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The performance and learning speed of the Cascade Correlation neural network 4 

(CasCor) may not be optimal because of redundant hidden units’ in the cascade 5 

architecture and the tuning of connection weights. This study explores the 6 

limitations of CasCor and its variants and proposes a novel constructive neural 7 

network (CNN). The basic idea is to compute the input connection weights by 8 

generating linearly independent hidden units from the orthogonal linear 9 

transformation, and the output connection weights by connecting hidden units in a 10 

linear relationship to the output units. The work is unique in that few attempts have 11 

been made to analytically determine the connection weights on both sides of the 12 

network. Experimental work on real energy application problems such as 13 

predicting powerplant electrical energy, predicting seismic hazards to prevent fatal 14 

accidents and reducing energy consumption by predicting building occupancy 15 

detection shows that analytically calculating the connection weights and 16 

generating non-redundant hidden units improves the convergence of the network. 17 

The proposed CNN is compared with that of the state-of-the-art machine learning 18 

algorithms. The work demonstrates that proposed CNN predicts a wide range of 19 

applications better than other methods. 20 
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1. Introduction23 

The Cascade Correlation learning algorithm (CasCor) has been extensively applied in 24 
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many application areas (Heidari et al. 2018; Chung, Ma, and Chan 2017) due to its self-25 

organizing neural network property, and in many cases, it is considered to be more 26 

powerful than the standard multilayer perceptron (Qiao et al. 2016; Hunter et al. 2012). 27 

The selection of a neural network (NN) depends upon the application area (Wang et al. 28 

2018; Deng et al. 2019) to achieve better and faster convergence. Learning NNs by 29 

gradient algorithms along with too many hyperparameters may make the network more 30 

complex, causing the generalization performance to converge at a suboptimal solution 31 

(Liew, Khalil-Hani, and Bakhteri 2016; Kapanova, Dimov, and Sellier 2018). 32 

Backpropagation (BP) gradient descent is a well-known learning algorithm for NNs 33 

(Rumelhart, Hinton, and Williams 1986), but it faces the problem of local minima if the 34 

global minima is far away, and the learning speed is highly influenced by gradient 35 

iteration and the learning rate hyperparameter (Hecht-Nielsen 1989). To address the 36 

backpropagation neural network (BPNN) slowness and topology problem, the self-37 

organizing quick prop (QP) CasCor was formulated (Fahlman and Lebiere 1990). 38 

The QP can reduce the error of CasCor to a small value, but it does not guarantee 39 

that the network performance will be satisfactory (Hwarng 2005; Hunter et al. 2012) due 40 

to its chaotic behaviour and numerical instability. QP during weight updating takes much 41 

larger steps based on previous and current gradients to moves faster towards the minimum 42 

of the function (Fahlman 1988). The current gradient may be larger or smaller and in the 43 

same or opposite direction to the previous gradient. The larger and opposite gradient will 44 

cause the algorithm to cross the minimum of the function and needs to be brought back. 45 

This may cause the QP to behave chaotically across the minimum valley of the function. 46 

Banerjee et al. (2011) explained that QP becomes numerically unstable if the current 47 

gradient is very close or equal to the previous gradient. If the difference between current 48 



and previous gradient becomes zero, the weight difference will also become zero and the 49 

QP formula will remain zero permanently, even if the gradient changes.  50 

 Due to its widespread popularity and the recent increase in interest for self-51 

organizing neural networks (Khan et al. 2019a, 2019b), researchers are extensively 52 

focused on improving the existing CasCor. Huang, Song, and Wu (2012) proposed an 53 

orthogonal least squares algorithm for training cascade neural networks (OLSCN) by 54 

explaining that a larger network size causes lowering the generalization performance of 55 

CasCor. Besides, the covariance objective function efforts to adjust the input connection 56 

weights cannot assure maximum error reduction on the addition of a new hidden unit. 57 

The repeatedly tuning of connection weights, before and after hidden unit generation, 58 

causes the network to be more time-consuming. However, Qiao et al. (2016) explained 59 

that the new objective function formulated along with the modified Newton method by 60 

OLSCN may make mistakes during linear dependencies among variables and results in 61 

local minimum with slow convergence. A Faster Cascade Neural Network (FCNN) was 62 

proposed to address the CasCor and OLSCN generalization and convergence issues. 63 

FCNN selects linearly independent input units one by one by the Gram-Schmidt 64 

Orthogonalization method and candidate units by the modified index (MI) formulated 65 

objective function. It assures that the selected candidate unit (hidden unit) may have the 66 

largest contribution in the existing candidate pools but cannot guarantee that the next 67 

expected candidate unit (hidden unit) error reduction will be maximized. For the sake of 68 

simplicity, in this paper CasCor, OLSCN and FCNN are referred to as CasCor and its 69 

variants because of similar network structure, unless specified. 70 

This paper proposes a novel Cascade Principal Component Least Squares Neural 71 

Network Learning Algorithm (CPCLS) to address the convergence limitations of CasCor 72 

and its variants. The main contributions are listed below: 73 



• The linear dependence among input units and/or hidden units can be avoided by 74 

transforming a set of correlated units orthogonally into linearly independent units. 75 

The cascade architecture can be made better by connecting hidden units (or layers) 76 

to the output units that may have no linear dependence with each other. Similarly, 77 

the input unit’s direct linear connection to the output units can be avoided to get 78 

rid of the input unit’s dependency.  79 

• The best least-squares solution can be achieved by connecting only newly added 80 

linearly independent (no multicollinearity) hidden layer to the output units and 81 

eliminating previous output connections (hidden units).  82 

• Multiple hidden units can be generated in the hidden layer to make the 83 

convergence faster. 84 

The advancement in information technology has enabled industries to create a 85 

model of products and processes from high dimensional data to benefit production 86 

research (Kusiak 2020). Traditional models based on mathematical formulations and 87 

physical approaches advantageous to provide a physical understanding of the system. 88 

However, in real practices, mathematical models may be inaccurate and difficult to adopt 89 

because of ignoring nonlinearities (Wang et al. 2019), unable to understand symbolic 90 

data, need of prior expert knowledge, and maybe not well suited to represent relationships 91 

among variables (Kuo and Kusiak 2019).  92 

Nowadays, the availability of high dimensional data has made it possible to 93 

extract useful information, rather than physical measurement or manual work that may 94 

cause subjective judgment or fatigues (Kim et al. 2019), to facilitate in making real-time 95 

decisions, time and cost-saving (Q. Liu et al. 2019). It is considered that the application 96 

of machine learning compared to mathematical modelling is likely to be more beneficial 97 



in improving production research (Kusiak 2020; Kuo and Kusiak 2019; Lv et al. 2020; 98 

Y. Liu et al. 2019). The machine learning that has gained significant interest in the 99 

literature include NNs and its variants (Kumar, Singh, and Singh 2020; Ertuğrul 2018; 100 

Bansal et al. 2019; Zou et al. 2018; Lorencin et al. 2019; Grasso, Luchetta, and Manetti 101 

2018; Nayyeri et al. 2018), support vector machine (SVM) (Bansal et al. 2019), decision 102 

tree (DT) (Mantas et al. 2019; Bansal et al. 2019; Candanedo and Feldheim 2016), naïve 103 

Bayes (NB) (Bansal et al. 2019), metaheuristics search algorithms and its variants (Bansal 104 

et al. 2019; Aljarah, Faris, and Mirjalili 2018), random forest (RF) (Mantas et al. 2019; 105 

Candanedo and Feldheim 2016), ensembles (Mantas et al. 2019), gradient boosting 106 

machine (Candanedo and Feldheim 2016), regression and its variants (Lorencin et al. 107 

2019), and linear discriminant analysis (LDA) (Candanedo and Feldheim 2016). 108 

Compared to other machine learning algorithms, NNs is widely adopted because 109 

of its superior performance and universal approximation ability (Wang et al. 2019). 110 

Usually, the application of NNs in production research involves learning of the 111 

connection weights by either BP or random generation with a lot of hyperparameter 112 

tuning (Chien, Lin, and Lin 2020) which makes learning complicated and challenging 113 

(Kusiak 2020; Solimanpur, Vrat, and Shankar 2004). According to the best of our 114 

knowledge, insufficient attempts have been made to improve the NNs performance and 115 

speed by analytically calculating connection weights on both sides of the network with a 116 

small number of hyperparameters initialization. The novelty of the proposed algorithm 117 

exists in its improved cascade architecture by connecting linearly independent hidden 118 

layer to the output units and analytically calculating connection weights. This may 119 

facilitate to predict a wide range of applications with less human intervention. 120 

This work applies the proposed CPCLS algorithm and made a state-of-the-art 121 

comparison with other machine learning algorithms to predict health sciences, 122 



engineering, marine, food products, forestry, and energy application problems. Better 123 

generalization performance and faster learning speed of CPCLS give insight that NNs 124 

based model prediction capability can be made better by analytically calculating 125 

connection weights rather than BP or random generation. Moreover, in current practice, 126 

the majority of the production research is focused on solving problems belonging to a 127 

single application. This limits the proposed method, in real practice, to a single industry 128 

or single business function. The better performance of CPCLS on a wide range of 129 

applications give managerial insight that it can be practiced in general and able to handle 130 

industrial and business function problems on an integrated platform. Furthermore, the 131 

cascade architecture of CPCLS helps to eliminate the problem of “what-if” of fixed 132 

topology BPNNs for determining hidden units and layers that involves human 133 

interventions and simultaneously affect decision making. The CPCLS can facilitate in 134 

optimizing the operations by providing predictive advice and may derive the decision-135 

making process by building greater confidence in prediction from historical data rather 136 

than mathematical formulation or manual work. 137 

This paper is a revised and extended version of that of Khan, Chung, and Chan 138 

(2018). In this extended version, the property of maximum error reduction of the CPCLS 139 

is explained by supporting statements, lemmas, theoretical analysis, and remarks and 140 

further demonstrated by experimental work. The rest of the paper is structured as follows. 141 

In Section 2, CasCor and its variants with convergence limitations, Orthogonal linear 142 

transformation (OLT) and Ordinary Least Squares (OLS) are briefly explained. Section 143 

3 presents the novel CPCLS. Section 4 describes the state-of-the-art comparison. Section 144 

5 concludes the paper. 145 



2. Existing learning methodologies 146 

2.1. CasCor and its variants with convergence drawbacks 147 

CasCor initializes by linearly connecting the input units to the output units and tuning 148 

randomly generated output connection weights by the QP learning algorithm. When 149 

training converges, hidden units are added one by one to discover nonlinear patterns in 150 

the problem. The candidate units are added to select the hidden unit, having the property 151 

of maximum error reduction. The candidate units receive the input connections from input 152 

units and any pre-existing hidden units. The aim is to maximize the covariance 𝑺 between 153 

network error and the candidate units by the gradient ascent. When 𝑺 stops improving, 154 

the candidate unit with the maximum value of the 𝑺 is chosen as the hidden unit and is 155 

linked to the output units by the output connection weights, while incoming connections 156 

are kept frozen. Again, the output connection weights are trained by the QP and this 157 

procedure continues till the error converges. Figure 1 illustrates the architecture of 158 

CasCor. 159 

Huang, Song, and Wu (2012) explained that the 𝑺 objective function to maximize 160 

the correlation between the hidden unit and network error cannot assure a maximum error 161 

reduction with the addition of new hidden unit to the network. Secondly, the output 162 

training is repeatedly performed after every hidden unit generation which increases the 163 

computational burden. OLSCN was proposed to overcome the above disadvantages 164 

which lead CasCor to slow convergence and poor generalization performance. The 165 

OLSCN reformulated new objective function based on the OLS for input training which 166 

was further optimized by the second order modified Newton method. Qiao et al. (2016) 167 

supported the work of Huang, Song, and Wu (2012) and concluded that the CasCor 168 

objective function cannot guarantee a maximum error reduction and repeatedly output 169 

training can be more time-consuming. However, Qiao et al. (2016) argued that the 170 



OLSCN may result in a local minimum, slow convergence, and a computational burden 171 

by updating the weights of the hidden units by the modified Newton method. In addition, 172 

linear independence of the input units and the hidden units are necessary for QR 173 

factorization and the newly formulated objective function, respectively. FCNN was 174 

proposed to address the generalization performance and learning speed of CasCor and 175 

OLSCN. 176 

In Theorem 3.1 (Qiao et al. 2016) of FCNN, it is explained that one or more 177 

candidate units in the pool may be linearly independent to the input and any pre-existing 178 

hidden units. However, the column matrix of hidden units may not necessarily full rank 179 

due to the random generation of input weights. Therefore, MI was proposed to evaluate 180 

the candidate unit among the pool of candidates. The candidate unit with the maximum 181 

contribution to the sum of squares error (SSE) is added to the network which specifies 182 

linearly independence of the candidate unit, however, network optimal error 183 

minimization capability cannot be guaranteed. For instance, if among a pool of candidate 184 

units, fewer candidate units are linearly independent than the chances of getting the 185 

largest contributed MI also decreases. Secondly, the selected candidate unit (hidden unit) 186 

may have the property of maximum error reduction capability among the existing 187 

candidate pool which cannot assure that the next expecting candidate unit (hidden unit) 188 

error reduction will be maximized. This may cause the network to generate some hidden 189 

units with less error minimization capability. Eventually, more hidden units need to be 190 

added by randomly generating input weight and bias which may make the network more 191 

complex. For better understanding, Figure 9 (Qiao et al. 2016) in experimental work 192 

illustrates the same problem of not achieving maximal error reduction by FCNN at each 193 

hidden unit. It can be seen that error reduction by adding a new hidden unit is not smooth 194 



and the objective of maximum error reduction by next newly added hidden units is not 195 

achieved. This may result in redundant hidden units with minor effect on the convergence. 196 

2.2. OLT and OLS 197 

This section describes the existing methodologies that assist proposed CPCLS to 198 

analytically calculate the connection weights for achieving maximum error reduction on 199 

each hidden layer generation. Consider a training data sample with  (𝑿 , 𝒀), where 𝑿 is 200 

the input unit matrix of m×n and 𝒀 is the output unit matrix of m×q with hidden units 201 

matrix 𝑯 of m×p. The input connection weights matrix of n×p is exemplified by 𝑾, 202 

whereas, the output connection weights matrix of p×q are exemplified by 𝜷. 203 

OLT generates new p-features space of linearly independent 𝑯 by orthogonally 204 

transforming n-features 𝑿  (Jolliffe 2002). It helps to reduce the dimensionality of the 205 

correlated 𝑿  by determining the unknown components 𝑾 , with each component 206 

explaining the amount of variance in the data. OLT initializes by determining the 207 

covariance matrix 𝑺 of equal dimension n×n matrix, with diagonal numbers indicating 208 

covariance for the same feature and each number indicating the covariance between n-209 

features of 𝑿, to compute the eigenvalue λ and its corresponding eigenvector: 210 

 𝑺 =
1

𝑚 − 1
(𝑿 − 𝒙̅)𝑇(𝑿 − 𝒙̅) (1) 

where 𝑥̅ = ∑ 𝑥𝑖
𝑚
𝑖=1 , with each quantity indicating the mean of n features. 211 

The eigenvector, explaining the coordinate system for the new p-features by 212 

decreasing dimensions equal to or less than n-features, selection is based on the λ value. 213 

The λ is computed from the 𝑺 matrix: 214 

 |𝑺 − λ𝑰| = 0 (2) 



The corresponding eigenvector based on highest λ can be determined by 215 

computing the component 𝑾: 216 

 (𝑺 − λ𝑰)𝑾 = 0 (3) 

The matrix 𝑾 linearly transforms n-features 𝑿 into new linearly independent p-217 

features 𝑯 : 218 

 𝑯 = 𝑿𝑾 (4) 

OLS reduces the estimation error between the predicted 𝒀̂  and the observed 𝒀 219 

variables by determining the unknown parameter 𝜷 (Goldberger 1964): 220 

 𝒀 = 𝑯𝜷 +  𝑒 (5) 

OLS theory is used for determining 𝜷 by: 221 

 𝜷 = (𝑯𝑻𝑯)−𝟏𝑯𝑻𝒀 (6) 

where (𝑯𝑻𝑯)−𝟏𝑯𝑻  is the Moore Penrose pseudo-inverse of matrix 𝑯 . For better 222 

convergence, there should be no linear dependence among 𝑯. 223 

In the last step, the 𝒀̂  is determined: 224 

 𝒀̂ = 𝑯𝜷 (7) 

Better network convergence can be achieved by optimally calculating the 225 

connection weights in the forward step. Equations (3) and (6) play a key role in 226 

determining the connection weights for the novel CPCLS. 227 

3. Proposed CPCLS learning algorithm 228 

Like CasCor and its variants, which have a similar network structure, CPCLS also works 229 

on two concepts of cascade architecture and learning. Figure 2 illustrates CPCLS 230 

architecture, which is an improved form of CasCor and its variants. Firstly, CPCLS 231 

connects input units to the output units by the linearly independent hidden units to avoid 232 



the linear dependency of the input units. Secondly, more than single hidden units can be 233 

generated in the hidden layer to achieve faster convergence. Thirdly, the newly generated 234 

hidden layer is only linked to the output units, and earlier connections are removed to 235 

avoid the linear dependence of the hidden units among the hidden layers. In learning, 236 

CasCor repeatedly tunes the connection weights in forward and backward steps by the 237 

gradient method, while its variants either perform the gradient method or randomly 238 

generate the input weights, which can take more time, and it is equally problematic to 239 

control convergence. CPCLS eliminates the need for random generation and gradient 240 

methods by analytically computing the connection weights in the forward step. 241 

3.1 Supporting statement and lemma 242 

Statement 1: (Jolliffe 2002) OLT: The 𝑿  values of n-features are orthogonally 243 

transformed into a linearly independent 𝑯 of p-features by determining the eigenvalue λ 244 

and its eigenvector W from the input covariance 𝑺. 245 

Remark 1: Statement 1 implies that the hidden units generated are linearly 246 

independent (uncorrelated) because of the OLT of the input features. 247 

Lemma 1: (Huang, Zhu, and Siew 2006) Given a standard Single hidden Layer 248 

Feedforward Network (SLFN) with 𝑁 hidden nodes and activation function 𝑔: 𝑅 → 𝑅, 249 

which is infinitely differentiable in any interval, for 𝑁 arbitrary distinct samples (xi, yi), 250 

where xiϵ 𝐑𝐧 and 𝑦iϵ 𝐑𝐦, for any 𝒘𝒊 and 𝑏𝑖 randomly chosen from any intervals of 𝐑𝐧 251 

and 𝐑 , respectively, according to any continuous probability distribution, then with 252 

probability one, the hidden layer output matrix 𝑯  of the SLFN is invertible and 253 

||𝑯𝜷 − 𝒀|| = 𝟎. 254 

Remark 2: Lemma 1 implies that the hidden units need to be linearly independent 255 

with a probability of one to obtain the best least-squares solution of 𝒀 = 𝑯𝜷. 256 



Remark 3: (Goldberger 1964) According to ordinary least squares theory, the 257 

smallest error ||𝒀̂ − 𝒀|| = 𝟎  can be achieved by calculating 𝜷 = (𝑯𝑻𝑯)−𝟏𝑯𝑻𝒀 such 258 

that there exists no multicollinearity (linearly dependence) among the hidden units. 259 

3.2 Input connection weights 𝑾 determination 260 

Based on the above supporting statement, lemma, and remarks, the CPCLS can achieve 261 

a best least-squares unique solution by the orthogonal transformation of the input and pre-262 

existing hidden units. CPCLS initializes by defining number 𝑁 of 𝑯 in the first hidden 263 

layer such that p ≤ n. Initially, 𝑿 is indirectly connected to 𝒀 through 𝑯 to avoid input 264 

feature linear dependence. For 𝑾  determination, the eigendecomposition of 𝑺  (1) 265 

generates λ (2) and the highest λ values explaining maximum variance in data are used to 266 

determine the eigenvectors (3). The determined eigenvectors are referred to as 𝑾 . 267 

Knowing 𝑿 and 𝑾, the value of 𝑯 is computed as:  268 

 𝑯 = ∅(𝑿𝑾) (8) 

where ∅(𝑧) can be any differentiable or nondifferentiable continuous activation function.  269 

3.3 Output connection weights 𝜷 determination 270 

The second step is to compute the 𝜷 by considering the linear relationship of 𝑯 to 𝒀. The 271 

Moore Penrose pseudo-inverse of 𝑯  is calculated and its product with 𝒀  is used to 272 

calculate 𝜷 (6). The linear conversion of 𝑯 through 𝜷 generates 𝒀̂ (7). The algorithm 273 

aims to efficiently converge the network by minimizing the error function 𝐸 faster: 274 

 𝐸 =
1

𝑚
∑(𝒀̂𝑖 − 𝒀𝑖)

2
𝑚

𝑖=1

 (9) 



If 𝐸 is a smaller amount than the described target error 𝑒, the CPCLS loop will 275 

terminate, else a new 𝑯 will be generated until the required convergence is reached.  276 

3.4 Newly added hidden layer connection to the output layer 277 

In the proceeding hidden layers, the newly added  𝑯𝒌 (k=1, 2, 3…) receives all incoming 278 

connections from 𝑿 and any preexisting hidden layers  𝑯𝒌−𝟏, 𝑯𝒌−𝟐 and so on, whereas, 279 

the output layer receives connections from only the newly added 𝑯𝑘 and diminishes its 280 

previous connections i.e. 𝑯𝒌−𝟏, 𝑯𝒌−𝟐 and so on. Connecting the previously added hidden 281 

layers to the output units plays no significant role in the network. It may only add burden 282 

to the network by connecting linearly dependent and redundant hidden units which can 283 

reduce the generalization performance, as well as learning speed. Each newly added 𝑯𝑘 284 

adds its non-linearity based on the variance in 𝑿 and previously added 𝑯𝒌−𝟏, 𝑯𝒌−𝟐 and 285 

so on. This can be expressed in term of error minimization as: 286 

 𝐸𝐿𝐻𝐿 = (𝜷𝑯𝒌) − 𝒀 (10) 

where 𝐸𝐿𝐻𝐿  is network error by connecting only the newly added hidden layer to the 287 

output layer. The newly added 𝑯𝑘  is of a higher level which has learned from the 288 

orthogonal linear transformation of both 𝑿 and previously added 𝑯𝒌−𝟏, 𝑯𝒌−𝟐 and so on, 289 

and represents the maximum variance of the network in that it guarantees the convergence 290 

of the CPCLS. 291 

Suppose symmetric matrix 𝑺  has two different eigenvalues 𝜆1  and 𝜆2 292 

corresponding to eigenvectors 𝑤1 and 𝑤2 in matrix 𝑾 respectively. Two vectors can be 293 

considered orthogonal if their inner product is zero, such as: 𝑤1. 𝑤2 = 0 or 𝑤1
𝑇𝑤2 = 0. 294 

where 𝑤1
𝑇 is the transpose of 𝑤1.  295 

We have: 296 

 𝑺𝑤1 = 𝜆1𝑤1 (11) 



and 297 

 𝑺𝑤2 = 𝜆2𝑤2 (12) 

To prove that 𝑤1 and 𝑤2 are orthogonal: 298 

𝜆1(𝑤1. 𝑤2) = (𝜆1𝑤1). 𝑤2 = (𝑺𝑤1). 𝑤2 = (𝑺𝑤1) 𝑇𝑤2 = 𝑤1
𝑇𝑺𝑇𝑤2 299 

= 𝑤1
𝑇𝑺𝑤2 = 𝑤1

𝑇𝜆2𝑤2 = 𝜆2(𝑤1
𝑇𝑤2) = 𝜆2(𝑤1. 𝑤2) 300 

𝑺 = 𝑺𝑻 because 𝑺 is a symmetric matrix. From mathematical work, we have: 301 

 𝜆1(𝑤1. 𝑤2) = 𝜆2(𝑤1. 𝑤2) (13) 

 (𝜆1 − 𝜆2)(𝑤1. 𝑤2) = 0 (14) 

Since 𝜆1 − 𝜆2 ≠ 0, because both are different. So, we have: 302 

 𝑤1. 𝑤2 = 0 (15) 

which means that eigenvectors 𝑤1 and 𝑤2 are orthogonal to each other in matrix 𝑾, i.e., 303 

𝑤1 ⊥ 𝑤2. This orthogonal property of 𝑾 causes 𝑿 and preexisting 𝑯𝒌−𝟏 to orthogonally 304 

linearly transform into linearly independent 𝑯𝑘. Suppose if two hidden unit vectors are 305 

generated in 𝑯𝑘 such that the ℎ𝑘1
 is generated from 𝑤1 and ℎ𝑘2

 is generated from 𝑤2, 306 

then they can also be considered orthogonal, i.e., ℎ𝑘1
⊥ ℎ𝑘2

. The proof supports Lemma 307 

1 and guarantees the convergence of CPCLS because of the 𝑯𝑘 generated are invertible 308 

and hence ||(𝜷𝑯𝒌) − 𝒀|| = 𝟎. 309 

However, if all (every previous and newly) hidden layers are connected to the 310 

output layer, we have: 311 

 𝐸𝐴𝐻𝐿 = (𝜷(𝑯𝒌 + 𝑯𝒌−𝟏 + 𝑯𝒌−𝟐 + ⋯ + 𝑯𝟏)) − 𝒀 (16) 

where 𝐸𝐴𝐻𝐿 is the network error by connecting all the hidden layers to the output layer. 312 

According to Remarks 1 and Lemma 1, the hidden units in multiple hidden layers may 313 

create linear dependency and redundancy in that it will avoid the best least square solution 314 

assumption. Suppose if two hidden unit vectors are generated in 𝑯𝒌−𝟏 such that ℎ𝑘−11
 is 315 



generated from 𝑤𝑘−11
 and ℎ𝑘−12

 is generated from 𝑤𝑘−12
 and two hidden unit vectors 316 

are generated in 𝑯𝒌 such that ℎ𝑘1
 is generated from 𝑤𝑘1

 and ℎ𝑘2
 is generated from 𝑤𝑘2

 317 

than there is a chance that it may or may not be orthogonal, i.e., 𝑯𝒌−𝟏  ⊥ 𝑯𝒌   or 318 

𝑯𝒌−𝟏 ⟂̸𝑯𝒌  . In the latter case, it may void the assumption that the 𝑯 generated are 319 

invertible and hence ||(𝜷(𝑯𝒌 + 𝑯𝒌−𝟏 + 𝑯𝒌−𝟐 + ⋯ + 𝑯𝟏)) − 𝒀|| ≠ 𝟎. 320 

Hidden units are generated from the eigenvalue and corresponding eigenvector; 321 

therefore, the new hidden units feature generation will always be less than or equal to the 322 

input units and the previously hidden unit features 𝑿 = (𝑿, 𝑯), such that 𝑝 ≤  𝑛. Jolliffe 323 

and Cadima (2016) stated that the eigenvalues having cumulative percentage variance 324 

(CPV) of 70% are commonly used to extract eigenvectors. However, Jolliffe and Cadima 325 

(2016) further added that there may circumstances in which the last few eigenvalues may 326 

be also of interest in explaining more variance in the data. Researchers (Jolliffe and 327 

Cadima 2016; Tortorella et al. 2016) in their work recommended selecting eigenvalues 328 

giving a CPV greater than 70% to a maximum of 99%. The experimental work has been 329 

performed to study the effect of hidden unit selection on generalization performance and 330 

learning speed. 331 

3.5 CPCLS hyperparameters 332 

CPCLS initializes with a small number of hyperparameters i.e. 𝑯 and e, in comparison 333 

with other fixed and constructive topology algorithms i.e. learning rate, hidden nodes, 334 

candidate units, etc. This makes learning simple. 335 

Algorithm CPCLS  336 

Given a training set (𝑿 , 𝒀) with input unit matrix 𝑿 be m×n, output unit matrix 𝒀 be 337 

m×q, hidden unit matrix 𝑯 be m×p, and target error e: 338 



Step 1) Initialization: Define the initial number 𝑁 of 𝑯 in a first hidden layer such that 339 

p ≤ n 340 

Step 2) Learning Step: 341 

While 𝐸 > 𝑒 342 

a) Determine the 𝑾 matrix of n×p: 343 

1. Calculate the 𝑺 matrix of n×n from n features 𝑿: 344 

𝑺 =
1

𝑚 − 1
(𝑿 − 𝒙̅)𝑇(𝑿 − 𝒙̅) 345 

𝑥̅ =
1

𝑚
∑ 𝑥𝑖

𝑚

𝑖=1

 346 

2. Select λ with the highest values to calculate the eigenvectors. The calculated 𝑁 347 

eigenvectors are considered as 𝑾 for 𝑯: 348 

|𝑺 − λ𝑰| = 0 349 

(𝑺 − λ𝑰)𝑾 = 0 350 

b) Take ∅ of 𝑿 and 𝑾 to generate 𝑯: 351 

𝑯 = ∅(𝑿𝑾) 352 

c) Determine the 𝜷 matrix of p×q: 353 

𝜷 = (𝑯𝑻𝑯)−𝟏𝑯𝑻𝒀   354 

d) Calculate 𝒀̂:  355 

𝒀̂ = 𝑯𝜷  356 

e) Calculate 𝐸:  357 



𝐸 =
1

𝑚
∑(𝒀̂𝑖 − 𝒀𝑖)

2
𝑚

𝑖=1

 358 

f) Combine the columns of 𝑯 with 𝑿: 359 

𝑿 = (𝑿, 𝑯) 360 

g) increase the number of 𝑯 by 𝑁′ in the proceeding hidden layers such that p ≤ n: 361 

  𝑁 = 𝑁 + 𝑁′ 362 

end 363 

4. Experimental study 364 

The comparative study of the proposed algorithm CPCLS with state-of-the-art machine 365 

learning algorithms was conducted to demonstrate its effectiveness. The experimental 366 

work was performed in Netmaker v0.9.5.2 and Anaconda Spyder Python v3.2.6. The 367 

experimental work of CPCLS, BPNN, and self-adaptive extreme learning machine 368 

(SaELM) (Wang et al. 2016) were performed in Python, whereas, the CasCor work was 369 

performed in the built-in powerful Netmaker C-programming code. Generally speaking, 370 

experimental work in the two programming codes will not affect the comparative study 371 

because C programming is considered much faster than Python. The dataset was 372 

normalized in the range [0,1] for both input and output and sigmoid activation function 373 

∅(𝑧) =  1/(1 + 𝑒−𝑧) was used in the hidden units of the algorithms.  374 

The experimental work was divided into three parts: real-world applications 375 

prediction, energy applications prediction and studying the CPCLS hidden units and 376 

layers characteristics followed by further discussion. Table 1 shows the most popular and 377 

widely used dataset in machine learning extracted from UCI (Dua and Graff 2019). The 378 

number of hidden units in hidden layers of the CPCLS was set to (2,2), (4,3), (2,1), (2,2), 379 



(5,5) for real-world applications such as abalone, airfoil self-noise, forest fires, breast 380 

cancer, wine respectively, and (2,2), (2,7), (1,1) for energy applications such as combined 381 

cycle power plant, occupancy detection, seismic bumps respectively. The number of 382 

CasCor candidate units was set to 3 Nos. The number of hidden units for stochastic 383 

gradient descent BPNN was decided by a trial and error approach in the range 5-25 and 384 

the hidden units with optimal results are reported. The minimum, maximum and interval 385 

hidden units for SaELM was set to 5, 500 and 10 respectively with width factor 𝑄=2 and 386 

scale factor 𝐿=4. 387 

Tables 2, 3 and 4 show the average best results of 25 trials obtained by the machine 388 

learning algorithms. The testing RMSE/accuracy represents the generalization 389 

performance, and the learning time represents the learning speed of the algorithms, while 390 

the mean and stdev in the table refer to the average and standard deviation results of 25 391 

trials. The performance criteria for regression problems and classification problems are 392 

RMSE and percentage accuracy respectively. 393 

4.1 Real-world applications prediction 394 

Table 2 shows the prediction results of real-world applications. The proposed CPCLS 395 

algorithm was able to achieve a better generalization performance and learning speed in 396 

all cases as compared to CasCor, BPNN, and SaELM. The best results in terms of 397 

generalization and learning speed are highlighted in bold and underlined in Table 2. For 398 

an in-depth understanding of the convergence rate during each hidden layer, Figure 3 399 

illustrates the CPCLS convergence rate of 25 trials for the Abalone dataset. It can be 400 

observed that the convergence rate of CPCLS during each hidden layer addition is smooth 401 

and stable. 402 

CPCLS performance comparison has also been made with CasCor variants to 403 

demonstrate its effectiveness. Due to the limitation caused by the unavailability of the 404 



original programming code of OLSCN and FCNN, the simulation results of selected real-405 

world problems representing both algorithms are taken from their original source papers. 406 

To make the comparison more valuable and to get better insights, the CPCLS simulation 407 

is carried out by considering all test conditions mentioned in the original paper of OLSCN 408 

and FCNN. Table 3 shows the dataset description, algorithms comparison in terms of 409 

generalization performance and learning speed. It can be observed that CPCLS 410 

generalization performance and learning speed averaged over 25 trials are better with 411 

more improved results compared to FCNN and OLSCN. 412 

4.2 Energy applications prediction 413 

To further validate the performance, a comparative study was performed on energy-based 414 

problems. The most demanding energy applications are: 415 

(1) Combined cycle power plant: A combined cycle power plant is used to generate 416 

electricity from gas turbines and consequently uses the waste energy in a steam 417 

turbine to improve the efficiency of the electrical output. The attributes that 418 

considerably affect the performance of gas turbine are atmospheric pressure 419 

(millibar), temperature (°C) and relative humidity (%), whereas, the attributes that 420 

affect the performance of the steam turbine are exhaust steam pressure (cm Hg). 421 

The dataset contains an hourly average of attributes (atmospheric pressure, 422 

temperature and relative humidity, exhaust steam pressure) to predict the net 423 

hourly electrical energy (MW) of the powerplant. 424 

(2) Seismic bumps: Seismic hazard prediction is a challenging application area in 425 

coal mining. The purpose is to detect the possibilities of the occurrence of rock 426 

bursts from seismic activity. The task is to classify high energy seismic bumps as 427 

“hazardous” and “non-hazardous” from attributes such as possible seismic hazard, 428 



seismic energy, pulses, energy deviation, number of seismic bumps with different 429 

energy levels, total and maximum energy recorded for seismic bumps.  430 

(3) Occupancy detection: Predicting occupancy detection in an office building is 431 

attracting significant interest in reducing energy consumption. Various 432 

measurements of light energy (Lux), temperature (°C), relative humidity (%), 433 

humidity ratio (kgwater-vapor/kg/air), and CO2 (ppm) along with the time are 434 

used to classify whether the room is occupied or not. 435 

Table 4 shows the performance of various machine learning algorithms for energy 436 

application prediction. For the combined cycle power plant, CPCLS was able to achieve 437 

a better performance of 0.0545 RMSE in a learning time of 2.96s compared to CasCor of 438 

0.0573 in 29.69s, BPNN of 0.0577 in 59.54s, and SaELM of 0.0547 in 7.09s. For seismic 439 

bumps, the generalization accuracy of CPCLS and BPNN is the same with the advantage 440 

of CPCLS in that it took 0.01s compared to BPNN of 1.06s. The CPCLS demonstrated 441 

its effectiveness by achieving a performance accuracy of 93.83% in a learning time of 442 

0.01s compared to CasCor of 92.98% in 29.86s, BPNN of 93.83% in 1.06s, and SaELM 443 

of 93.44% in 1.87s respectively. Similar to the combined cycle power plant and seismic 444 

bumps, CPCLS also efficiently predicted occupancy detection. CPCLS achieved a better 445 

performance accuracy of 99.05% in learning time of 3.95s compared to CasCor of 98.97% 446 

in 31.54s, BPNN of 98.98% in 75.33s, and SaELM of 99.03% in 17.64s respectively. The 447 

standard deviation of the generalization performance and learning time are also lower 448 

which demonstrates the stable results of CPCLS. 449 



4.3 Connecting hidden layers to the output layer and varying hidden unit size in 450 

the hidden layer of CPCLS 451 

4.3.1 Varying hidden unit sizes in the hidden layers 452 

For CPCLS, the selection of hidden units in the first hidden layer and proceeding hidden 453 

layers is only a single hyperparameter that needs to be defined based on the eigenvalue 454 

and corresponding eigenvector. For illustration, experimental work has been performed 455 

by taking the example of the abalone dataset. The abalone dataset consists of 9 input 456 

attributes with bias. This implies that a lower and higher combination can be (1,1) and 457 

(9,9) respectively with a total of 81 combinations. 458 

Figures 4, 5 and 6 show the generalization performance, learning speed and 459 

number of hidden layers for different combinations. The horizontal axis concerns the 460 

addition of hidden units in the first layer and the right legend concerns the addition of 461 

hidden units in the proceeding layers. Figure 4 illustrates that the generalization 462 

performance is stable for a maximum number of combinations. The minimum 463 

0.0748RMSE and maximum 0.0774RMSE were achieved by (5,2) and (4,2) 464 

combinations respectively. Furthermore, a lower combination (1,1) achieved 465 

0.0765RMSE and higher combination (9,9) achieved 0.0755RMSE. The (5,2), (4,2), (1,1) 466 

and (9,9) hidden units are generated from the eigenvalue CPV of (99.65%,96.94%), 467 

(99.19%,96.94%), (71.26%,72.92%) and (100%,100%) respectively. The minimum and 468 

maximum RMSE combination, and lower and higher hidden unit combinations give 469 

insight that hidden units generated based on eigenvalue explaining CPV 𝜆 > 70% are 470 

helpful in achieving better generalization performance. However, as shown in Figure 5, 471 

the learning time was 2.03s with (1,1) as compared to 0.03s for (9,9). The increase in 472 

learning time happens because of the higher computational burden by hidden layers. 473 

Figure 6 illustrates that hidden layers reach to 45 Nos. for lower combination (1,1) 474 



compared to 4 Nos. for higher combination (9,9). The findings support the existing work 475 

and recommend generating hidden units in the layers having eigenvalue explaining CPV 476 

𝜆 > 70%. Based on our experimental work, it is recommended that the CPV should not 477 

be greater than 99% because many of the last few eigenvalues may have approximately 478 

zero variability. The zero variability eigenvalues may create a problem of overfitting 479 

which needs to be avoided.  480 

4.3.2 The effect of hidden layers connection to the output layer 481 

Experimental work has been performed to study the effect of hidden layers connection to 482 

output layer by considering both cases for CPCLS: 483 

(1) Connecting the last hidden layer to the output layer (LHL) 484 

(2) Connect all hidden layers to the output layer (AHL) 485 

The work was performed on artificial nonlinear SinC function regression task, 486 

generating 4,000 observations in the range [-20,20], by changing the data random state 487 

from 0 to 100 with an interval of 5 and data test size from 30% to 70% with an interval 488 

of 5%. This makes a total of 21 trials with different random states and 9 trials with 489 

different test sizes. The 21 trials with different random states were performed by keeping 490 

the constraint of test size equal to 50%. The best result by the random state was selected 491 

to perform 9 trials by varying the test sizes.  492 

Table 5 shows the generalization performance and learning speed of both cases. 493 

Figures 7 and 8 illustrate the generalization performance and learning speed of both cases 494 

for each random state and for each test size respectively. Both figures show that the 495 

generalization performance becomes worse in most cases for AHL. Compared to AHL, 496 

the generalization results of LHL are more stable with minimal deviation. Similarly, the 497 

learning time increases for AHL compared to LHL. To avoid an increase in further 498 



learning time, the algorithm for AHL needs to stop early when there is no further decrease 499 

in error, and the training time is about five times more than LHL. 500 

The difference in Figure 9 illustrates that AHL is unable to correctly predict the 501 

SinC function, whereas LHL, (the original CPCLS), has predicted accurately all data 502 

points of the function.  503 

4.4 Further discussion 504 

The better generalization performance and faster learning speed of CPCLS on real-world 505 

and energy problems compared to CasCor, BPNN, SaELM, OLSCN, and FCNN 506 

demonstrate its effectiveness. However, comparison with state-of-the-art machine 507 

learning algorithms is important to build greater confidence in the application of CPCLS. 508 

Table 6 shows the comparison of CPCLS with popular machine learning algorithms. The 509 

comparative study gives an important insight that CPCLS generalization performance in 510 

solving various real-world and energy problems is better compared to other machine 511 

learning results, that are published recently in the literature. This finding supports that 512 

CPCLS is a promising machine learning tool that can be practiced in general to improve 513 

various operations of production research.  514 

In real practice, the work is beneficial in numerous manners. Taking the example 515 

of breast cancer, the CPCLS correctly classified its class as malignant or benign. It is 516 

important to avoid misclassification of malignant cancer as benign because it can cause 517 

human death. In engineering, the aviation sector works on zero-defect philosophy. Better 518 

prediction of airfoils noise by CPCLS can facilitate in improving aircraft efficiency and 519 

reduce environmental pollution. CPCLS efficiently prediction of marine species ages 520 

rather than a microscope measurement can facilitate in avoiding subjective judgment and 521 

fatigue. Besides, the application of CPCLS in predicting possible future hazards can help 522 

to protect food products and the wastage of natural resources. 523 



The better prediction results of CPCLS for energy applications such as predicting 524 

electrical energy of powerplant and reducing energy consumption by accurately 525 

predicting building occupancy detection can help in designing better energy management 526 

systems. Moreover, predicting seismic hazards by CPCLS as hazardous and non-527 

hazardous can prevent fatal accidents. 528 

5. Conclusions 529 

In this paper, a novel learning algorithm called CPCLS is proposed. Unlike other cascade 530 

algorithms, in this approach, hidden units are linearly generated by orthogonal linear 531 

transformation and only the last hidden layer is connected to the output layer. It was 532 

theoretically and experimentally verified that the hidden units generated in the respective 533 

hidden layer are inevitable (i.e. linearly independent) which guarantees CPCLS 534 

convergence. Connecting only the last hidden layer to the output layer eventually 535 

improves the performance and increase the learning speed because all the hidden units 536 

are orthogonal.  537 

Compared to the state-of-the-art machine learning algorithms, the proposed 538 

CPCLS achieved better generalization performance and learning speed in various 539 

prediction tasks. Experimental work also demonstrated that connecting only the last 540 

hidden layer rather than all the hidden layers to the output layer creates less burden on 541 

the network and significantly improves convergence. 542 

The major contributions and findings are: i) The CPCLS provides new insight into 543 

existing algorithms by analytically calculating connection weights on both sides of the 544 

network rather than gradient iteration or random generation, ii) In CPCLS, the generated 545 

hidden units are inevitable ensuring that convergence will be optimal, iii) CPCLS 546 

initialize with small number of hyperparameters, such as only defining number of hidden 547 

units in the layer, iv) Compared to the existing works, this study provides insight that 548 



avoiding direct linear connection of the input layer to the output layer and connecting 549 

only newly added hidden layer to the output layer reduces network burden and improves 550 

convergence, and v) In current practice, majority of research or models are proposed for 551 

specific applications. The better performance of CPCLS, on various applications, in 552 

comparison with state-of-the-art machine learning algorithms demonstrate that CPCLS 553 

can be practiced in general for prediction of regression and classification tasks to make 554 

better-informed decisions. 555 

The implications are: i) In the proposed CPCLS, the experimental work was 556 

performed on the OLT of the covariance matrix. Other than the covariance matrix, single 557 

value decomposition and the correlation matrix can also be applied for OLT. Future work 558 

may include studying the application of single value decomposition and correlation 559 

matrix and their performance on the CPCLS, ii) Besides, the experimental work is limited 560 

to the application of commonly used sigmoid activation function. Other than sigmoid 561 

function, the effect of various other activation functions on the performance of CPCLS 562 

needs to be explored in future work. 563 
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