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Abstract

This article introduces the research community to the

power of machine learning over traditional approaches

when analyzing longitudinal data. Although traditional

approaches work well with small to medium datasets,

machine learning models are more appropriate as the

available data becomes larger and more complex. Addi-

tionally, machine learning methods are ideal for ana-

lyzing longitudinal data because they do not make any

assumptions about the distribution of the dependent

and independent variables or the homogeneity of the

underlying population. They can also analyze cases

with partial information. In this article, we use the

Household, Income, and Labour Dynamics in Australia

(HILDA) survey to illustrate the benefits of machine

learning. Using a machine learning algorithm, we ana-

lyze the relationship between job-related variables and

neuroticism across 13 years of the HILDA survey. We

suggest that the results produced by machine learning

can be used to generate generalizable rules from the

data to augment our theoretical understanding of the

domain. With a technical guide, this article offers

critical information and best-practice recommendations

that can assist social science researchers in conducting

machine learning analysis with longitudinal data.

Received: 20 April 2022 Accepted: 17 September 2022

DOI: 10.1111/apps.12435

This is an open access article under the terms of the Creative Commons Attribution-NonCommercial License, which permits use,

distribution and reproduction in any medium, provided the original work is properly cited and is not used for commercial purposes.

© 2022 The Authors. Applied Psychology published by John Wiley & Sons Ltd on behalf of International Association of Applied

Psychology.

Applied Psychology. 2023;72:1339–1364. wileyonlinelibrary.com/journal/apps 1339

https://orcid.org/0000-0002-4585-5358
https://orcid.org/0000-0002-6249-2659
https://orcid.org/0000-0001-7681-5589
mailto:dr.zhou.jiang@gmail.com
http://creativecommons.org/licenses/by-nc/4.0/
http://wileyonlinelibrary.com/journal/apps
http://crossmark.crossref.org/dialog/?doi=10.1111%2Fapps.12435&domain=pdf&date_stamp=2022-10-05


KEYWORD S

Big Five personality, longitudinal data, machine learning,
neuroticism, Solomonoff induction, XGBoost

INTRODUCTION

Researchers typically use advanced regression-based methods to analyze longitudinal data, such
as cross-lagged models, latent growth models, and autoregressive models (Chan, 2004;
Kelloway & Francis, 2012; Liu et al., 2016). As these models are subsets of structural equation
models (Selig & Little, 2012), they inherit several assumptions about the nature of the data,
such as homoscedasticity, normal distribution, independence of observations, and lack of
multicollinearity. These assumptions are often not met in cross-sectional datasets, let alone lon-
gitudinal data (Erceg-Hurn & Mirosevich, 2008). Additionally, researchers may sample some-
what different populations at different time points in longitudinal data collection efforts. For
example, the Household, Income, and Labour Dynamics in Australia (HILDA) survey added
new households in every wave who might or might not be sampled from the same population
as the previous households in the dataset, thereby violating the homogeneity assumption of
regressions. If researchers run regression-based approaches when these assumptions are vio-
lated, they can no longer guarantee the Type I error rate, which is the foundation of null
hypothesis significance testing.

In addition, although longitudinal research designs are powerful because they allow
researchers to make causal statements, longitudinal datasets often have problematic features.
Many longitudinal studies insert or delete questions of interest in response to contemporary
understanding of the constructs under investigation or to capture current phenomena, such as
COVID-19. Furthermore, when participants are added as the study proceeds, participants rec-
ruited in subsequent waves were not represented in earlier waves. Similarly, participants drop
out across successive waves, which means that participants recruited in previous waves were
not represented in later ones. Thus, data are missing across periods, and they are not missing
sparsely and at random; instead, data are missing systematically and in substantial volume.
Researchers typically exclude cases with any missing data (e.g. see Wu et al., 2020). However,
individuals without missing data are virtually always guaranteed to be non-representative sub-
sets of the entire dataset. For example, in the HILDA survey, individuals without missing data
would have to participate in every wave conducted, which is highly unlikely. Suppose
researchers drop a substantial proportion of the observations due to missing values. In that case,
they cannot generalize from the sample to the population, which is a crucial requirement for
applied psychology research (Kitchenham & Pfleeger, 2002).

Given these issues, we argue that machine learning methods are ideal for analyzing longitudi-
nal data. Unlike regression-based methods, many machine learning methods, such as random
forest, gradient boosting, and deep learning, make no assumptions about the data. That is, these
methods can be used to analyze data even if the observations are non-independent
(e.g. individuals are clustered within households); the dependent variable is non-normally distrib-
uted; there is a high degree of multicollinearity among the predictor variables; the data come
from different subpopulations, or there is a large volume of systematically missing values. This
article demonstrates how industrial and organizational (IO) psychologists can use a flexible
machine learning method, extreme gradient boosting (XGBoost), to analyze longitudinal data.
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In addition to addressing common challenges encountered in longitudinal data analyses,
machine learning methods can also help extract maximum information from the data. For
example, researchers typically measure constructs using multiple intercorrelated items and then
average the items to form a scale; in doing so, we lose discrete information at the item level,
which may help explain the outcome variable above and beyond the scale average. For exam-
ple, an inspection of the correlation between individual items and the outcome variable often
identifies items with a stronger correlation than the scale average. In regression models, the
inclusion of multiple intercorrelated items as predictors would lead to multicollinearity and is
therefore problematic. However, machine learning models can easily handle multicollinearity,
so the researcher can choose to use item-level scores and quantify the total impact of all items
belonging to a single scale on the dependent variable. Thus, machine learning methods can
maximize predictive power by retaining individual items without sacrificing interpretability.
Researchers can compare the impact of all items belonging to different scales.

In addition, machine learning has implications for how we construe knowledge. The bulk of
management and organizational research relies on hypothetico-deductive reasoning (H-D)
supported by null-hypothesis-significance-testing (NHST). We argue that this well accepted
combination should be the default method for future research. However, it is based on two
assumptions. Firstly, the data meets the assumptions of NHST must be respected. Secondly,
most of the analysis in research starts with an assumption of linearity—that the relationship
between predictor and outcome is linear. If these two data assumptions cannot be met, then
researchers have an option to switch to approximate1 Solomonoff induction (Choudhury
et al., 2021; Shrestha et al., 2021; Solomonoff, 1967) or to Peirce's abduction (Peirce, 1903, as
cited in the Peirce Edition Project, 1998; Behfar & Okhuysen, 2018; Sheetal et al., 2020). Sol-
omonoff induction is similar to ordinary least squares (OLS) where a known set of variables are
already established based on past literature. Machine learning focuses on building a relation-
ship and learning the interaction between the variables. However, Solomonoff induction devi-
ates from OLS by learning any non-linearity that might exist.

The second choice to researchers is Peirce's abduction. In his seminal research, the 20th cen-
tury philosopher argued that “Abduction is the process of forming an explanatory hypothesis. It
is the only logical operation which introduces any new idea; for induction does nothing but
determine a value, and deduction merely evolves the necessary consequences of a pure hypoth-
esis” (Burks, 1946, p. 303). In an abductive process, a researcher does not know the set of pre-
dictors, and focuses more on predictive accuracy and generalization. If a strong predictive
accuracy is accomplished, the researcher then unravels the machine learning model for most
logical explanations. This most logical explanation can sometimes create a novel hypothesis.
The researcher needs to verify this hypothesis in a secondary controlled study. In this article,
we focus on Solomonoff induction based scientific reasoning with a known set of predictors.
However, abduction-based articles do also exist in literature (e.g. see Sheetal et al., 2020).

BACKGROUND ON MACHINE LEARNING

There has been an increasing interest in machine learning in the behavioral and organizational
sciences in recent years. However, most machine learning methods were developed decades
ago. For example, the random forest algorithm is over 20 years old (Breiman, 2001). Neural net-
works, which are responsible for numerous breakthroughs in recent years, were created over
60 years ago (Rosenblatt, 1958). The potential value of these algorithms can now be realized
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because the computational power of commercially available hardware has just matched the
demands of machine learning algorithms (Rosett & Hagerty, 2021). In the absence of affordable
computational power, machine learning remained impractical for social science researchers.
Hence, when researchers consider which machine learning method to use, they need to con-
sider the computational power at their disposal. In terms of hardware, performing machine
learning analyses on graphics card processing units (GPU) can be as much as 200 times faster
than performing the same analyses on the computer's central processing unit (CPU) (Shi
et al., 2016).

Such characteristics indicate some important differences between machine learning and
traditional statistical analyses. Table 1 summarizes some of the attributes that differentiate
these two methods. This comparison applies to any analytical problem, whether longitudinal or
cross-sectional. The key difference is that traditional analyses are ideally suited to test pre-
specified hypotheses and assess whether a linear relationship exists between individual predic-
tors and the outcome. In contrast, machine learning is ideally suited to accurately predicting
the outcome and engaging in abductive reasoning, identifying new patterns in the data that can
be subsequently verified and help move the field forward. Since traditional methods are still
largely the default in the social sciences such as management and applied psychology,
researchers may continue to use conventional statistical analyses. However, as illustrated in this
article, machine learning is a powerful tool to help us explore, understand, and interpret
datasets as well as make more reliable predictions. While it may be challenging to take
researchers away from the ‘default’ conventional statistical approaches, the advantages of
machine learning methods should be at least equally valued and endorsed. Similar to traditional
statistical methods, some machine learning methods do make assumptions about the data (see
Table 2). However, commonly used methods such as gradient boosting, random forest, and
neural networks do not make any assumptions about the data distribution.

Although many traditional statistical methods can be run using a single function call,
machine learning models require programming skills. However, most machine learning soft-
ware and codes are in the open-source domain. Researchers can freely copy and edit codes that
others have written and posted online (e.g. Github and StackOverflow). As most codes have
often gone through multiple rounds of review before and after they are posted online, reusing
peer-reviewed codes can reduce coding errors by as much as 50% (Cusumano, 1989). Numerous
reference books provide guidelines for designing machine learning models and provide code
snippets (Gareth et al., 2013; Goodfellow et al., 2016; Kuhn & Johnson, 2013; Kuhn &
Johnson, 2019; Molnar, 2020). Hence, researchers do not need to write the entire program from
scratch. This article presents the machine learning model development process suggested by
Kuhn and Johnson (2013) for the specific use case of analyzing longitudinal data in the behav-
ioral sciences. In addition, we explain any deviations from procedures suggested by Kuhn and
Johnson (2013). This article cannot answer each problem encountered in longitudinal data
analysis; however, it provides a guide to ask the right questions at each step of the machine
learning modeling process.

Significant groundwork has already been completed to simplify machine learning develop-
ment for non-computer science researchers, such as hiding away complicated matrix multipli-
cations performed on graphics cards. Even “cross-validation,” a key component of machine
learning models (Hay, 1950; Refaeilzadeh et al., 2016), now appears as an optional parameter in
many machine learning function calls. This is made possible via a programming style called
object-oriented programming, in which the software exists in layers (Stroustrup, 1988). The
lowest layer manages the matrix multiplications in graphics cards. The topmost layer presents a
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simplified function call with inputs such as the dependent and independent variables. It hides
away the other complex details from the researcher. These “machine learning frameworks” can
now be readily used by researchers with minimal experience with machine learning. Popular
frameworks include “caret” (Kuhn & Johnson, 2013), “mlr” (Bischl et al., 2016), and

TABLE 1 Comparison of attributes between traditional statistical and machine learning based analyses

Attribute Traditional statistics Machine learning

Most common usage Assessing whether relationships
can be generalized from the
sample to the population

Accurately predicting or
classifying future observations

Main goal Testing whether pre-specified
relationships exist in the data

Identifying patterns in the
data without pre-conception

Ideally suited for Deductive hypothesis testing Abductive hypothesis generation
(see Peirce, 1903, as cited in the
Peirce Edition Project, 1998, and
examples in Sheetal et al., 2020)

Shape of relationships
between variables

Fits data onto predefined shapes
specified in the statistical model

Learn the true shape of the
relationship between variables

Mathematical proofs The regression line is proven to
be the best linear fit

The results are suggestive and
cannot be proven to be optimal
(Reyzin, 2019)

How to trust the analysis Standard robustness tests Test model on unseen (i.e. new)
data. Test the generalizability
via secondary analysis

Communicating the
results to target
audience

Standard equations, beta values Shapley values (e.g. see Mokhtari
et al., 2019)

Researcher skills needed Training in statistics Training in data science and
programming

Researcher's experience
needed

Experience in statistical models Experience in analyzing
diverse datasets

Computational power
needed

Generally most modern laptops
can do the analysis

Requires high-end computing
environment

Model reuse Need to build different models
for each objective

One algorithm can be reused
for different objectives

Number of predictors Limited by multicollinearity.
Adding
more predictors to the model might
break the model

Limited by computational power.
Adding more predictors does
not break model

Number of observations Limited by availability; needing
to adjust alpha based on number of
observations (Maier & Lakens, 2022)

Limited by availability and
computational power; more
data is generally better

General pattern of results Low predictability, high
explainability (London, 2019)

High predictability, low explainability.
Even though advances are continually
happening to explain ML
models, explainability is limited
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“tidymodels” (Kuhn & Wickham, 2020). The python-based “scikit learn” is the most versatile
framework and is popular among experienced programmers who seek fine-grained control over
various machine learning tools. We use the “caret” framework in this article because of its ease
of use.

Currently, the caret package is the most commonly used machine learning framework
(Kuhn & Johnson, 2013). To date, there are 238 standard models or algorithms supported by
caret (Kuhn, 2019), including those listed in Table 3. Researchers can switch between different
models by passing the parameter method = “lasso” or method = “rf” to the caret function.
However, different models have very different run times. Some models, such as random forest
and LASSO, only run on the CPU. Otherwise, algorithms such as XGBoost and deep learning
can run either on the CPU or the GPU. The computing time for XGBoost and deep learning is
generally much shorter because they can run in parallel on the GPU (Cai et al., 2014).

Unlike regression-based methods with closed-form solutions, all machine learning algo-
rithms only provide approximate solutions (Reyzin, 2019). Thus, it is impossible to prove
whether a given machine learning model can solve a problem, whether a specific algorithm is
superior to another, or whether a particular solution is optimal. As it is always possible that the
researchers constructed a suboptimal model, the machine learning model developed needs to
be compared against a baseline. We cannot use standard regressions as a baseline because the
assumptions for ordinary least squares (OLS) regression are typically not met. However,
researchers can use Bayesian models (i.e. a Naive Bayes model for a binary dependent variable
and a Bayesian regression for a continuous dependent variable), which merely assume the inde-
pendence of predictors (Jaya et al., 2019). As Bayesian regressions do not model interactions
between predictors, machine learning models that can learn interaction patterns should be

TABLE 2 Assumptions made by various analytical methods

Assumption about the data Reference

Linear
regression

Homoskedasticity, lack of multi-collinearity,
and independently, identically, and normally
distributed errors

Ezekiel (1925)

Logistic
regression

Homoskedasticity, lack of multi-collinearity,
no outliers, linear relationships in the logit metric

Stoltzfus (2011)

K-nearest
neighbor

Independence of observations; similar observations
are closer to each other in a measurable distance space

Mack and
Rosenblatt (1979)

Support vector
machines

Clear boundaries between groups, relatively small datasets Tong et al. (2009)

Decision trees Continuous variables can be discretized into
meaningful buckets

Brodley and
Utgoff (1995)

Naive Bayes Independence of predictors Lewis (1998)

LASSO Sparsity (only a few predictors are relevant), irrelevant and
relevant predictors are uncorrelated

Tibshirani (1996)

Random forest No missing data, requires hyperparameter search Breiman (2001)

Neural
networks

No missing data, requires hyperparameter search LeCun et al. (2015)

Gradient
boosting

No formal assumptions, requires hyperparameter search Friedman (2002)

1344 SHEETAL ET AL.
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superior (Jiang et al., 2008; Lewis, 1998). Bayesian regressions are not practical for very large
datasets. However, researchers can compress large datasets using techniques such as SMOTE
(Chawla et al., 2002). Organizational researchers have compared multiple machine learning
models against each other to demonstrate “inter-model agreement” (Sajjadiani et al., 2019,
p. 9). However, all the machine learning models may agree on a poor solution. Hence, a non-
machine learning baseline model is essential.

Regression-based methods rely on null hypothesis significance testing, which provides
p-values. In contrast, machine learning methods are rooted in Bayesian statistics. The
parameter to be estimated is a random variable. Hence, the results of Bayesian analyses are in
the form of whether X is more likely than Y or vice-versa.

In Table 3, we summarize some methodological and empirical literature in management
that uses machine learning. Since this paper is more oriented to provide a technical tutorial that
guides researchers in implementing machine learning, we are not going to elaborate on this line
of literature in detail. We recommended that interested readers refer to these articles to gain
more insights when needed.

DEMONSTRATION AND CASE ILLUSTRATION

This section demonstrates how to use machine learning to augment traditional analyses. In this
demonstration, we have used the case of a longitudinal problem. We have attempted to encap-
sulate the longitudinal problem-specific steps in the data manipulation subsection and the bulk
of the machine learning-specific steps in their subsection. Machine learning nearly always

TABLE 3 Past empirical or methodological literature using machine learning

Article What this article is about

Simester et al. (2020) Demonstrates that machine learning performs better
with non-ideal, noisy, real-world datasets.

Grushka-Cockayne et al. (2017) Demonstrates that machine learning is prone to
overfitting and steps to reduce overfitting. These steps are
part of this study.

Chari et al. (2008) Not on a management topic. This is a research note
alerting researchers on the problem of multicollinearity
in statistical analysis and some tools to detect them.

Metcalf et al. (2019) Research on “human-in-the-loop”. This is the most
cutting-edge research that showcases how machine
learning can tap on to the expert knowledge of a few
senior managers and augment its internal knowledge.

Kitchin and McArdle (2016), Tonidandel
et al. (2018), and Wenzel and Van
Quaquebeke (2018)

Summarize the definition of big-data and highlight how
literature is sometimes misappropriating the phrase
big-data.

L'Heureux et al. (2017) A basic science article that demonstrates challenges in
big-data analysis in great detail and builds a framework
for any researcher interested in actual big-data research.

Kuhn and Johnson (2013) One of the most authoritative methodological textbooks
in machine learning.

MACHINE LEARNING AND LONGITUDINAL DATA 1345
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requires custom software. However, with this partitioned approach, researchers can reduce the
complexity of the overall machine learning software development and reuse portions of the
steps for multiple projects.

Data

We use the HILDA dataset as an illustration (Wooden et al., 2002). HILDA is an annual house-
hold panel survey in Australia that started in 2001 and continues to date. HILDA sought to
sample the same households across successive waves, and therefore, this database contains a
large amount of demographic, sociological, and economic information about each household.
However, some households dropped out, and new households were enrolled over the years. IO
psychologists recently used HILDA to identify the effect of chronic job insecurity on employees'
Big Five personality traits (Wu et al., 2020), but the personality data were collected at three
time-points only: 2005, 2009, and 2013.

Our illustration uses 13 years of data from 2001 until 2013. Table 4 provides the total num-
ber of participants in each survey year and the number of items per year included in the analy-
sis. Figure 1 indicates the number of waves that each participant was observed.

Overall, 19,664 individuals had non-missing values across the Big Five items in at least one
of the three years. Of these, at least one item from all Big Five scales was recorded for 7289 indi-
viduals in all three years, for 3687 in two of the three years, and 8688 in only one year, leading
to 37,929 observations. In contrast, Wu et al. (2020) focused only on 1046 cases that completed
the personality measures in all three years; they only included participants who had complete
responses to all the variables in their research model, provided complete gender and age demo-
graphic data, and were employees across all three waves. This means that a majority of the
potentially usable data was dropped. Unlike regressions, several machine learning algorithms,

TABLE 4 Descriptive information about the HILDA survey

Year Number of participants Number of survey items

2001 19,914 3400

2002 18,295 4488

2003 17,690 4479

2004 17,209 4277

2005† 17,467 4712

2006 17,453 4977

2007 17,280 4894

2008 17,144 5017

2009† 17,632 5110

2010 17,855 5377

2011 23,415 5572

2012 23,182 5429

2013a 23,299 5354

aBig Five data were collected.

1346 SHEETAL ET AL.
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including XGBoost, can handle responses with missing values, allowing us to retain the maxi-
mum number of participants possible.

Unlike Wu et al. (2020), we do not restrict the data to active employees; instead, we retained
those who were employed full-time (employment status = 1), employed part-time (employment
status = 2), unemployed but looking for a full-time position (employment status = 3) and
unemployed but looking for a part-time position (employment status = 4). We did so because
we believe the job-related variables are relevant to all these participants.

HILDA administered 28 personality items to measure the Big-Five personality traits; we
computed scale scores by taking the mean of the relevant items used to measure each of the five
personality traits (alpha = .74–.80). As potential predictors, we included a total of 26 variables:
gender, age, employment status (four categorical response options), job satisfaction (one item),
job insecurity (four items), job stress (two items), job control (six items), job repetitiveness (two
items), job complexity (three items), job initiative (one item), time demand (three items), and
perceptions of fair pay (one item). In addition, we one-hot coded employment status. One-hot
coding is similar to dummy coding, except one-hot coding creates an indicator variable for all
response options. In contrast, dummy coding does not create indicator variables for the refer-
ence category. Consistent with our earlier argument, other than the dependent variable, we
retained individual items as predictors rather than averaging items to form scales. Finally, we
excluded cases if all independent variables were missing; a dependent variable cannot be
predicted without an independent variable. This procedure resulted in a sample of 35,852 cases
(observations) across 19,013 individuals.

Note that our goal is not to replicate the analysis of Wu et al. (2020) using machine learning;
we use Wu et al. (2020) as an inspiration to demonstrate how machine learning methods can be
used to analyze longitudinal data. Whereas Wu et al. (2020) focused on changes in personality
traits using latent growth modeling based on four job-related variables in a small subset of the
overall sample, we test whether there is a relationship between individuals' past job variables
and their current personality by drawing from the largest usable sample. For illustration, we
focus on neuroticism only because Wu et al. (2020) found the strongest effects on neuroticism;
however, analogous models can be used to analyze the other four personality traits in the
same way.

FIGURE 1 Number of years unique individual represented in the HILDA dataset [Color figure can be

viewed at wileyonlinelibrary.com]
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Exploratory data analysis

In this section, we assess whether the dataset we constructed above meets the assumptions of
regression-based methods. For example, we assess whether the dependent variables are nor-
mally distributed, the presence of multicollinearity, homoscedasticity, and whether the data are
drawn from a single homogeneous sample. In essence, we conducted exploratory data analysis
(Behrens, 1997) following the procedure Wickham and Grolemund (2016) outlined.

Figure 2 shows the distribution of Big Five personality traits in the sample. We find that the
distribution of neuroticism is right-skewed, such that most people rate low on neuroticism and
very few people rate high on neuroticism. An Anderson-Darling test of normality confirmed
that the distribution is indeed non-normal, A = 149.27, p < 2.2E�16. Thus, a key assumption
of regression-based models is violated.

Next, we assess whether two other assumptions of regression-based models are met: lack of
multicollinearity and homoscedasticity. In the presence of multicollinearity, “the variances of
the estimates may be so large as to cast into doubt all our results” (Rockwell, 1975, p. 309). We
used the mctest package in R (Imdadullah et al., 2016), which performs six tests for
multicollinearity; the results are reported in Table 5. Five of the six tests indicated
multicollinearity in the data, which means that regression-based models are inappropriate.
Homoscedasticity assumes that the residual error term is randomly distributed with reference
to the independent variables. Heteroscedasticity artificially lowers the p-values, thereby increas-
ing Type I error (Astivia & Zumbo, 2019). We used the Breush–Pagan test to detect
heteroscedasticity using the lmtest package in R (Hothorn et al., 2015), which indicated that the
homoscedasticity assumption had been violated, BP = 347.48, df = 302, p = 0.037. Given the
violation of two key assumptions, we cannot use regression-based methods to analyze the
HILDA dataset.

Next, we tested whether the data are drawn from a single, homogeneous population by
examining the proportion of observations that are outliers in an N-dimensional space spanning
all the variables. Typically, IO psychologists assess outliers on just the dependent variable; how-
ever, it is advisable to confirm whether there are outliers on predictor variables to identify
whether participants are drawn from a single homogeneous population. This is particularly a

FIGURE 2 Histogram of the Big Five personality traits in the HILDA dataset [Color figure can be viewed at

wileyonlinelibrary.com]
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concern in longitudinal datasets because the underlying population might qualitatively change
over time, or external shocks might cause a permanent shift in the underlying psychological
relationships (Tsay et al., 2000). To identify multivariate outliers, we use the performance pack-
age in R (Lüdecke et al., 2021), which simultaneously implements eight outlier detection algo-
rithms: (1) z-scores (Iglewicz & Hoaglin, 1993), (2) interquartile range Mahalanobis distance
(Cabana et al., 2021), (3) robust Mahalanobis distance (Gnanadesikan & Kettenring, 1972),
(4) minimum covariance determinant (Leys et al., 2018); (5) invariant coordinate selection
(Archimbaud et al., 2018), (6) ordering points to identify the clustering structure (Ankerst
et al., 1999), (7) isolation forest, (Liu et al., 2008), and (8) local outlier factor (Breunig
et al., 2000). Overall, 16,312 participants, or about 45% of the sample, were classified as outliers
by a majority of these algorithms, which means that there is substantial heterogeneity in the
data. In such cases, according to Vicari and Vichi (2013), hierarchical models must be used.
Given that we do not know the relevant hierarchical structures in this case, using regression-
based models would be inappropriate. However, many machine learning models make no
assumptions about normal distribution, multicollinearity, or homoscedasticity; they also auto-
matically try to learn the patterns across different subpopulations and can thus handle
heterogeneous data.

Additionally, as we mentioned earlier, regression-based approaches have clear drawbacks
when it comes to missing values, such as deleting any observation (e.g. a participant) that has
even a single missing value. Although multiple imputation methods may be used to replace
data missing at random, the reality is that data are rarely missing randomly in longitudinal
datasets. For example, 96.60% of the HILDA observations had at least one missing value in our
data frame. Not surprisingly, although 7289 HILDA respondents completed personality trait
measures in all three years, Wu et al. (2020) only used 1046 valid samples. It is unlikely that
these 1046 respondents are representative samples of the 19,664 respondents who completed at
least one personality measure. Thus, dropping observations with missing values compromises
generalizability. We used the MissMech package in R (Jamshidian et al., 2014) to test the
hypothesis that the data are missing completely at random in our HILDA data frame, which
was rejected. When data are not missing at random, excluding observations with missing values
“may produce significant distortion in estimating” outcomes (Frankel et al., 2012, p. 1). We
may observe different results when systematically missing values when analyzing the full
dataset versus a small subset without any missing values. The machine learning algorithm that
we used, XGBoost, analyzes all observations, including observations with partial data, thereby
ensuring that the results can be generalized to the overall population.

TABLE 5 Multicollinearity diagnostic statistics

MC results Detection

Determinant jX'Xj 0.0000 1

Farrar chi-square 378045.7288 1

Red Indicator 0.1966 0

Sum of lambda inverse 3097.5969 1

Theil's method 94.7925 1

Condition number 1416.7249 1

Note: 1 indicates that collinearity is detected by the test; 0 otherwise.

MACHINE LEARNING AND LONGITUDINAL DATA 1349
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To summarize, in this section, we have showed that our sample violated multiple assump-
tions that need to be met before we can use regression-based models and that the sample has
values missing not at random. Fortunately, the machine learning method we use does not make
any of these assumptions that apply to regression-based approaches and can learn the underly-
ing patterns in the data even when data are not missing randomly.

Following the exploratory data analysis, we proceed to build machine learning models.
Figure 3 provides a flowchart illustrating our methodological procedure of machine learning
analysis. Annotated code for the model can be found in Appendix S1.

Method

To choose a machine learning model, we refer to Table 2. Many of the assumptions listed in the
table are likely violated in the HILDA dataset. Therefore, we narrowed our choice to the three
assumption-free models. As HILDA has a large proportion of missing values, we are left with
gradient boosting, which can handle missing values (e.g. Sheetal & Savani, 2021). We used the
XGBoost implementation of gradient boosting (Chen & Guestrin, 2016), which constructs
boosted decision trees around the missing values and does not require missing values to be
imputed. XGBoost can also utilize video graphics cards and thus completes the computations in
significantly less time than other implementations of gradient boosting. XGBoost is currently
the method of choice in most machine learning competitions (Nielsen, 2016).

The project was performed on an 18-core (36-thread) Intel(R) Xeon(R) W-2195 2.30 GHz
CPU with 128 GB RAM and an Nvidia RTX 3090 graphics card. This graphics card has 10,496
cores, which allows for parallel operations. The graphics card interfaced with the machine
learning software using NVidia's Cuda 11.0 drivers and libraries. We used a version of XGBoost
implemented to run on the graphics card (GPU). The standard installation of XGBoost performs
the matrix multiplications on the CPU by default. As we wished to perform the matrix multipli-
cations on the GPU instead, we custom-installed the source code and linked it with the graphics
card (see XGBoost Developers, 2022).

Machine learning models built explicitly for time-series analyses seek to predict a single var-
iable by analyzing its history (e.g. stock prices and other economic variables for which there is
data for many periods) (Ahmed et al., 2010). However, there are only a few data points in most
applied psychology longitudinal studies. Moreover, researchers are not typically interested in
predicting the value of the dependent variable in the next period but in modeling the relation-
ship between predictors and the dependent variable over time. Thus, instead of using a particu-
lar machine learning model built explicitly for time series data (e.g. recurrent neural networks),
we use a generic algorithm and manually model the concept of time.

Using the HILDA data, we constructed a data frame with all participant-year combinations
with non-missing values for all Big Five personality traits and at least one non-missing predictor
variable, which resulted in a total of 35,852 rows. This restructuring process allows us to treat
each value of the dependent variable as an independent outcome that is not autocorrelated with
the prior period's dependent variable from the same participant. HILDA started in 2001 and
personality was measured for some participants in 2013. As we had prior data for the same indi-
vidual for a maximum of 12 years, we included 13 sets of columns representing the current year
and 12 prior years. As HILDA did not have any data prior to 2001, all columns referring to vari-
ables prior to 2001 were blank; however, we needed to include these in the data frame for con-
sistency. This meant that for dependent variables measured in 2005/2009/2013, we had 4/8/12
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FIGURE 3 A flowchart illustrating the process of the machine learning analysis [Color figure can be viewed

at wileyonlinelibrary.com]
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prior years of independent variables with non-missing values, respectively; the columns rep-
resenting the remaining 8/4/0 years, respectively, contained only missing values. For each of
the 13 years in the data frame, we created 26 variables to represent the 26 predictor variables
(i.e. all job-related items included in HILDA), which yielded 338 columns. We then deleted all
blank or constant columns, which yielded a final set of 302 columns. The goal of the model was
to learn to predict individuals' neuroticism in a given year based on the individual's job-related
variables in the prior 12 years (whenever available).

As machine learning models tend to overfit the data they are exposed to, researchers typi-
cally undertake cross-validation; that is, the model is trained (or developed) on one sample (typ-
ically 80% or 90% of all the data) and tested on the other sample (the remaining 20% or 10%),
and then these two samples are reshuffled. This reshuffling is needed because the model tries to
improve its predictions across successive iterations. This process continues until the model has
reached an asymptote in terms of accuracy in the validation data. However, suppose the model
used the same training and validation data split across all iterations. In that case, the patterns it
picks up might be specific to this training data and this validation data. To avoid this problem,
the training-validation split is reshuffled after every iteration. Nevertheless, cross-validation can
still overfit the data because the model has been exposed to the entire dataset across several iter-
ations (Ng, 1997). Therefore, machine learning models should be tested on out-of-sample, out-
of-bag, or unseen data, that is, data not previously used for training or validating the model at
any stage (Kuhn & Johnson, 2013, Chapter 4) (see also Montgomery & Drake, 1991). We set
aside a randomly selected 10% of the individuals as the unseen data; the remaining 90% of the
individuals were designated as the training data on which the model was built. Figure 4 illus-
trates the various data partitions.

We earlier said that the performance of our XGBoost model should be compared against
that of a Bayesian regression; however, Bayesian regressions cannot work with missing data.
We first imputed the training data using a multiple-imputation method based on the random
forest algorithm, using the package in R (Mayer, 2019). After we imputed the training data, we
appended the unseen data to the imputed trained data and imputed missing values in the
unseen data. This way, no information leaked from the unseen data to the training data. Just

FIGURE 4 Illustration of how the data is partitioned for the machine learning analysis (Scikit-learning

developers, 2022) [Color figure can be viewed at wileyonlinelibrary.com]
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the information about the distribution of the predictors passed from the training data to the
unseen data. To create the baseline model, we used the Bayesian regression package in R (Stan
Development Team, 2018). We ran 3000 iterations on six chains to predict neuroticism using all
predictor variables in the prior 12 years; this analysis was performed on the 90% seen data.
Once the Bayesian simulation was complete, we tested it on the unseen data.

To ensure comparability with the Bayesian regression, we built the XGBoost model on the
imputed HILDA training data (although XGBoost could also be built on the unimputed data).
Researchers need to tune a number of XGBoost parameters for it to minimize the mean square
error (MSE). We focused on five parameters, which resulted in a five-dimensional search space.
We set the range for each parameter based on experience with similar datasets because it is
computationally expensive to exhaustively test every combination of these five parameter
values. We used the parameter search package (Bischl et al., 2017), which sought to optimize
this search procedure. Table 6 provides the pre-set range of all parameters and the final parame-
ter values.

Each parameter combination was tested using 10-fold cross-validation repeated five times.
In other words, the model split the training data into 10 random subsets. Then, using the set of
parameters provided, it built a model in nine subsets and used the 10th subset to validate the
model. This loop was repeated 10 times such that each subset was used once as the validation
data. The 10 subsets were then reshuffled, and this whole process was repeated five times. The
average MSE from this procedure indexed the accuracy of that particular parameter
combination.

Once the hyperparameter search process was completed, the XGBoost model was frozen.
We then fed the imputed unseen data to the trained Bayesian regression and the final XGBoost
models. Next, we removed the dependent variable, neuroticism, and asked the two models to
predict neuroticism in the unseen data. We then compared the correlation between the actual
neuroticism score and each model's predicted neuroticism score.

Once a machine learning model is built, the next step is to query the model to understand
why the model is making the predictions that it is making. We used the package DALEX
(Biecek, 2018) to identify which predictor variables have the biggest total effect on the depen-
dent variable. DALEX randomly permutes each predictor (or group of predictors) one at a time
and assesses its impact on the model's MSE. Based on Bayesian statistics, DALEX does not indi-
cate whether individual predictors are statistically significant; however, DALEX rank orders
predictors in terms of their importance and provides confidence intervals. For scales with more
than one item, we used the grouped feature importance function from DALEX, which simulta-
neously shuffles the values of all items belonging to the scale. We conducted this analysis on
three different versions of the seen dataset—(1) the imputed seen dataset on which the model

TABLE 6 Hyperparameters used in XGBoost and their final chosen value

Parameter Type Minimum Maximum Final chosen

max_depth Integer 3 23 16

eta Numeric 0.000001 0.999999 0.0427

min_child_weight Numeric 0.0 2.0 1.8297

gamma Numeric 0.0 20.0 0.00012

nrounds Integer 500 2000 1882
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was built (32,253 observations), (2) a version of the seen dataset with only complete observa-
tions (so no imputation was needed; 1149 observations), (3) and the unimputed seen data with
missing values (i.e. the untouched dataset, 32,253 observations). We did so to assess how alter-
ing the dataset can change the contribution of the predictor variables. Of the three datasets, the
final version is unaltered—we retained as many of the observations as possible and did not
impute any missing values.

Results

The Bayesian regression on the seen data took 8 h to run on the CPU. We then presented the
model with the imputed unseen data. Finally, we asked it to predict individuals' neuroticism
based on all the independent variables. The Bayesian regression outputs three numbers for each
observation—the median estimate of the dependent variables and the upper and lower bound
of the 95% confidence interval. The correlation between the actual neuroticism and the median
predicted neuroticism was r = .56 (see Figure 5).

The XGBoost model on the seen data took 36 hours to run on the GPU. We then presented
the model with the imputed unseen data and asked it to predict individuals' neuroticism. The
XGBoost model made a single best prediction for each observation. The correlation between the
actual neuroticism and the predicted neuroticism was r = .75 (see Figure 6). Thus, the XGBoost
model could predict people's neuroticism with very high accuracy based on job-related variables
and substantially exceeds the accuracy of the baseline Bayesian regression.

Next, we assessed the relative contribution of the predictor variables to the XGBoost model's
prediction in three different versions of the seen dataset. The length of each bar indicates the

FIGURE 5 Correlation between the actual neuroticism and the predicted neuroticism per the Bayesian

regression in the unseen data [Color figure can be viewed at wileyonlinelibrary.com]
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change in MSE when each variable (or group of variables for multi-item scales) is shuffled one
at a time. The error bars indicate the range of the MSE across different iterations. Note that the
error bars are the smallest in the large imputed data. The error bars are larger both in the small
data without missing values and in the large data with missing values.

The top psychological predictors of neuroticism were job insecurity, job stress, and job repet-
itiveness in all three datasets. However, in the untouched dataset (i.e. no imputation, observa-
tions with partial data retained), employment status made the biggest contribution to predicting
neuroticism (Figure 7), more so than job insecurity. However, in the shrunk dataset with only
complete observations (Figure 8) and in the imputed dataset (Figure 9), employment status
mattered much less. This finding suggests the importance of observations with missing data—
throwing them away can alter the pattern of results. In the current case, the XGBoost model
was trained on imputed data because we wanted to compare it with the Bayesian regression.
However, the variable importance can still be computed on the raw unimputed data.

DISCUSSION

This article illustrates how work and organizational psychologists can use machine learning
methods to analyze longitudinal data. Although regression-based methods make numerous
assumptions, most researchers do not verify whether their data actually meets the necessary
assumptions. However, simply ignoring a problem does not make it go away—researchers are
obligated to verify whether their data meet the assumptions before running a model. We have
demonstrated that researchers can fruitfully analyze the data using machine learning even in
cases where most regression-based assumptions are violated.

FIGURE 6 Correlation between the actual neuroticism and the predicted neuroticism per the XGBoost

model in the unseen data [Color figure can be viewed at wileyonlinelibrary.com]
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FIGURE 7 Rank ordering of the predictor variables in terms of their contribution to predicting job

performance in the unimputed seen data (32,253 observations). Note: The X-axis indicates the changes in MSE

when each variable or group of variables is shuffled. The error bars indicate the range of the MSE across

different iterations. [Color figure can be viewed at wileyonlinelibrary.com]

FIGURE 8 Rank ordering of the predictor variables in terms of contributions to predicting neuroticism in

the seen data without missing values (1149 observations). Note: The X-axis indicates the changes in MSE when

each variable or group of variables is shuffled. The error bars indicate the range of the MSE across different

iterations. [Color figure can be viewed at wileyonlinelibrary.com]
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Our XGBoost model could predict people's neuroticism based on their job-related variables
over the past 12 years with very high accuracy, r = .75. This statistic was obtained from the
‘unseen’ data to which the model was never exposed. This high accuracy attests to the power of
machine learning methods in picking up underlying patterns. In contrast, researchers do not
test their model on new data when using traditional methods. As a result, they typically do not
report the accuracy of the model's prediction.

Researchers typically delete observations with missing values because regression-based
methods would automatically drop observations with even a single missing value. However, in
the current case, the sample size drops by about 96% if we exclude observations with missing
values, which is clearly a huge amount of data to drop. One solution is to impute missing values
using a machine learning multiple imputation algorithm, such as missRanger. Another option
is to use a machine learning model that can automatically handle missing values, such as
XGBoost.

The standard method of calculating a scale score risks discarding useful information at the
item level. The advantage of machine learning methods is that they can handle collinearity.
Furthermore, there is no need to sacrifice interpretability with the grouped variable importance
that we demonstrated above. If researchers do not care about individual items but only the
overarching construct, then they can group the items belonging to a given scale when assessing
the relative importance of different predictors.

Building a machine learning model with hyperparameters, such as XGBoost, requires some
intelligent guesswork in terms of the possible range of each hyperparameter. As an initial guess,
researchers can use the range we used in this paper. However, when the hyperparameter search
process is running, researchers should pay attention to the loss value that would be displayed
on the screen after each iteration. If the loss value is generally decreasing toward an asymptote,

FIGURE 9 Rank ordering of the predictor variables in terms of contributions to predicting neuroticism in

the imputed seen data (32,253 observations). Note: The X-axis indicates the changes in MSE when each variable

or group of variables is shuffled. The error bars indicate the range of the MSE across different iterations. [Color

figure can be viewed at wileyonlinelibrary.com]
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then it means that the hyperparameter ranges are appropriate. On the other hand, if the loss values
are haphazardly jumping around, then researchers need to either adjust the hyperparameter ranges
or adjust some of the fixed parameters. Unfortunately, again, there are no rules about how to iden-
tify the appropriate hyperparameter range—the only solution is through trial and error.

While we believe machine learning provides several benefits, others have argued that tradi-
tional regression-based methods are superior when analyzing psychological data (Jacobucci &
Grimm, 2020). However, these results were based upon simulated data, which met the assump-
tions required for regression models by design. Our argument is that most real-world data vio-
late multiple regression assumptions (Erceg-Hurn & Mirosevich, 2008), and thus machine
learning is a safer approach than regression to establish relationships among variables. While
there are claims that traditional methods may still work better than machine learning even for
real-world datasets (Nusinovici et al., 2020), researchers making these claims used one method
with one set of hyperparameters. Nonetheless, as illustrated in this article, there are dozens of
machine learning models, each with an infinite number of parameter combinations. We are not
seeking to divide the literature to use one tool or another. The goal of our article was to high-
light the advantages of machine learning when drawing on large longitudinal samples—that is,
data that does not meet the assumptions of parametric statistics, data that has missing data not
at random, and data that is not equally collected across data waves.

In addition, we would like to clearly highlight two of the drawbacks of machine learning
that researchers must be aware of that are not commonly discussed in other machine learning
articles in management and organizational sciences. Firstly, Solomonoff induction is an
unsolvable problem (Solomonoff, 1967). Machine learning uses approximation techniques and
even though it builds a set of plausible rules from the data, because of the unsolvable nature of
the problem one cannot prove those rules are final. Machine learning is merely performing a
Bayesian update of a priori rules using the provided data. New data and more sophisticated
tools could upend past rules. Moreover, a non-peer-reviewed method to build a model could
easily lead to non-generalizability of the generated rules. Secondly, machine learning is still
struggling with the topic of causality (Schölkopf et al., 2021). All inferences from machine
learning are strictly correlational. Both these drawbacks do not exist in traditional OLS
methods. Hence in addition to highlighting the benefits of machine learning, we conclude with
a general guidance that researchers must follow which using machine learning.

BEST-PRACTICE RECOMMENDATIONS FOR MACHINE
LEARNING ANALYSIS OF LONGITUDINAL DATA

This section provides a less technical summary of how to proceed with machine learning based
research and reemphasizes some points mentioned earlier. This non-technical note should be used
by both researchers as well as readers who may not be interested in the details of the machine
learning method but can quickly use these dos and don'ts to judge the quality of a machine learning
article. We recommend that the following points be paid particular attention to.

First, given the correlational nature of math involved in machine learning, researchers can-
not make causal claims from machine learning. Researchers in computer science and mathe-
matics are still debating how to infer causality from machine learning. Until that debate is
settled, inferences of causality must be supported by a follow-up study based on traditional
methodologies. We recommend that wherever possible researchers use experiments to generate
additional evidence, which can be used in conjunction with results of machine learning to

1358 SHEETAL ET AL.

 14640597, 2023, 3, D
ow

nloaded from
 https://iaap-journals.onlinelibrary.w

iley.com
/doi/10.1111/apps.12435 by H

O
N

G
 K

O
N

G
 PO

L
Y

T
E

C
H

N
IC

 U
N

IV
E

R
SIT

Y
 H

U
 N

G
 H

O
M

, W
iley O

nline L
ibrary on [18/02/2024]. See the T

erm
s and C

onditions (https://onlinelibrary.w
iley.com

/term
s-and-conditions) on W

iley O
nline L

ibrary for rules of use; O
A

 articles are governed by the applicable C
reative C

om
m

ons L
icense



facilitate causal inferences. Some recent studies (e.g. Sheetal et al., 2020, 2022) have set exam-
ples researchers can refer to when designing and implementing machine learning projects that
involve casual inference.

Second, machine learning findings are very informative but may also be argued to be merely
suggestive. Machine learning is searching for patterns, and such search in a dataset can be an
extremely hard computational problem. Mathematical advances in algorithms could produce
better search results in future. Similarly, a stronger computer in future will allow researchers to
widen the search parameters while keeping the search time under control. In addition, similar
to traditional statistical research, data from new demographic groups that were not represented
in previously collected data could alter the patterns that were produced by previous machine
learning models. Hence, researchers should be aware of these aspects when making theoretical
claims and generalizations in their articles.

Third, machine learning requires complex programming. A typical machine learning soft-
ware program ranges 1000–3000 lines of codes (e.g. in R or Python). Machine learning program-
ming is similar as that of a surgeon in the operating room. There are best practices, but the
surgeon has the right to deviate from the best practices based on the patient's condition. There
will be more exceptions than rules. Having said that, it is now established that one simple test/
check is enough and that supersedes all best practices. The phrase that the “proof of the pud-
ding is in the eating” (Cabitza & Zeitoun, 2019) summarizes the catch all for several best pro-
gramming practices in machine learning. If the pudding tastes well in the test, then the method
is likely to be just fine. This is similar to that of the patient who has recovered after the surgery,
then most likely the surgeon's methods were sound. In practice, if the machine learning model
performs similarly well in a secondary dataset that it was unexposed to before, then most likely
the method followed in the model development is sound; a practice known as unseen testing.
For the study illustrated in this paper, we had set aside 10% of the participants as unseen. And
we tested our model against these 10% of the new participants (See Figures 5 and 6). Readers,
reviewers, and editors should be cautious of articles that do not report unseen testing on a
secondary dataset and may reasonably cast doubt on the results (e.g. possibly overfitted results
with lower generalizability). This proof of the pudding test is a standard procedure rec-
ommended by the creators of modern machine learning tools (Kuhn & Johnson, 2013).

Finally, because of the unprovability nature of machine learning (Reyzin, 2019), one cannot
just blindly trust any machine learning model without a reference point. Accuracy numbers of
machine learning models from the proof of pudding test above are still not believable if the
taster lacks a comparison point. In machine learning that is referred to as a baseline model,
researchers must also report a non-machine learning based baseline model in the proof of the
pudding test. Alternatively, researchers can use performance numbers from past research as a
baseline point to compare. In this paper, we reported results of a Bayesian model for the illus-
trative study. Setting a traditional model as a baseline is important to help assess the perfor-
mance of machine learning models. Researchers must not stick to under-fitting or
underperforming machine learning models. In articles without reporting such a traditional
baseline model, there might not be a way to rule out the possibility that their machine learning
model is under-fitting or underperforming.
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