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Abstract

Recent years have witnessed the unprecedented success

of deep convolutional neural networks (CNNs) in single im-

age super-resolution (SISR). However, existing CNN-based

SISR methods mostly assume that a low-resolution (LR) im-

age is bicubicly downsampled from a high-resolution (HR)

image, thus inevitably giving rise to poor performance when

the true degradation does not follow this assumption. More-

over, they lack scalability in learning a single model to non-

blindly deal with multiple degradations. To address these

issues, we propose a general framework with dimensional-

ity stretching strategy that enables a single convolutional

super-resolution network to take two key factors of the SISR

degradation process, i.e., blur kernel and noise level, as in-

put. Consequently, the super-resolver can handle multiple

and even spatially variant degradations, which significantly

improves the practicability. Extensive experimental result-

s on synthetic and real LR images show that the proposed

convolutional super-resolution network not only can pro-

duce favorable results on multiple degradations but also is

computationally efficient, providing a highly effective and

scalable solution to practical SISR applications.

1. Introduction

Single image super-resolution (SISR) aims to recover a

high-resolution (HR) version of a low-resolution (LR) in-

put. As a classical problem, SISR is still an active yet chal-

lenging research topic in the field of computer vision due to

its ill-poseness nature and high practical values [2]. In the

typical SISR framework, an LR image y is modeled as the

output of the following degradation process:

y = (x ⊗ k) ↓s + n, (1)

where x⊗k represents the convolution between a blur kernel

k and a latent HR image x, ↓s is a subsequent downsampling

operation with scale factor s, and n usually is additive white

Gaussian noise (AWGN) with standard deviation (noise lev-

el) σ.

∗Corresponding author.

SISR methods can be broadly classified into three cate-

gories, i.e., interpolation-based methods, model-based op-

timization methods and discriminative learning methods.

Interpolation-based methods such as nearest-neighbor, bi-

linear and bicubic interpolators are simple and efficient but

have very limited performance. By exploiting powerful im-

age priors (e.g., the non-local self-similarity prior [11, 32],

sparsity prior [52] and denoiser prior [4, 13, 57]), model-

based optimization methods are flexible to reconstruct rel-

ative high-quality HR images, but they usually involve a

time-consuming optimization procedure. Although the in-

tegration of convolutional neural network (CNN) denoiser

prior and model-based optimization can improve the effi-

ciency to some extent, it still suffers from the typical draw-

backs of model-based optimization methods, e.g., it is not in

an end-to-end learning manner and involves hand-designed

parameters [57]. As an alternative, discriminative learning

methods have attracted considerable attentions due to their

favorable SISR performance in terms of effectiveness and

efficiency. Notably, recent years have witnessed a dramatic

upsurge of using CNN for SISR.

In this paper, we focus on discriminative CNN methods

for SISR so as to exploit the merits of CNN, such as the fast

speed by parallel computing, high accuracy by end-to-end

training, and tremendous advances in training and design-

ing networks [16, 18, 21, 28]. While several SISR models

based on discriminative CNN have reported impressive re-

sults, they suffer from a common drawback: their model-

s are specialized for a single simplified degradation (e.g.,

bicubic degradation) and lack scalability to handle multiple

degradations by using a single model. Because the practical

degradation of SISR is much more complex [40, 51], the

performance of learned CNN models may deteriorate seri-

ously when the assumed degradation deviates from the true

one, making them less effective in practical scenarios. It has

been pointed out that the blur kernel plays a vital role for the

success of SISR methods and the mismatch of blur kernels

will largely deteriorate the final SISR results [12]. Howev-

er, little work has been done on how to design a CNN to

address this crucial issue.
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Given the facts above, it is natural to raise the following

questions, which are the focus of our paper: (i) Can we learn

a single model to effectively handle multiple and even spa-

tially variant degradations? (ii) Is it possible to use synthet-

ic data to train a model with high practicability? This work

aims to make one of the first attempts towards answering

these two questions.

To answer the first question, we revisit and analyze the

general model-based SISR methods under the maximum a

posteriori (MAP) framework. Then we argue that one may

tackle this issue by taking LR input, blur kernel and noise

level as input to CNN but their dimensionality mismatch

makes it difficult to design a single convolutional super-

resolution network. In view of this, we introduce a dimen-

sionality stretching strategy which facilitates the network to

handle multiple and even spatially variant degradations with

respect to blur kernel and noise. To the best of our knowl-

edge, there is no attempt to consider both the blur kernel

and noise for SISR via training a single CNN model.

For the second question, we will show that it is possible

to learn a practical super-resolver using synthetic data. To

this end, a large variety of degradations with different com-

binations of blur kernels and noise levels are sampled to

cover the degradation space. In a practical scenario, even

the degradation is more complex (e.g., the noise is non-

AWGN), we can select the best fitted degradation model

rather than the bicubic degradation to produce a better re-

sult. It turns out that, by choosing a proper degradation, the

learned SISR model can yield perceptually convincing re-

sults on real LR images. It should be noted that we make no

effort to use specialized network architectures but use the

plain CNN as in [9, 41].

The main contributions of this paper are summarized in

the following:

• We propose a simple yet effective and scalable deep

CNN framework for SISR. The proposed model goes

beyond the widely-used bicubic degradation assump-

tion and works for multiple and even spatially variant

degradations, thus making a substantial step towards

developing a practical CNN-based super-resolver for

real applications.

• We propose a novel dimensionality stretching strategy

to address the dimensionality mismatch between LR

input image, blur kernel and noise level. Although this

strategy is proposed for SISR, it is general and can be

extended to other tasks such as deblurring.

• We show that the proposed convolutional super-

resolution network learned from synthetic training data

can not only produce competitive results against state-

of-the-art SISR methods on synthetic LR images but

also give rise to visually plausible results on real LR

images.

2. Related Work

The first work of using CNN to solve SISR can be traced

back to [8] where a three-layer super-resolution network (S-

RCNN) was proposed. In the extended work [9], the au-

thors investigated the impact of depth on super-resolution

and empirically showed that the difficulty of training deep-

er model hinders the performance improvement of CN-

N super-resolvers. To overcome the training difficulty,

Kim et al. [24] proposed a very deep super-resolution (VD-

SR) method with residual learning strategy. Interestingly,

they showed that VDSR can handle multiple scales super-

resolution. By analyzing the relation between CNN and

MAP inference, Zhang et al. [56] pointed out that CNN

mainly model the prior information and they empirically

demonstrated that a single model can handle multiple scales

super-resolution, image deblocking and image denoising.

While achieving good performance, the above methods take

the bicubicly interpolated LR image as input, which not on-

ly suffers from high computational cost but also hinders the

effective expansion of receptive field.

To improve the efficiency, some researchers resort to di-

rectly manipulating the LR input and adopting an upscal-

ing operation at the end of the network. Shi et al. [41]

introduced an efficient sub-pixel convolution layer to up-

scale the LR feature maps into HR images. Dong et al. [10]

adopted a deconvolution layer at the end of the network to

perform upsampling. Lai et al. [27] proposed a Laplacian

pyramid super-resolution network (LapSRN) that takes an

LR image as input and progressively predicts the sub-band

residuals with transposed convolutions in a coarse-to-fine

manner. To improve the perceptual quality at a large scale

factor, Ledig et al. [29] proposed a generative adversarial

network [16] based super-resolution (SRGAN) method. In

the generator network of SRGAN, two sub-pixel convolu-

tion layers are used to efficiently upscale the LR input by a

factor of 4.

Although various techniques have been proposed for

SISR, the above CNN-based methods are tailored to the

widely-used settings of bicubic degradation, neglecting

their limited applicability for practical scenarios. An in-

teresting line of CNN-based methods which can go beyond

bicubic degradation adopt a CNN denoiser to solve SISR vi-

a model-based optimization framework [4, 34, 57]. For ex-

ample, the method proposed in [57] can handle the widely-

used Gaussian degradation as in [11]. However, manually

selecting the hyper-parameters for different degradations is

not a trivial task [39]. As a result, it is desirable to learn

a single SISR model which can handle multiple degrada-

tions with high practicability. This paper attempts to give a

positive answer.

Due to the limited space, we can only discuss some of

the related works here. Other CNN-based SISR methods

can be found in [6, 22, 23, 30, 37, 42, 44, 45, 46, 53, 58].
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3. Method

3.1. Degradation Model

Before solving the problem of SISR, it is important to

have a clear understanding of the degradation model which

is not limited to Eqn. (1). Another practical degradation

model can be given by

y = (x ↓s)⊗ k + n. (2)

When ↓ is the bicubic downsampler, Eqn. (2) correspond-

s to a deblurring problem followed by a SISR problem

with bicubic degradation. Thus, it can benefit from exist-

ing deblurring methods and bicubic degradation based SISR

methods. Due to limited space, we only consider the more

widely assumed degradation model given in Eqn. (1). Nev-

ertheless, our method is general and can be easily extended

to handle Eqn. (2). In the following, we make a short dis-

cussion on blur kernel k, noise n and downsampler ↓.

Blur kernel. Different from image deblurring, the blur k-

ernel setting of SISR is usually simple. The most popu-

lar choice is isotropic Gaussian blur kernel parameterized

by standard deviation or kernel width [11, 51]. In [38],

anisotropic Gaussian blur kernels are also used. In practice,

more complex blur kernel models used in deblurring task,

such as motion blur [5], can be further considered. Empiri-

cal and theoretical analyses have revealed that the influence

of an accurate blur kernel is much larger than that of sophis-

ticated image priors [12]. Specifically, when the assumed

kernel is smoother than the true kernel, the recovered image

is over-smoothed. Most of SISR methods actually favor for

such case. On the other hand, when the assumed kernel is

sharper than the true kernel, high frequency ringing artifacts

will appear.

Noise. While being of low-resolution, the LR images are

usually also noisy. Directly super-resolving the noisy input

without noise removal would amplify the unwanted noise,

resulting in visually unpleasant results. To address this

problem, the straightforward way is to perform denoising

first and then enhance the resolution. However, the denois-

ing pre-processing step tends to lose detail information and

would deteriorate the subsequent super-resolution perfor-

mance [43]. Thus, it would be highly desirable to jointly

perform denoising and super-resolution.

Downsampler. Existing literatures have considered two

types of downsamplers, including direct downsampler [11,

17, 36, 51, 55] and bicubic downsampler [7, 12, 14, 15, 47,

52]. In this paper, we consider the bicubic downsampler

since when k is delta kernel and the noise level is zero, E-

qn. (1) turns into the widely-used bicubic degradation mod-

el. It should be pointed out that, different from blur kernel

and noise which vary in a general degradation model, down-

sampler is assumed to be fixed.

Blur Kernel

N
o

is
e

Figure 1. An illustration of different degradations for SISR. The

scale factor is 2. The general degradation models of Eqns. (1)

and (2) assume an HR image actually can degrade into many LR

images, whereas bicubic degradation model assumes an HR image

corresponds to a single LR image.

Though blur kernel and noise have been recognized as

key factors for the success of SISR and several method-

s have been proposed to consider those two factors, there

has been little effort towards simultaneously considering

blur kernel and noise in a single CNN framework. It is a

challenging task since the degradation space with respect

to blur kernel and noise is rather large (see Figure 1 as an

example). One relevant work is done by Zhang et al. [57];

nonetheless, their method is essentially a model-based op-

timization method and thus suffers from several drawbacks

as mentioned previously. In another related work, Riegler et

al. [38] exploited the blur kernel information into the SISR

model. Our method differs from [38] on two major aspect-

s. First, our method considers a more general degradation

model. Second, our method exploits a more effective way

to parameterize the degradation model.

3.2. A Perspective from MAP Framework

Though existing CNN-based SISR methods are not nec-

essarily derived under the traditional MAP framework, they

have the same goal. We revisit and analyze the general

MAP framework of SISR, aiming to find the intrinsic con-

nections between the MAP principle and the working mech-

anism of CNN. Consequently, more insights on CNN archi-

tecture design can be obtained.

Due to the ill-posed nature of SISR, regularization needs

to be imposed to constrain the solution. Mathematically,

the HR counterpart of an LR image y can be estimated by

solving the following MAP problem

x̂ = argmin x

1

2σ2
‖(x ⊗ k) ↓s −y‖2 + λΦ(x) (3)
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where 1

2σ2 ‖(x⊗k) ↓s −y‖2 is the data fidelity term, Φ(x) is

the regularization term (or prior term) and λ is the trade-off

parameter. Simply speaking, Eqn. (3) conveys two points:

(i) the estimated solution should not only accord with the

degradation process but also have the desired property of

clean HR images; (ii) x̂ is a function of LR image y, blur k-

ernel k, noise level σ, and trade-off parameter λ. Therefore,

the MAP solution of (non-blind) SISR can be formulated as

x̂ = F(y, k, σ, λ; Θ) (4)

where Θ denotes the parameters of the MAP inference.

By treating CNN as a discriminative learning solution to

Eqn. (4), we can have the following insights.

• Because the data fidelity term corresponds to the degra-

dation process, accurate modeling of the degradation plays

a key role for the success of SISR. However, existing CNN-

based SISR methods with bicubic degradation actually aim

to solve the following problem

x̂ = argmin x‖x ↓s −y‖2 +Φ(x). (5)

Inevitably, their practicability is very limited.

• To design a more practical SISR model, it is preferable to

learn a mapping function like Eqn. (4), which covers more

extensive degradations. It should be stressed that, since λ

can be absorbed into σ, Eqn. (4) can be reformulated as

x̂ = F(y, k, σ; Θ). (6)

• Considering that the MAP framework (Eqn. (3)) can per-

form generic image super-resolution with the same image

prior, it is intuitive to jointly perform denoising and SIS-

R in a unified CNN framework. Moreover, the work [56]

indicates that the parameters of the MAP inference main-

ly model the prior; therefore, CNN has the capacity to deal

with multiple degradations via a single model.

From the viewpoint of MAP framework, one can see

that the goal of SISR is to learn a mapping function x̂ =
F(y, k, σ; Θ) rather than x̂ = F(y; Θ). However, it is not

an easy task to directly model x̂ = F(y, k, σ; Θ) via CNN.

The reason lies in the fact that the three inputs y, k and σ

have different dimensions. In the next subsection, we will

propose a simple dimensionality stretching strategy to re-

solve this problem.

3.3. Dimensionality Stretching

The proposed dimensionality stretching strategy is

schematically illustrated in Figure 2. Suppose the inputs

consist of a blur kernel of size p×p, a noise level σ and an

LR image of size W ×H×C, where C denotes the number

of channels. The blur kernel is first vectorized into a vector

���
��� StretchingVectorization

Blur Kernel

PCA

Noise Level
t+1

Degradation Maps

W

H

Figure 2. Schematic illustration of the dimensionality stretching

strategy. For an LR image of size W ×H , the vectorized blur ker-

nel is first projected onto a space of dimension t and then stretched

into a tensor M of size W ×H × (t+ 1) with the noise level.

of size p2 × 1 and then projected onto t-dimensional lin-

ear space by the PCA (Principal Component Analysis) tech-

nique. After that, the concatenated low dimensional vector

and the noise level, denoted by v, are stretched into degra-

dation maps M of size W × H × (t + 1), where all the

elements of i-th map are vi. By doing so, the degradation

maps then can be concatenated with the LR image, mak-

ing CNN possible to handle the three inputs. Such a simple

strategy can be easily exploited to deal with spatially vari-

ant degradations by considering the fact that the degradation

maps can be non-uniform.

3.4. Proposed Network

The proposed super-resolution network for multiple

degradations, denoted by SRMD, is illustrated in Figure 3.

As one can see, the distinctive feature of SRMD is that

it takes the concatenated LR image and degradation maps

as input. To show the effectiveness of the dimensionality

stretching strategy, we resort to plain CNN without com-

plex architectural engineering. Typically, to super-resolve

an LR image with a scale factor of s, SRMD first takes

the concatenated LR image and degradation maps of size

W × H × (C + t + 1) as input. Then, similar to [24], a

cascade of 3×3 convolutional layers are applied to perform

the non-linear mapping. Each layer is composed of three

types of operations, including Convolution (Conv), Recti-

fied Linear Units (ReLU) [26], and Batch Normalization

(BN) [20]. Specifically, “Conv + BN + ReLU” is adopt-

ed for each convolutional layer except the last convolutional

layer which consists of a single “Conv” operation. Finally, a

sub-pixel convolution layer [41] is followed by the last con-

volutional layer to convert multiple HR subimages of size

W ×H × s2C to a single HR image of size sW × sH ×C.

For all scale factors 2, 3 and 4, the number of convolu-

tional layers is set to 12, and the number of feature maps

in each layer is set to 128. We separately learn models for

each scale factor. In particular, we also learn the models for
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Figure 3. The architecture of the proposed convolutional super-resolution network. In contrast to other CNN-based SISR methods which

only take the LR image as input and lack scalability to handle other degradations, the proposed network takes the concatenated LR image

and degradation maps as input, thus allowing a single model to manipulate multiple and even spatially variant degradations.

noise-free degradation, namely SRMDNF, by removing the

connection of the noise level map in the first convolutional

filter and fine-tuning with new training data.

It is worth pointing out that neither residual learning nor

bicubicly interpolated LR image is used for the network de-

sign due to the following reasons. First, with a moderate

network depth and advanced CNN training and design such

as ReLU [26], BN [20] and Adam [25], it is easy to train

the network without the residual learning strategy. Second,

since the degradation involves noise, bicubicly interpolated

LR image would aggravate the complexity of noise which

in turn will increase the difficulty of training.

3.5. Why not Learn a Blind Model?

To enhance the practicability of CNN for SISR, it seems

the most straightforward way is to learn a blind model with

synthesized training data by different degradations. How-

ever, such blind model does not perform as well as expect-

ed. First, the performance deteriorates seriously when the

blur kernel model is complex, e.g., motion blur. This phe-

nomenon can be explained by the following example. Giv-

en an HR image, a blur kernel and corresponding LR image,

shifting the HR image to left by one pixel and shifting the

blur kernel to right by one pixel would result in the same LR

image. Thus, an LR image may correspond to different HR

images with pixel shift. This in turn would aggravate the

pixel-wise average problem [29], typically leading to over-

smoothed results. Second, the blind model without special-

ly designed architecture design has inferior generalization

ability and performs poorly in real applications.

In contrast, non-blind model for multiple degradations

suffers little from the pixel-wise average problem and has

better generalization ability. First, the degradation map-

s contain the warping information and thus can enable the

network to have spatial transformation capability. For clar-

ity, one can treat the degradation maps induced by blur k-

ernel and noise level as the output of a spatial transformer

as in [21]. Second, by anchoring the model with degrada-

tion maps, the non-blind model generalizes easily to unseen

degradations and has the ability to control the tradeoff be-

tween data fidelity term and regularization term.

4. Experiments

4.1. Training Data Synthesis and Network Training

Before synthesizing LR images according to Eqn. (1), it

is necessary to define the blur kernels and noise level range,

as well as providing a large-scale clean HR image set.

For the blur kernels, we follow the kernel model of

isotropic Gaussian with a fixed kernel width which has been

proved practically feasible in SISR applications. Specifi-

cally, the kernel width ranges are set to [0.2, 2], [0.2, 3] and

[0.2, 4] for scale factors 2, 3 and 4, respectively. We sample

the kernel width by a stride of 0.1. The kernel size is fixed

to 15×15. To further expand the degradation space, we also

consider a more general kernel assumption, i.e., anisotropic

Gaussian, which is characterized by a Gaussian probabil-

ity density function N (0,Σ) with zero mean and varying

covariance matrix Σ [38]. The space of such Gaussian k-

ernel is determined by rotation angle of the eigenvectors of

Σ and scaling of corresponding eigenvalues. We set the ro-

tation angle range to [0, π]. For the scaling of eigenvalues,

it is set from 0.5 to 6, 8 and 10 for scale factors 2, 3 and 4,

respectively.

Although we adopt the bicubic downsampler through-

out the paper, it is straightforward to train a model with di-

rect downsampler. Alternatively, we can also include the

degradations with direct downsampler by approximating it.

Specifically, given a blur kernel kd under direct downsam-

pler ↓d, we can find the corresponding blur kernel kb under

bicubic downsampler ↓b by solving the following problem

with a data-driven method

kb = argmin kb‖(x ⊗ kb) ↓
b

s
−(x ⊗ kd) ↓

d

s
‖2, ∀ x. (7)

In this paper, we also include such degradations for scale

factor 3.

Once the blur kernels are well-defined or learned, we

then uniformly sample substantial kernels and aggregate

them to learn the PCA projection matrix. By preserving

about 99.8% of the energy, the kernels are projected onto a

space of dimension 15 (i.e., t = 15). The visualization of

some typical blur kernels for scale factor 3 and some PCA

eigenvectors is shown in Figure 4.
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Figure 4. Visualization of six typical blur kernels (fist row) of

isotropic Gaussian (first two), anisotropic Gaussian (middle two)

and estimated ones for direct downsampler (last two) for scale fac-

tor 3 and PCA eigenvectors (second row) for the first six largest

eigenvalues.

For the noise level range, we set it as [0, 75]. Because the

proposed method operates on RGB channels rather than Y

channel in YCbCr color space, we collect a large-scale color

images for training, including 400 BSD [33] images, 800
training images from DIV2K dataset [1] and 4, 744 images

from WED dataset [31].

Then, given an HR image, we synthesize LR image by

blurring it with a blur kernel k and bicubicly downsampling

it with a scale factor s, followed by an addition of AWGN

with noise level σ. The LR patch size is set to 40×40 which

means the corresponding HR patch sizes for scale factors 2,

3, and 4 are 80×80, 120×120 and 160×160, respectively.

In the training phase, we randomly select a blur ker-

nel and a noise level to synthesize an LR image and crop

N = 128×3, 000 LR/HR patch pairs (along with the degra-

dation maps) for each epoch. We optimize the following

loss function using Adam [25]

L(Θ) =
1

2N

N∑

i=1

‖F(yi,Mi; Θ)− xi‖
2. (8)

The mini-batch size is set to 128. The learning rate start-

s from 10−3 and reduces to 10−4 when the training error

stops decreasing. When the training error keeps unchanged

in five sequential epochs, we merge the parameters of each

batch normalization into the adjacent convolution filters.

Then, a small learning rate of 10−5 is used for addition-

al 100 epochs to fine-tune the model. Since SRMDNF is

obtained by fine-tuning SRMD, its learning rate is fixed to

10−5 for 200 epochs.

We train the models in Matlab (R2015b) environment

with MatConvNet package [48] and an Nvidia Titan X Pas-

cal GPU. The training of a single SRMD model can be done

in about two days. The source code can be downloaded at

https://github.com/cszn/SRMD.

4.2. Experiments on Bicubic Degradation

As mentioned above, instead of handling the bicubic

degradation only, our aim is to learn a single network to

handle multiple degradations. However, in order to show

the advantage of the dimensionality stretching strategy, the

proposed method is also compared with other CNN-based

methods specifically designed for bicubic degradation.

Table 1 shows the PSNR and SSIM [50] results of state-

of-the-art CNN-based SISR methods on four widely-used

datasets. As one can see, SRMD achieves comparable

results with VDSR at small scale factor and outperform-

s VDSR at large scale factor. In particular, SRMDNF

achieves the best overall quantitative results. Using Ima-

geNet dataset [26] to train the specific model with bicubic

degradation, SRResNet performs slightly better than SR-

MDNF on scale factor 4. To further compare with other

methods such as VDSR, we also have trained a SRMD-

NF model (for scale factor 3) which operates on Y chan-

nel with 291 training images. The learned model achieves

33.97dB, 29.96dB, 28.95dB and 27.42dB on Set5, Set14,

BSD100 and Urban100, respectively. As a result, it can still

outperform other competing methods. The possible reason

lies in that the SRMDNF with multiple degradations shares

the same prior in the MAP framework which facilitates the

implicit prior learning and thus benefits to PSNR improve-

ment. This also can explain why VDSR with multiple scales

improves the performance.

For the GPU run time, SRMD spends 0.084, 0.042 and

0.027 seconds to reconstruct an HR image of size 1, 024 ×
1, 024 for scale factors 2, 3 and 4, respectively. As a com-

parison, the run time of VDSR is 0.174 second for all s-

cale factors. Figure 5 shows the visual results of different

methods. One can see that our proposed method yields very

competitive performance against other methods.

4.3. Experiments on General Degradations

In this subsection, we evaluate the performance of the

proposed method on general degradations. The degrada-

tion settings are given in Table 2. We only consider the

isotropic Gaussian blur kernel for an easy comparison. To

further show the scalability of the proposed method, anoth-

er widely-used degradation [11] which involves 7×7 Gaus-

sian kernel with width 1.6 and direct downsampler with s-

cale factor 3 is also included. We compare the proposed

method with VDSR, two model-based methods (i.e., NC-

SR [11] and IRCNN [57]), and a cascaded denoising-SISR

method (i.e., DnCNN [56]+SRMDNF).

The quantitative results of different methods with dif-

ferent degradations on Set5 are provided in Table 2, from

which we have observations and analyses as follows. First,

the performance of VDSR deteriorates seriously when the

assumed bicubic degradation deviates from the true one.

Second, SRMD produces much better results than NCSR

and IRCNN, and outperforms DnCNN+SRMDNF. In par-

ticular, the PSNR gain of SRMD over DnCNN+SRMDNF

increases with the kernel width which verifies the advantage

of joint denoising and super-resolution. Third, by setting

proper blur kernel, the proposed method delivers good per-
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Table 1. Average PSNR and SSIM results for bicubic degradation on datasets Set5 [3], Set14 [54], BSD100 [33] and Urban100 [19]. The

best two results are highlighted in red and blue colors, respectively.

Dataset
Scale Bicubic SRCNN [9] VDSR [24] SRResNet [29] DRRN [44] LapSRN [27] SRMD SRMDNF

Factor PSNR / SSIM

×2 33.64 / 0.929 36.62 / 0.953 37.56 / 0.959 – 37.66 / 0.959 37.52 / 0.959 37.53 / 0.959 37.79 / 0.960

Set5 ×3 30.39 / 0.868 32.74 / 0.908 33.67 / 0.922 – 33.93 / 0.923 33.82 / 0.922 33.86 / 0.923 34.12 / 0.925

×4 28.42 / 0.810 30.48 / 0.863 31.35 / 0.885 32.05 / 0.891 31.58 / 0.886 31.54 / 0.885 31.59 / 0.887 31.96 / 0.893

×2 30.22 / 0.868 32.42 / 0.906 33.02 / 0.913 – 33.19 / 0.913 33.08 / 0.913 33.12 / 0.914 33.32 / 0.915

Set14 ×3 27.53 / 0.774 29.27 / 0.821 29.77 / 0.832 – 29.94 / 0.834 29.89 / 0.834 29.84 / 0.833 30.04 / 0.837

×4 25.99 / 0.702 27.48 / 0.751 27.99 / 0.766 28.49 / 0.780 28.18 / 0.770 28.19 / 0.772 28.15 / 0.772 28.35 / 0.777

×2 29.55 / 0.843 31.34 / 0.887 31.89 / 0.896 – 32.01 / 0.897 31.80 / 0.895 31.90 / 0.896 32.05 / 0.898

BSD100 ×3 27.20 / 0.738 28.40 / 0.786 28.82 / 0.798 – 28.91 / 0.799 28.82 / 0.798 28.87 / 0.799 28.97 / 0.803

×4 25.96 / 0.667 26.90 / 0.710 27.28 / 0.726 27.58 / 0.735 27.35 / 0.726 27.32 / 0.727 27.34 / 0.728 27.49 / 0.734

×2 26.66 / 0.841 29.53 / 0.897 30.76 / 0.914 – 31.02 / 0.916 30.82 / 0.915 30.89 / 0.916 31.33 / 0.920

Urban100 ×3 24.46 / 0.737 26.25 / 0.801 27.13 / 0.828 – 27.38 / 0.833 27.07 / 0.828 27.27 / 0.833 27.57 / 0.840

×4 23.14 / 0.657 24.52 / 0.722 25.17 / 0.753 – 25.35 / 0.758 25.21 / 0.756 25.34 / 0.761 25.68 / 0.773

(a) SRCNN (23.78dB) (b) VDSR (24.20dB) (c) DRRN (25.11dB) (d) LapSR (24.47dB) (e) SRMD (25.09dB) (f)SRMDNF (25.74dB)

Figure 5. SISR performance comparison of different methods with scale factor 4 on image “Img 099” from Urban100.

Table 2. Average PSNR and SSIM results of different methods with different degradations on Set5. The best results are highlighted in red

color. The results highlighted in gray color indicate unfair comparison due to mismatched degradation assumption.

Degradation Settings VDSR [24] NCSR [11] IRCNN [57] DnCNN [56]+SRMDNF SRMD SRMDNF

Kernel Down- Noise
PSNR (×2/×3/×4)

Width sampler Level

0.2 Bicubic 0 37.56/33.67/31.35 – /23.82/– 37.43/33.39/31.02 – 37.53/33.86/31.59 37.79/34.12/31.96

0.2 Bicubic 15 26.02/25.40/24.70 – 32.60/30.08/28.35 32.47/30.07/28.31 32.76/30.43/28.79 –

0.2 Bicubic 50 16.02/15.72/15.46 – 28.20/26.25/24.95 28.20/26.27/24.93 28.51/26.48/25.18 –

1.3 Bicubic 0 30.57/30.24/29.72 – /21.81/– 36.01/33.33/31.01 – 37.04/33.77/31.56 37.45/34.16/31.99

1.3 Bicubic 15 24.82/24.70/24.30 – 29.96/28.68/27.71 27.68/28.78/27.71 30.98/29.43/28.21 –

1.3 Bicubic 50 15.89/15.68/15.43 – 26.69/25.20/24.42 24.35/25.19/24.39 27.43/25.82/24.77 –

2.6 Bicubic 0 26.37/26.31/26.28 – /21.46/– 32.07/31.09/30.06 – 33.24/32.59/31.20 34.12/33.02/31.77

2.6 Bicubic 15 23.09/23.07/22.98 – 26.44/25.67/24.36 – /21.33/23.85 28.48/27.55/26.82 –

2.6 Bicubic 50 15.58/15.43/15.23 – 22.98/22.16/21.43 – /19.03/21.15 25.85/24.75/23.98 –

1.6 Direct 0 – /30.54/ – – /33.02/ – – /33.38/ – – – /33.74/ – – /34.01/ –

(a) Ground-truth (b) VDSR (24.73dB) (c) NCSR (28.01dB) (d) IRCNN (29.32dB) (e) SRMD (29.79dB) (f) SRMDNF (30.34dB)

Figure 6. SISR performance comparison on image “Butterfly” from Set5. The degradation involves 7×7 Gaussian kernel with width 1.6

and direct downsampler with scale factor 3. Note that the comparison with VDSR is unfair because of degradation mismatch.

formance in handling the degradation with direct downsam-

pler. The visual comparison is given in Figure 6. One can

see that NCSR and IRCNN produce more visually pleasant

results than VDSR since their assumed degradation matches

the true one. However, they cannot recover edges as sharper

as SRMD and SRMDNF.

4.4. Experiments on Spatially Variant Degradation

To demonstrate the effectiveness of SRMD for spatially

variant degradation, we synthesize an LR images with spa-

tially variant blur kernels and noise levels. Figure 7 shows

the visual result of the proposed SRMD for the spatially
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Figure 7. An example of SRMD on dealing with spatially variant

degradation. (a) Noise level and Gaussian blur kernel width maps.

(b) Zoomed LR image. (c) Results of SRMD with scale factor 2.

(a) LR image (b) VDSR [24] (c) Waifu2x [49] (d) SRMD

Figure 8. SISR results on image “Cat” with scale factor 2.

variant degradations. One can see that the proposed SRMD

is effective in recovering the latent HR image. Note that the

blur kernel is assumed to be isotropic Gaussian.

4.5. Experiments on Real Images

Besides the above experiments on LR images synthet-

ically downsampled from HR images with known blur k-

ernels and corrupted by AWGN with known noise levels,

we also do experiments on real LR images to demonstrate

the effectiveness of the proposed SRMD. Since there are no

ground-truth HR images, we only provide the visual com-

parison.

As aforementioned, while we also use anisotropic Gaus-

sian kernels in training, it is generally feasible to use

isotropic Gaussian for most of the real LR images in test-

ing. To find the degradation parameters with good visual

quality, we use a grid search strategy rather than adopting

any blur kernel or noise level estimation methods. Specifi-

cally, the kernel width is uniformly sampled from 0.1 to 2.4

with a stride of 0.1, and the noise level is from 0 to 75 with

stride 5.

Figures 8 and 9 illustrate the SISR results on two real LR

images “Cat” and “Chip”, respectively. The VDSR [24] is

used as one of the representative CNN-based methods for

comparison. For image “Cat” which is corrupted by com-

pression artifacts, Waifu2x [49] is also used for compari-

son. For image “Chip” which contains repetitive structures,

a self-similarity based method SelfEx [19] is also included

for comparison.

It can be observed from the visual results that SRMD

can produce much more visually plausible HR images than

the competing methods. Specifically, one can see from Fig-

(a) LR image (b) VDSR [24]

(c) SelfEx [19] (d) SRMD

Figure 9. SISR results on real image “Chip” with scale factor 4.

ure 8 that the performance of VDSR is severely affected by

the compression artifacts. While Waifu2x can successfully

remove the compression artifacts, it fails to recover sharp

edges. In comparison, SRMD can not only remove the

unsatisfying artifacts but also produce sharp edges. From

Figure 9, we can see that VDSR and SelfEx both tend to

produce over-smoothed results, whereas SRMD can recov-

er sharp image with better intensity and gradient statistics

of clean images [35].

5. Conclusion

In this paper, we proposed an effective super-resolution

network with high scalability of handling multiple degra-

dations via a single model. Different from existing CNN-

based SISR methods, the proposed super-resolver takes

both LR image and its degradation maps as input. Specif-

ically, degradation maps are obtained by a simple dimen-

sionality stretching of the degradation parameters (i.e., blur

kernel and noise level). The results on synthetic LR im-

ages demonstrated that the proposed super-resolver can not

only produce state-of-the-art results on bicubic degradation

but also perform favorably on other degradations and even

spatially variant degradations. Moreover, the results on re-

al LR images showed that the proposed method can recon-

struct visually plausible HR images. In summary, the pro-

posed super-resolver offers a feasible solution toward prac-

tical CNN-based SISR applications.
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