn}
sorted by t−(⋅) and a sub-path P (s, oxi), P (s, oxi) can be
pruned if 1 −∏P ∈Uh F

−
P (t−(P (s, oxi))) < τ .

Proof: A complete path generated from P (s, oxi) has
a larger t−(⋅) value than that of P (s, oxi), which reduces its
corresponding PTP probability, hence the proof.

Thus, 1 −∏P ∈Uh F
−
P (t−(P )) can be used as the rank-based

probability upper bound to prune candidate paths.

C. Discussion on two probability upper bounds
During the query processing, both constraint-based and rank-

based upper bounds of the PTP probability are employed to prune
paths. The constraint-based probability upper bound can prune
those paths that have constraint-based probabilities less than τ ,
which mainly considers the keyword/time constraints of POIs.
For the rank-based probability upper bound, it requires that there
exist h candidate paths whose constraint-based probabilities are
above τ . Thus, we can also use it to prune those candidate paths
that have PTP probabilities less than τ . Therefore, the rank-based
probability works as a complement to the constraint-based one to
collaboratively reduce the number of candidate paths.
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4.4.3 Travel Time Pruning
In this subsection, we further describe the travel time pruning,
denoted as T2-Pruning. According to the definition of the PTP
query, we aim to compute the probabilities that paths are among
the top-h time-constrained paths which satisfy both keyword and
time constraints and have the top-h smallest travel times. Thus,
in T2-Pruning, our basic idea is to use a travel time threshold
to directly prune those paths with larger travel times than h
constraint-based paths we have seen so far without computing
probability upper bounds. Concretely, we have the T2-Pruning in
the following lemma.

Lemma 7. (Travel Time Pruning, T2-Pruning) Assume that we
have obtained h effective paths, which satisfy time constraints
at POIs on these paths with probability above τ . Let ρ be the
largest travel time upper bound among these h paths. Then, a
path P (s, e) can be pruned if its lower bound of travel time,
t−(P (s, e)), is larger than ρ.

Proof: From the lemma assumption, if t−(P (s, e)) > ρ
holds, P (s, e) has larger travel time than at least h paths in
all possible worlds (since we have obtained h paths that satisfy
keyword/time constraints at POIs). Hence, path P (s, e) cannot be
a top-h time-constrained path and should be pruned.

We consider two cases of obtaining h effective paths used
in Lemma 7. First, for P (s, e), if the arrival time at every
POI on P (s, e) is within the corresponding service time, i.e.,
[a−c (oxi), a

+
c (oxi)]=[a

−
(oxi), a

+
(oxi)], then path P (s, e) is an

effective path. The second case is that, there exist some POIs oxi
on P (s, e) whose time intervals do not fully cover the whole
arrival time, i.e., [a−c (oxi), a

+
c (oxi)] ≠ [a−(oxi), a

+
(oxi)]. In

this case, our rationale is to derive an lower bound, Pr−c {P (s, e)},
for Prc{P (s, e)}. If this lower bound is above threshold τ , then
path P (s, e) is an effective path. According to the definition of
Prc{P (s, e)}, we have

Prc{P (s, e) ≥ Prc{P (s, ox1)} ⋅
ψ

∏
i=2
Prc{P (oxi−1 , oxi)}

≥ Pr
−
c {P (s, ox1)} ⋅

ψ

∏
i=2
Pr

−
c {P (oxi−1 , oxi)}.

≡ Pr
−
c {P (s, e)} (21)

where Pr−c {P (x, y)} is a lower bound for Prc{P (x, y)}.
Now our goal is to compute the lower bounds of Prc{P (s,

ox1)} and Prc{P (oxi−1 , oxi)} (for 2 ≤ i ≤ ψ). Obviously, if there
exists a travel time interval for t(P (x, y)) in which P (x, y) al-
ways satisfies the keyword/time constraints of POIs, we can com-
pute a lower bound for the probability that the travel time t(x, y)
falls into this interval by using Eq. (19). Based on the constrained
arrival time at oxi−1 and oxi , the constraint-based interval of
t(P (oxi−1 , oxi)), i.e., [t−c (P (oxi−1 , oxi)), t

−
c (P (oxi−1 , oxi))],

can be computed by solving the following inequalities:

⎧⎪⎪⎪⎪
⎨
⎪⎪⎪⎪⎩

t−(P (oxi−1 , oxi)) ≤ x ≤ t
+
(P (oi−1, oxi)),

a−c (oxi) ≤ a
−
c (oxi−1) + x + q.ti−1 ≤ a

+
c (oxi)

a−c (oxi) ≤ a
+
c (oxi−1) + x + q.ti−1 ≤ a

+
c (oxi).

(22)

Then, by using Eq. (19), we can calculate a lower bound of
Prc{P (oxi−1 , ooxi )} below:

Prc{P (oi−1, oxi)}

≥ Pr{t
−
c (P (oxi−1 , oxi)) ≤ t(P (oxi , oxi+1)) ≤ t

+
c (P (oi−1, oi))}

≥ F
−
(t
+
c (P (oi−1, oxi))) − F

+
(t
−
c (P (oxi−1 , oxi))).

≡ Pr
−
c {P (oi−1, oxi)}. (23)

With Pr−c {P (s, ox1)} and Pr−c {P (oxi−1 , oxi)}, we can
compute the lower bound of the constraint-based probability in
Eq. (21). If this constraint-based probability is above τ , then we
can use P (s, e) as an effective path to filter out other false alarms
as described in Lemma 7.

4.5 PTP Processing Algorithm

To efficiently answer PTP queries, we first generate a small set
of candidate paths by using our pruning strategies. After that, a
refinement step based on sampling is conducted to obtain the final
PTP query results.

4.5.1 Candidate path generation
We propose a expansion-based heuristic algorithm which has the
flavor similar to A* algorithm. We expand from POI to POI and
the shortest path between each pair of POIs is quickly computed
with CH index. During the expansion, T-pruning, P-pruning and
T2-pruning are employed together to filter out infeasible paths.

Algorithm 1: GenerateCandidatePath
Input: a PTP query q=(s, e, td, K, h, τ)
Output: Candidate paths set C

1 Initialize C, Q, U ←new priorityQueue()
2 ρ← +∞

3 P ← ⟨s⟩
4 Q.enqueue(P ,test(P ))
5 while Q is not empty do
6 P ← Q.dequeue()
7 if test(P ) ≥ ρ then
8 break
9 i←POICount(P )

10 ocurr ←currPOI(P )
11 if i = ψ then
12 Pnew ← P ⊕ P (ocurr, e)
13 if t−(Pnew) < ρ then
14 C.add(Pnew, t−(Pnew))

15 if Prc{Pnew} ≥ τ then
16 U .add(Pnew, t−(Pnew))
17 P-Pruning(C)
18 update(ρ)

19 else
20 Pnew ← P .expand()
21 if not(t−(Pnew) ≥ ρ and T-Pruning(Pnew) and

P-Pruning(Pnew)) then
22 Q.enqueue(Pnew, test(Pnew));

23 update P
24 Q.enqueue(P ,test(P ))

25 return C

The PTP query processing is elaborated in Algorithm 1 which
accepts as input a PTP query q and produces as output a small set
of candidate paths C . Initially, three priority queues C , Q, and U
are created to store candidate paths, expanded paths which have
covered partial POIs, and constraint-based paths, respectively. All
these paths are sorted by the lower bound, t−(⋅), of the travel time.
In addition, ρ records the threshold of the current top-h constraint-
based paths (line 2).

First, the path containing only the start vertex, s, is added to Q
(lines 3-4) and its weight is an estimated value of the travel time,
test(P ). Assume that the current POI of P is ocurr (initially, s)
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and the next POI (if exists) is onext. Meanwhile, Euc(x, y) is the
Euclidean distance between x and y, and vel+(G) is the maximum
velocity over the whole road network. Then, we compute test(P )

as follows:

● Case 1: P has covered all required POIs.

test(P ) = t−(P ) +
Euc(ocurr, e)

vel+(G)

● Case 2: P only covers partial POIs.

test(P ) = t−(P ) +
Euc(ocurr, onext) +Euc(onext, e)

vel+(G)

In each loop, while Q is not empty (line 5), the path P with the
minimum test(P ) is dequeued from Q (line 6). If test(P ) ≥ ρ
(line 7), algorithm terminates, otherwise we have two cases as
described below:

● Case 1: P has covered all required POIs (line 11). In this
case, we expand from P to compute the shortest path to e
and generate a complete path, Pnew, from s to e. If Pnew
survives in T2-pruning, it is returned as a candidate path
(line 14). Additionally, if Prc{Pnew} ≥ τ , Pnew is added
to U (line 16), each path in C is checked by P-pruning
(line 17), and ρ is updated (line 18).

● Case 2: P only covers partial POIs (line 19). In this case,
we expand from P to cover the (i + 1)-th POI, where i
is the number of POIs that P has already covered, and a
new path, Pnew, is generated. Then, three pruning methods
are employed. If Pnew survives, we add it to Q with its
estimate travel time. Meanwhile, P is updated (next POI,
onext) and reinserted into Q.

The loops terminate when the dequeued path has a test(⋅) value
larger than ρ, or Q is empty. Finally, a set C of candidates is
returned.

4.5.2 Refinement
Generally, the number of candidate paths is small but some of
them may be not PTP answers. Hence, a refinement step is
required to compute the real results. In order to efficiently obtain
the final result, we use a sampling algorithm, as described in
Algorithm 2, to calculate the probabilities of candidate paths
that belong to top-h time-constrained paths. Particularly, in line
4, function sample(G) samples the travel time of each edge,
according to its probability distribution. Here, only the edges
covered by the paths in U are sampled, since other edges of G
have no effect on the final result. According to the Monte Carlo
theory [26], we have:

Pr{∣Prh(P ) − P̂ r(P )∣ ≤ η} > 1 − ξ (24)

where P̂ r(P )=N0/N is computed according to Algorithm 2, and
both parameters ξ and η are set to 0.1 by default [26] (line 2).
Finally, those paths with N0/N larger than τ are returned as the
final query result.

4.6 Updates of URNs
In order to capture the dynamic uncertain travel times on roads of
an uncertain road network G, we maintain a queue for each edge
ei,j , which contains T samples, sr (t0 − T + 1 ≤ r ≤ t0), for the
last T timestamps within [t0 − T + 1, t0], where t0 is the current
timestamp. Each sample is represented by a triple (ei,j , sr, r),

Algorithm 2: Calculate P̂ r(P )

Input: P ∈ C
Output: P̂ r(P )

1 N0 ← 0

2 N ← 4(∣C∣−1) ln(2/ξ)
η

3 for i← 1 to N do
4 wi ← sample(G)
5 compute Phwi(s, e) among U
6 if P ∈ P

h
wi(s, e) then

7 N0 ← N0+1

8 return N0/N

where ei,j is an edge, sr is a possible travel time value on edge
ei,j , and r is the timestamp that the sample is collected.

In order to facilitate PTP query processing, we need to
maintain some pre-computed data for the URN G, including the
minimum/maximum travel time, t−(ei,j) and t+(ei,j), on each
edge ei,j ; and the minimum/maximum velocities, denoted as
vel−(G) and vel+(G), on the entire road network G. At a new
timestamp (t0 + 1), a new sample, s(t0+1), of the travel time on
edge ei,j arrives and is added to the queue. Meanwhile, the old
one, s(t0−T+1), is expired and removed from the queue, and the
pre-computed data is updated as described below.

● Update t−(ei,j) and t+(ei,j): For new sample s(t0+1),
if s(t0+1) is within interval [t−(ei,j), t

+
(ei,j)], we do

not need to update the time interval. Otherwise, if
s(t0+1)<t

−
(ei,j) holds, we update t−(ei,j) with the new

sample s(t0+1); if s(t0+1) > t+(ei,j) holds, we update
t+(ei,j) with sample s(t0+1). For the expired sample
s(t0−T+1), if s(t0−T+1) ∈ [t−(ei,j), t

+
(ei,j)], we do not

need to update the time interval. When the expired sample
s(t0−T+1) equals to either t−(ei,j) or t+(ei,j), we need
to scan all samples within the last T timestamps, and re-
calculate the interval [t−(ei,j), t+(ei,j)].

● Update vel−(G) and vel+(G): If the travel time in-
terval [t−(ei,j), t

+
(ei,j)] above remains the same, we

do not need to update vel−(G) and vel+(G). Other-
wise, we calculate the minimum and maximum veloc-
ities on edge ei,j , i.e., vel−(ei,j) and vel+(ei,j), re-
spectively. That is, if t+(ei,j) has changed, we have
vel−new(ei,j)=∣(ei,j ∣/t

+
(ei,j); if t−(ei,j) is updated,

we have vel+new(ei,j)=∣(ei,j ∣/t
−
(ei,j). As a result, if

old velocity bounds [vel−(ei,j), vel
+
(ei,j)] is within

[vel−(G), vel+(G)], we update vel+(G) with vel+(ei,j)
(when vel+(ei,j)>vel

+
(G)), and update vel−(G) with

vel−(ei,j) (when vel−(ei,j)<vel
−
(G)). On the other

hand, if vel−(ei,j)=vel−(G) and vel−(ei,j) increases
to vel−new(ei,j), then we re-compute the velocity lower
bound for all edges. Similarly, if vel+(ei,j) = vel+(G)
and vel+(ei,j) decreases to vel+new(ei,j), we also re-
calculate the velocity upper bound for all edges.

5 EXPERIMENTAL EVALUATION

5.1 Data sets & Setups

In this section, we conduct extensive experiments on three re-
al data sets (i.e., California, Beijing and London) to evaluate
the performance of our proposed solution to the PTP problem.
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Specifically, California data set (including both road network and
POIs) is from Real Datasets for Spatial Databases2; Beijing data
set has road network from OpenStreetMap3 (OSM) and POIs
from Datatang4; London data set extracts both road network and
its POIs from OSM. The statistical information of three data
sets, including index construction times and index sizes for both
inverted file (IF) and Contraction Hierarchy (CH), is detailed in
Table 4.

TABLE 4
Statistics of data sets.

Attributes California Beijing London
number of vertices 21,048 46,029 209,045
number of edges 21,693 62,778 282,267
number of POIs 104,470 252,125 34,341
Index size (IF) (MB) 0.5 1.2 0.3
Index construction time (IF) (sec) 0.11 0.595 0.043
Index size (CH) (MB) 44 152 341
Index construction time (CH) (sec) 2.2 28.7 47.9

TABLE 5
Parameters in experiments.

Parameters Values
∣K∣ 1,2,3,4,5
h 1, 3, 5, 7, 9
τ 0.1, 0.3, 0.5, 0.7, 0.9

Keywords of POIs: The POIs of California has 62 categories
and that of Beijing has 533 categories. In our experiment, each
category is regarded as the keyword description of POIs, i.e.,
oi.K, in this category. Each POI in London is associated with
a set of keywords, extracted from OSM, to describe its properties
and services.
Time intervals of POIs: We define three time interval pattern-
s, i.e., {7:00-12:00,13:00-17:00} (such as banks), {8:00-22:00}
(such as restaurants), and {0:00-24:00} (such as 24-hour stores).
First, one of the three patterns is selected for each POI. After that,
to increase the diversity of the time intervals of POIs, for each
POI, we generate sub-intervals of the selected time interval pattern
such that they have an overlap of more than 70%. For example,
assuming that a time interval in the pattern is [a, b], we randomly
generate a sub-interval [x, y] within [a, b] such that y−xb−a ≥ 0.7.
Travel time of roads: First, for each road, we randomly select a
speed sub-interval within [20km/h, 80km/h] which is the driving
speed interval for most cities. Then, a set, V , of T (=50) speed
samples is randomly generated within the sub-interval according
to Uniform distribution and Truncated Gaussian distribution,
respectively. In addition, we also extract Real speed samples from
the GPS trajectories of over 10, 000 taxis in Beijing data set5.
Then, with the length of each road e, each sample of t(e) is
obtained by ∣e∣v (v ∈ V ).
Queries: For each data set, we evaluate 50 PTP queries whose
start and end locations are generated randomly within the road
network and their departure times are randomly selected between
6:00 and 22:00. Additionally, the query keywords are also ran-
domly selected from the corresponding vocabulary of each data
set. The staying time at each POI is randomly selected between
600 and 1,200 seconds.

Table 5 illustrates experimental settings, where default values
of parameters are in bold font. All experiments are run on a PC
with a 3.1GHz Intel processor and a 8GB RAM.

2. http://www.cs.utah.edu/ lifeifei/SpatialDataset.htm
3. http://www.openstreetmap.org
4. http://www.datatang.com/
5. In the case that there are no enough samples for some roads, we add the

average values of existing samples to ensure T samples.

5.2 Experimental Results
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Method comparison: We compare the performance of our solu-
tion with that of the solution by enumerating all possible world-
s [24] (EPW for short). As illustrated in Figure 6, the response
time of EPW is much larger than that of our solution on all three
datasets. Actually, when the number of query keywords increases,
it is computationally prohibitive to process the PTP query with
EPW solution. On the contrary, our solution can always compute
the PTP query efficiently.
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Fig. 6. The response time comparison between EPW and our solution

Pruning power vs. data sets: Figure 4 illustrates the relationship
of candidate path sets after applying pruning strategies, i.e., T-
pruning (T), P-pruning (P), and T2-pruning (T2). We can see
that T-pruning results in a superset of candidate sets from the
other two pruning strategies. Moreover, the intersection of two
candidate path sets by applying P-pruning and T2-pruning is
our final candidate set that needs further refinement. Figure 5
illustrates the performance of three pruning strategies over three
data sets with Gaussian vehicle speeds (the case of data sets with
Uniform vehicle speeds is similar and thus omitted). As presented,
a considerable portion of infeasible paths are pruned when only
T-pruning is employed. Further, compared with T-pruning, the
number of candidate paths after T+P pruning is greatly reduced.
Finally, we can get a small set of candidate paths with all the three
pruning strategies, i.e., T+P+T2 pruning. Furthermore, we can see
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Fig. 7. The performance vs. the number of keyword sets, ∣q.K∣

 100

 120

 140

 160

 180

 1  3  5  7  9

R
es

p
on

se
 T

im
e 

(m
s)

h

Gaussian
Uniform

(a) California

 150

 250

 350

 450

 550

 1  3  5  7  9

R
es

p
on

se
 T

im
e 

(m
s)

h

Gaussian
Uniform
Real

(b) Beijing

 300

 600

 900

 1200

 1500

 1  3  5  7  9
R
es

p
on

se
 T

im
e 

(m
s)

h

Gaussian
Uniform

(c) London

100

101

102

103

104

 1  3  5  7  9

C
an

d
id

at
e 

Pa
th

s

h

No pruning
Gaussian
Uniform

(d) California

100

101

102

103

104

 1  3  5  7  9

C
an

d
id

at
e 

Pa
th

s

h

No pruning
Gaussian
Uniform

Real

(e) Beijing

100

101

102

103

104

 1  3  5  7  9

C
an

d
id

at
e 

Pa
th

s

h

No pruning
Gaussian
Uniform

(f) London

Fig. 8. The performance vs. parameter, h

from Figure 5 that the number of final candidate paths (after all
pruning) on each data set has almost the same scale as that of final
results (obtained after the verification step given in Algorithm 2),
which confirms the effectiveness of our pruning strategies.

Performance vs. the number of keyword sets ∣K∣: Figure 7
illustrates the experimental results by varying the number of
query keyword sets, i.e., ∣K∣, on different data sets with Gaussian,
Uniform, and Real distribution of the travel time on each edge.
With the increase of ∣K∣, the response time increases as more paths
should be evaluated. Nonetheless, with ∣K∣ less than 4 (the general
case in reality), we can efficiently get final results with around one
second. With the increase of ∣K∣, the number of complete paths
increases exponentially without applying any pruning methods.
By using our proposed pruning strategies, however, the number of
candidate paths slightly increases, and remains small (i.e., less
than 20). For example, the number of complete paths without

pruning is in the scale of millions when ∣K∣=3, and the number
of candidate paths after T+P+T2 pruning is only in the scale of
tens. Meanwhile, with Uniform distribution of t(e), there are more
candidate paths than that of truncated Gaussian distribution, which
accordingly takes higher response time. This is because, Gaussian
distribution concentrates around the mean value, which makes the
P-pruning more effective. The real distribution takes even more
time and generates more candidate paths because its speed span is
larger than that of other two distribution.

Performance vs. parameter h: Figure 8 presents the response
time and the number of candidate paths by varying h, where other
parameters are set to their default values. We can see that the
number of candidate paths has a smooth increase, since larger q.h
means more paths need to be retrieved and checked. This further
incurs an increase in the query response time for large h, as shown
in Figure 8.
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Fig. 9. The performance vs. probability threshold, τ

Performance vs. probability threshold τ : Figure 9 reports the
experimental results with different probability thresholds from 0.1
to 0.9. From Figure 9, the curves for response time are almost
concave. The reason is as follows. On one hand, a small τ covers
more candidate paths, but it generates a good pruning threshold
ρ in Algorithm 1. On the other hand, a larger τ can prune more
expanding paths during the query processing, but impede the gen-
eration of the pruning threshold ρ. Therefore, with a small τ (e.g.,
0.1), large number of evaluated paths incurs a high response time.
With the increase of τ , the number of evaluated paths decreases,
which results in the decrease of the response time. However, when
τ becomes higher, Algorithm 1 will postpone to terminate because
the pruning threshold ρ is difficult to generate (since fewer paths
satisfy the constraint of the probability threshold τ ). Thus, the
response time first decreases, and then increases again for large
τ . With the increase of τ , the number of candidate paths slightly
decreases because fewer complete paths satisfy the probabilistic
requirement.
Scalability: To evaluate the scalability of the proposed solution,
we test the performance of our approach against the size of road
networks. As presented in Table 6, we use four datasets, i.e., the
road network and POIs of Australia, United Kingdom, China,
and Germany6. We run 100 queries with default parameter in
Table 5 and compute the average response time and candidate
paths. As illustrated in Figure 10, we can conclude that our
proposed solution also achieve a good performance over larger
road networks with millions of roads and POIs.

TABLE 6
Data sets for scalability test.

Attributes Australia United Kingdom China Germany
number of vertices 202, 666 389, 503 914, 297 1,029, 674
number of edges 272, 558 487, 160 1, 240, 893 1, 369, 473
number of POIs 130, 644 539, 912 198, 219 1, 333, 775

In addition, we also validate the good performance of our
solution while varying the staying time, departure time, etc. For
the limitation of space, we omit the detailed results here.

6. All these datasets are extracted from OSM and we make them public at
http://pan.baidu.com/s/1boVgJkr
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Fig. 10. The scalability test over large road networks

6 CONCLUSION

In this paper, we formalize a probabilistic time-constrained PTP
query, which models road networks by uncertain graphs, and
retrieves paths that satisfy both keyword and time constraints
at POIs, and are in the set of top-h optimal paths with high
probabilities. In order to efficiently tackle the PTP problem,
we propose three effective pruning strategies to filter out false
alarms, and integrate them into an efficient PTP search algorithm.
Through extensive experiments, we demonstrate the efficiency and
effectiveness of our proposed PTP query answering approach.
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