
Cascade neural network algorithm with analytical connection weights 1

determination for modelling operations and energy applications 2

Zhengxu Wang1#, Waqar Ahmed Khan2*#, Hoi-Lam Ma3 & Xin Wen2 3

The performance and learning speed of the Cascade Correlation neural network 4

(CasCor) may not be optimal because of redundant hidden units’ in the cascade 5

architecture and the tuning of connection weights. This study explores the 6

limitations of CasCor and its variants and proposes a novel constructive neural 7

network (CNN). The basic idea is to compute the input connection weights by 8

generating linearly independent hidden units from the orthogonal linear 9

transformation, and the output connection weights by connecting hidden units in a 10

linear relationship to the output units. The work is unique in that few attempts have 11

been made to analytically determine the connection weights on both sides of the 12

network. Experimental work on real energy application problems such as 13

predicting powerplant electrical energy, predicting seismic hazards to prevent fatal 14

accidents and reducing energy consumption by predicting building occupancy 15

detection shows that analytically calculating the connection weights and 16

generating non-redundant hidden units improves the convergence of the network. 17

The proposed CNN is compared with that of the state-of-the-art machine learning 18

algorithms. The work demonstrates that proposed CNN predicts a wide range of 19

applications better than other methods. 20

Keywords: energy management; forecasting; machine learning; neural networks; 21

sustainability 22

1. Introduction23

The Cascade Correlation learning algorithm (CasCor) has been extensively applied in 24

1 School of Business Administration, Institute of Supply Chain Analytics, Dongbei University

of Finance and Economics, Dalian, People’s Republic of China.
2 Department of Industrial and Systems Engineering, The Hong Kong Polytechnic University,

Hung Hom, Hong Kong.
3 Department of Supply Chain and Information Management, The Hang Seng University of

Hong Kong, Shatin, Hong Kong.
* Correponding author.
Zhengxu Wang and Waqar Ahmed Khan contributed equally to this work.

This is an Accepted Manuscript of an article published by Taylor & Francis in International Journal of Production Research on 16 Jun 2020
(published online), available at: http://www.tandfonline.com/10.1080/00207543.2020.1764656.

This is the Pre-Published Version.

many application areas (Heidari et al. 2018; Chung, Ma, and Chan 2017) due to its self-25

organizing neural network property, and in many cases, it is considered to be more 26

powerful than the standard multilayer perceptron (Qiao et al. 2016; Hunter et al. 2012). 27

The selection of a neural network (NN) depends upon the application area (Wang et al. 28

2018; Deng et al. 2019) to achieve better and faster convergence. Learning NNs by 29

gradient algorithms along with too many hyperparameters may make the network more 30

complex, causing the generalization performance to converge at a suboptimal solution 31

(Liew, Khalil-Hani, and Bakhteri 2016; Kapanova, Dimov, and Sellier 2018). 32

Backpropagation (BP) gradient descent is a well-known learning algorithm for NNs 33

(Rumelhart, Hinton, and Williams 1986), but it faces the problem of local minima if the 34

global minima is far away, and the learning speed is highly influenced by gradient 35

iteration and the learning rate hyperparameter (Hecht-Nielsen 1989). To address the 36

backpropagation neural network (BPNN) slowness and topology problem, the self-37

organizing quick prop (QP) CasCor was formulated (Fahlman and Lebiere 1990). 38

The QP can reduce the error of CasCor to a small value, but it does not guarantee 39

that the network performance will be satisfactory (Hwarng 2005; Hunter et al. 2012) due 40

to its chaotic behaviour and numerical instability. QP during weight updating takes much 41

larger steps based on previous and current gradients to moves faster towards the minimum 42

of the function (Fahlman 1988). The current gradient may be larger or smaller and in the 43

same or opposite direction to the previous gradient. The larger and opposite gradient will 44

cause the algorithm to cross the minimum of the function and needs to be brought back. 45

This may cause the QP to behave chaotically across the minimum valley of the function. 46

Banerjee et al. (2011) explained that QP becomes numerically unstable if the current 47

gradient is very close or equal to the previous gradient. If the difference between current 48

and previous gradient becomes zero, the weight difference will also become zero and the 49

QP formula will remain zero permanently, even if the gradient changes. 50

 Due to its widespread popularity and the recent increase in interest for self-51

organizing neural networks (Khan et al. 2019a, 2019b), researchers are extensively 52

focused on improving the existing CasCor. Huang, Song, and Wu (2012) proposed an 53

orthogonal least squares algorithm for training cascade neural networks (OLSCN) by 54

explaining that a larger network size causes lowering the generalization performance of 55

CasCor. Besides, the covariance objective function efforts to adjust the input connection 56

weights cannot assure maximum error reduction on the addition of a new hidden unit. 57

The repeatedly tuning of connection weights, before and after hidden unit generation, 58

causes the network to be more time-consuming. However, Qiao et al. (2016) explained 59

that the new objective function formulated along with the modified Newton method by 60

OLSCN may make mistakes during linear dependencies among variables and results in 61

local minimum with slow convergence. A Faster Cascade Neural Network (FCNN) was 62

proposed to address the CasCor and OLSCN generalization and convergence issues. 63

FCNN selects linearly independent input units one by one by the Gram-Schmidt 64

Orthogonalization method and candidate units by the modified index (MI) formulated 65

objective function. It assures that the selected candidate unit (hidden unit) may have the 66

largest contribution in the existing candidate pools but cannot guarantee that the next 67

expected candidate unit (hidden unit) error reduction will be maximized. For the sake of 68

simplicity, in this paper CasCor, OLSCN and FCNN are referred to as CasCor and its 69

variants because of similar network structure, unless specified. 70

This paper proposes a novel Cascade Principal Component Least Squares Neural 71

Network Learning Algorithm (CPCLS) to address the convergence limitations of CasCor 72

and its variants. The main contributions are listed below: 73

• The linear dependence among input units and/or hidden units can be avoided by 74

transforming a set of correlated units orthogonally into linearly independent units. 75

The cascade architecture can be made better by connecting hidden units (or layers) 76

to the output units that may have no linear dependence with each other. Similarly, 77

the input unit’s direct linear connection to the output units can be avoided to get 78

rid of the input unit’s dependency. 79

• The best least-squares solution can be achieved by connecting only newly added 80

linearly independent (no multicollinearity) hidden layer to the output units and 81

eliminating previous output connections (hidden units). 82

• Multiple hidden units can be generated in the hidden layer to make the 83

convergence faster. 84

The advancement in information technology has enabled industries to create a 85

model of products and processes from high dimensional data to benefit production 86

research (Kusiak 2020). Traditional models based on mathematical formulations and 87

physical approaches advantageous to provide a physical understanding of the system. 88

However, in real practices, mathematical models may be inaccurate and difficult to adopt 89

because of ignoring nonlinearities (Wang et al. 2019), unable to understand symbolic 90

data, need of prior expert knowledge, and maybe not well suited to represent relationships 91

among variables (Kuo and Kusiak 2019). 92

Nowadays, the availability of high dimensional data has made it possible to 93

extract useful information, rather than physical measurement or manual work that may 94

cause subjective judgment or fatigues (Kim et al. 2019), to facilitate in making real-time 95

decisions, time and cost-saving (Q. Liu et al. 2019). It is considered that the application 96

of machine learning compared to mathematical modelling is likely to be more beneficial 97

in improving production research (Kusiak 2020; Kuo and Kusiak 2019; Lv et al. 2020; 98

Y. Liu et al. 2019). The machine learning that has gained significant interest in the 99

literature include NNs and its variants (Kumar, Singh, and Singh 2020; Ertuğrul 2018; 100

Bansal et al. 2019; Zou et al. 2018; Lorencin et al. 2019; Grasso, Luchetta, and Manetti 101

2018; Nayyeri et al. 2018), support vector machine (SVM) (Bansal et al. 2019), decision 102

tree (DT) (Mantas et al. 2019; Bansal et al. 2019; Candanedo and Feldheim 2016), naïve 103

Bayes (NB) (Bansal et al. 2019), metaheuristics search algorithms and its variants (Bansal 104

et al. 2019; Aljarah, Faris, and Mirjalili 2018), random forest (RF) (Mantas et al. 2019; 105

Candanedo and Feldheim 2016), ensembles (Mantas et al. 2019), gradient boosting 106

machine (Candanedo and Feldheim 2016), regression and its variants (Lorencin et al. 107

2019), and linear discriminant analysis (LDA) (Candanedo and Feldheim 2016). 108

Compared to other machine learning algorithms, NNs is widely adopted because 109

of its superior performance and universal approximation ability (Wang et al. 2019). 110

Usually, the application of NNs in production research involves learning of the 111

connection weights by either BP or random generation with a lot of hyperparameter 112

tuning (Chien, Lin, and Lin 2020) which makes learning complicated and challenging 113

(Kusiak 2020; Solimanpur, Vrat, and Shankar 2004). According to the best of our 114

knowledge, insufficient attempts have been made to improve the NNs performance and 115

speed by analytically calculating connection weights on both sides of the network with a 116

small number of hyperparameters initialization. The novelty of the proposed algorithm 117

exists in its improved cascade architecture by connecting linearly independent hidden 118

layer to the output units and analytically calculating connection weights. This may 119

facilitate to predict a wide range of applications with less human intervention. 120

This work applies the proposed CPCLS algorithm and made a state-of-the-art 121

comparison with other machine learning algorithms to predict health sciences, 122

engineering, marine, food products, forestry, and energy application problems. Better 123

generalization performance and faster learning speed of CPCLS give insight that NNs 124

based model prediction capability can be made better by analytically calculating 125

connection weights rather than BP or random generation. Moreover, in current practice, 126

the majority of the production research is focused on solving problems belonging to a 127

single application. This limits the proposed method, in real practice, to a single industry 128

or single business function. The better performance of CPCLS on a wide range of 129

applications give managerial insight that it can be practiced in general and able to handle 130

industrial and business function problems on an integrated platform. Furthermore, the 131

cascade architecture of CPCLS helps to eliminate the problem of “what-if” of fixed 132

topology BPNNs for determining hidden units and layers that involves human 133

interventions and simultaneously affect decision making. The CPCLS can facilitate in 134

optimizing the operations by providing predictive advice and may derive the decision-135

making process by building greater confidence in prediction from historical data rather 136

than mathematical formulation or manual work. 137

This paper is a revised and extended version of that of Khan, Chung, and Chan 138

(2018). In this extended version, the property of maximum error reduction of the CPCLS 139

is explained by supporting statements, lemmas, theoretical analysis, and remarks and 140

further demonstrated by experimental work. The rest of the paper is structured as follows. 141

In Section 2, CasCor and its variants with convergence limitations, Orthogonal linear 142

transformation (OLT) and Ordinary Least Squares (OLS) are briefly explained. Section 143

3 presents the novel CPCLS. Section 4 describes the state-of-the-art comparison. Section 144

5 concludes the paper. 145

2. Existing learning methodologies 146

2.1. CasCor and its variants with convergence drawbacks 147

CasCor initializes by linearly connecting the input units to the output units and tuning 148

randomly generated output connection weights by the QP learning algorithm. When 149

training converges, hidden units are added one by one to discover nonlinear patterns in 150

the problem. The candidate units are added to select the hidden unit, having the property 151

of maximum error reduction. The candidate units receive the input connections from input 152

units and any pre-existing hidden units. The aim is to maximize the covariance 𝑺 between 153

network error and the candidate units by the gradient ascent. When 𝑺 stops improving, 154

the candidate unit with the maximum value of the 𝑺 is chosen as the hidden unit and is 155

linked to the output units by the output connection weights, while incoming connections 156

are kept frozen. Again, the output connection weights are trained by the QP and this 157

procedure continues till the error converges. Figure 1 illustrates the architecture of 158

CasCor. 159

Huang, Song, and Wu (2012) explained that the 𝑺 objective function to maximize 160

the correlation between the hidden unit and network error cannot assure a maximum error 161

reduction with the addition of new hidden unit to the network. Secondly, the output 162

training is repeatedly performed after every hidden unit generation which increases the 163

computational burden. OLSCN was proposed to overcome the above disadvantages 164

which lead CasCor to slow convergence and poor generalization performance. The 165

OLSCN reformulated new objective function based on the OLS for input training which 166

was further optimized by the second order modified Newton method. Qiao et al. (2016) 167

supported the work of Huang, Song, and Wu (2012) and concluded that the CasCor 168

objective function cannot guarantee a maximum error reduction and repeatedly output 169

training can be more time-consuming. However, Qiao et al. (2016) argued that the 170

OLSCN may result in a local minimum, slow convergence, and a computational burden 171

by updating the weights of the hidden units by the modified Newton method. In addition, 172

linear independence of the input units and the hidden units are necessary for QR 173

factorization and the newly formulated objective function, respectively. FCNN was 174

proposed to address the generalization performance and learning speed of CasCor and 175

OLSCN. 176

In Theorem 3.1 (Qiao et al. 2016) of FCNN, it is explained that one or more 177

candidate units in the pool may be linearly independent to the input and any pre-existing 178

hidden units. However, the column matrix of hidden units may not necessarily full rank 179

due to the random generation of input weights. Therefore, MI was proposed to evaluate 180

the candidate unit among the pool of candidates. The candidate unit with the maximum 181

contribution to the sum of squares error (SSE) is added to the network which specifies 182

linearly independence of the candidate unit, however, network optimal error 183

minimization capability cannot be guaranteed. For instance, if among a pool of candidate 184

units, fewer candidate units are linearly independent than the chances of getting the 185

largest contributed MI also decreases. Secondly, the selected candidate unit (hidden unit) 186

may have the property of maximum error reduction capability among the existing 187

candidate pool which cannot assure that the next expecting candidate unit (hidden unit) 188

error reduction will be maximized. This may cause the network to generate some hidden 189

units with less error minimization capability. Eventually, more hidden units need to be 190

added by randomly generating input weight and bias which may make the network more 191

complex. For better understanding, Figure 9 (Qiao et al. 2016) in experimental work 192

illustrates the same problem of not achieving maximal error reduction by FCNN at each 193

hidden unit. It can be seen that error reduction by adding a new hidden unit is not smooth 194

and the objective of maximum error reduction by next newly added hidden units is not 195

achieved. This may result in redundant hidden units with minor effect on the convergence. 196

2.2. OLT and OLS 197

This section describes the existing methodologies that assist proposed CPCLS to 198

analytically calculate the connection weights for achieving maximum error reduction on 199

each hidden layer generation. Consider a training data sample with (𝑿 , 𝒀), where 𝑿 is 200

the input unit matrix of m×n and 𝒀 is the output unit matrix of m×q with hidden units 201

matrix 𝑯 of m×p. The input connection weights matrix of n×p is exemplified by 𝑾, 202

whereas, the output connection weights matrix of p×q are exemplified by 𝜷. 203

OLT generates new p-features space of linearly independent 𝑯 by orthogonally 204

transforming n-features 𝑿 (Jolliffe 2002). It helps to reduce the dimensionality of the 205

correlated 𝑿 by determining the unknown components 𝑾 , with each component 206

explaining the amount of variance in the data. OLT initializes by determining the 207

covariance matrix 𝑺 of equal dimension n×n matrix, with diagonal numbers indicating 208

covariance for the same feature and each number indicating the covariance between n-209

features of 𝑿, to compute the eigenvalue λ and its corresponding eigenvector: 210

 𝑺 =
1

𝑚 − 1
(𝑿 − �̅�)𝑇(𝑿 − �̅�) (1)

where �̅� = ∑ 𝑥𝑖
𝑚
𝑖=1 , with each quantity indicating the mean of n features. 211

The eigenvector, explaining the coordinate system for the new p-features by 212

decreasing dimensions equal to or less than n-features, selection is based on the λ value. 213

The λ is computed from the 𝑺 matrix: 214

 |𝑺 − λ𝑰| = 0 (2)

The corresponding eigenvector based on highest λ can be determined by 215

computing the component 𝑾: 216

 (𝑺 − λ𝑰)𝑾 = 0 (3)

The matrix 𝑾 linearly transforms n-features 𝑿 into new linearly independent p-217

features 𝑯 : 218

 𝑯 = 𝑿𝑾 (4)

OLS reduces the estimation error between the predicted �̂� and the observed 𝒀 219

variables by determining the unknown parameter 𝜷 (Goldberger 1964): 220

 𝒀 = 𝑯𝜷 + 𝑒 (5)

OLS theory is used for determining 𝜷 by: 221

 𝜷 = (𝑯𝑻𝑯)−𝟏𝑯𝑻𝒀 (6)

where (𝑯𝑻𝑯)−𝟏𝑯𝑻 is the Moore Penrose pseudo-inverse of matrix 𝑯 . For better 222

convergence, there should be no linear dependence among 𝑯. 223

In the last step, the �̂� is determined: 224

 �̂� = 𝑯𝜷 (7)

Better network convergence can be achieved by optimally calculating the 225

connection weights in the forward step. Equations (3) and (6) play a key role in 226

determining the connection weights for the novel CPCLS. 227

3. Proposed CPCLS learning algorithm 228

Like CasCor and its variants, which have a similar network structure, CPCLS also works 229

on two concepts of cascade architecture and learning. Figure 2 illustrates CPCLS 230

architecture, which is an improved form of CasCor and its variants. Firstly, CPCLS 231

connects input units to the output units by the linearly independent hidden units to avoid 232

the linear dependency of the input units. Secondly, more than single hidden units can be 233

generated in the hidden layer to achieve faster convergence. Thirdly, the newly generated 234

hidden layer is only linked to the output units, and earlier connections are removed to 235

avoid the linear dependence of the hidden units among the hidden layers. In learning, 236

CasCor repeatedly tunes the connection weights in forward and backward steps by the 237

gradient method, while its variants either perform the gradient method or randomly 238

generate the input weights, which can take more time, and it is equally problematic to 239

control convergence. CPCLS eliminates the need for random generation and gradient 240

methods by analytically computing the connection weights in the forward step. 241

3.1 Supporting statement and lemma 242

Statement 1: (Jolliffe 2002) OLT: The 𝑿 values of n-features are orthogonally 243

transformed into a linearly independent 𝑯 of p-features by determining the eigenvalue λ 244

and its eigenvector W from the input covariance 𝑺. 245

Remark 1: Statement 1 implies that the hidden units generated are linearly 246

independent (uncorrelated) because of the OLT of the input features. 247

Lemma 1: (Huang, Zhu, and Siew 2006) Given a standard Single hidden Layer 248

Feedforward Network (SLFN) with 𝑁 hidden nodes and activation function 𝑔: 𝑅 → 𝑅, 249

which is infinitely differentiable in any interval, for 𝑁 arbitrary distinct samples (xi, yi), 250

where xiϵ 𝐑𝐧 and 𝑦iϵ 𝐑𝐦, for any 𝒘𝒊 and 𝑏𝑖 randomly chosen from any intervals of 𝐑𝐧 251

and 𝐑 , respectively, according to any continuous probability distribution, then with 252

probability one, the hidden layer output matrix 𝑯 of the SLFN is invertible and 253

||𝑯𝜷 − 𝒀|| = 𝟎. 254

Remark 2: Lemma 1 implies that the hidden units need to be linearly independent 255

with a probability of one to obtain the best least-squares solution of 𝒀 = 𝑯𝜷. 256

Remark 3: (Goldberger 1964) According to ordinary least squares theory, the 257

smallest error ||�̂� − 𝒀|| = 𝟎 can be achieved by calculating 𝜷 = (𝑯𝑻𝑯)−𝟏𝑯𝑻𝒀 such 258

that there exists no multicollinearity (linearly dependence) among the hidden units. 259

3.2 Input connection weights 𝑾 determination 260

Based on the above supporting statement, lemma, and remarks, the CPCLS can achieve 261

a best least-squares unique solution by the orthogonal transformation of the input and pre-262

existing hidden units. CPCLS initializes by defining number 𝑁 of 𝑯 in the first hidden 263

layer such that p ≤ n. Initially, 𝑿 is indirectly connected to 𝒀 through 𝑯 to avoid input 264

feature linear dependence. For 𝑾 determination, the eigendecomposition of 𝑺 (1) 265

generates λ (2) and the highest λ values explaining maximum variance in data are used to 266

determine the eigenvectors (3). The determined eigenvectors are referred to as 𝑾 . 267

Knowing 𝑿 and 𝑾, the value of 𝑯 is computed as: 268

 𝑯 = ∅(𝑿𝑾) (8)

where ∅(𝑧) can be any differentiable or nondifferentiable continuous activation function. 269

3.3 Output connection weights 𝜷 determination 270

The second step is to compute the 𝜷 by considering the linear relationship of 𝑯 to 𝒀. The 271

Moore Penrose pseudo-inverse of 𝑯 is calculated and its product with 𝒀 is used to 272

calculate 𝜷 (6). The linear conversion of 𝑯 through 𝜷 generates �̂� (7). The algorithm 273

aims to efficiently converge the network by minimizing the error function 𝐸 faster: 274

 𝐸 =
1

𝑚
∑(�̂�𝑖 − 𝒀𝑖)

2
𝑚

𝑖=1

 (9)

If 𝐸 is a smaller amount than the described target error 𝑒, the CPCLS loop will 275

terminate, else a new 𝑯 will be generated until the required convergence is reached. 276

3.4 Newly added hidden layer connection to the output layer 277

In the proceeding hidden layers, the newly added 𝑯𝒌 (k=1, 2, 3…) receives all incoming 278

connections from 𝑿 and any preexisting hidden layers 𝑯𝒌−𝟏, 𝑯𝒌−𝟐 and so on, whereas, 279

the output layer receives connections from only the newly added 𝑯𝑘 and diminishes its 280

previous connections i.e. 𝑯𝒌−𝟏, 𝑯𝒌−𝟐 and so on. Connecting the previously added hidden 281

layers to the output units plays no significant role in the network. It may only add burden 282

to the network by connecting linearly dependent and redundant hidden units which can 283

reduce the generalization performance, as well as learning speed. Each newly added 𝑯𝑘 284

adds its non-linearity based on the variance in 𝑿 and previously added 𝑯𝒌−𝟏, 𝑯𝒌−𝟐 and 285

so on. This can be expressed in term of error minimization as: 286

 𝐸𝐿𝐻𝐿 = (𝜷𝑯𝒌) − 𝒀 (10)

where 𝐸𝐿𝐻𝐿 is network error by connecting only the newly added hidden layer to the 287

output layer. The newly added 𝑯𝑘 is of a higher level which has learned from the 288

orthogonal linear transformation of both 𝑿 and previously added 𝑯𝒌−𝟏, 𝑯𝒌−𝟐 and so on, 289

and represents the maximum variance of the network in that it guarantees the convergence 290

of the CPCLS. 291

Suppose symmetric matrix 𝑺 has two different eigenvalues 𝜆1 and 𝜆2 292

corresponding to eigenvectors 𝑤1 and 𝑤2 in matrix 𝑾 respectively. Two vectors can be 293

considered orthogonal if their inner product is zero, such as: 𝑤1. 𝑤2 = 0 or 𝑤1
𝑇𝑤2 = 0. 294

where 𝑤1
𝑇 is the transpose of 𝑤1. 295

We have: 296

 𝑺𝑤1 = 𝜆1𝑤1 (11)

and 297

 𝑺𝑤2 = 𝜆2𝑤2 (12)

To prove that 𝑤1 and 𝑤2 are orthogonal: 298

𝜆1(𝑤1. 𝑤2) = (𝜆1𝑤1). 𝑤2 = (𝑺𝑤1). 𝑤2 = (𝑺𝑤1) 𝑇𝑤2 = 𝑤1
𝑇𝑺𝑇𝑤2 299

= 𝑤1
𝑇𝑺𝑤2 = 𝑤1

𝑇𝜆2𝑤2 = 𝜆2(𝑤1
𝑇𝑤2) = 𝜆2(𝑤1. 𝑤2) 300

𝑺 = 𝑺𝑻 because 𝑺 is a symmetric matrix. From mathematical work, we have: 301

 𝜆1(𝑤1. 𝑤2) = 𝜆2(𝑤1. 𝑤2) (13)

 (𝜆1 − 𝜆2)(𝑤1. 𝑤2) = 0 (14)

Since 𝜆1 − 𝜆2 ≠ 0, because both are different. So, we have: 302

 𝑤1. 𝑤2 = 0 (15)

which means that eigenvectors 𝑤1 and 𝑤2 are orthogonal to each other in matrix 𝑾, i.e., 303

𝑤1 ⊥ 𝑤2. This orthogonal property of 𝑾 causes 𝑿 and preexisting 𝑯𝒌−𝟏 to orthogonally 304

linearly transform into linearly independent 𝑯𝑘. Suppose if two hidden unit vectors are 305

generated in 𝑯𝑘 such that the ℎ𝑘1
 is generated from 𝑤1 and ℎ𝑘2

 is generated from 𝑤2, 306

then they can also be considered orthogonal, i.e., ℎ𝑘1
⊥ ℎ𝑘2

. The proof supports Lemma 307

1 and guarantees the convergence of CPCLS because of the 𝑯𝑘 generated are invertible 308

and hence ||(𝜷𝑯𝒌) − 𝒀|| = 𝟎. 309

However, if all (every previous and newly) hidden layers are connected to the 310

output layer, we have: 311

 𝐸𝐴𝐻𝐿 = (𝜷(𝑯𝒌 + 𝑯𝒌−𝟏 + 𝑯𝒌−𝟐 + ⋯ + 𝑯𝟏)) − 𝒀 (16)

where 𝐸𝐴𝐻𝐿 is the network error by connecting all the hidden layers to the output layer. 312

According to Remarks 1 and Lemma 1, the hidden units in multiple hidden layers may 313

create linear dependency and redundancy in that it will avoid the best least square solution 314

assumption. Suppose if two hidden unit vectors are generated in 𝑯𝒌−𝟏 such that ℎ𝑘−11
 is 315

generated from 𝑤𝑘−11
 and ℎ𝑘−12

 is generated from 𝑤𝑘−12
 and two hidden unit vectors 316

are generated in 𝑯𝒌 such that ℎ𝑘1
 is generated from 𝑤𝑘1

 and ℎ𝑘2
 is generated from 𝑤𝑘2

 317

than there is a chance that it may or may not be orthogonal, i.e., 𝑯𝒌−𝟏 ⊥ 𝑯𝒌 or 318

𝑯𝒌−𝟏 ⟂̸𝑯𝒌 . In the latter case, it may void the assumption that the 𝑯 generated are 319

invertible and hence ||(𝜷(𝑯𝒌 + 𝑯𝒌−𝟏 + 𝑯𝒌−𝟐 + ⋯ + 𝑯𝟏)) − 𝒀|| ≠ 𝟎. 320

Hidden units are generated from the eigenvalue and corresponding eigenvector; 321

therefore, the new hidden units feature generation will always be less than or equal to the 322

input units and the previously hidden unit features 𝑿 = (𝑿, 𝑯), such that 𝑝 ≤ 𝑛. Jolliffe 323

and Cadima (2016) stated that the eigenvalues having cumulative percentage variance 324

(CPV) of 70% are commonly used to extract eigenvectors. However, Jolliffe and Cadima 325

(2016) further added that there may circumstances in which the last few eigenvalues may 326

be also of interest in explaining more variance in the data. Researchers (Jolliffe and 327

Cadima 2016; Tortorella et al. 2016) in their work recommended selecting eigenvalues 328

giving a CPV greater than 70% to a maximum of 99%. The experimental work has been 329

performed to study the effect of hidden unit selection on generalization performance and 330

learning speed. 331

3.5 CPCLS hyperparameters 332

CPCLS initializes with a small number of hyperparameters i.e. 𝑯 and e, in comparison 333

with other fixed and constructive topology algorithms i.e. learning rate, hidden nodes, 334

candidate units, etc. This makes learning simple. 335

Algorithm CPCLS 336

Given a training set (𝑿 , 𝒀) with input unit matrix 𝑿 be m×n, output unit matrix 𝒀 be 337

m×q, hidden unit matrix 𝑯 be m×p, and target error e: 338

Step 1) Initialization: Define the initial number 𝑁 of 𝑯 in a first hidden layer such that 339

p ≤ n 340

Step 2) Learning Step: 341

While 𝐸 > 𝑒 342

a) Determine the 𝑾 matrix of n×p: 343

1. Calculate the 𝑺 matrix of n×n from n features 𝑿: 344

𝑺 =
1

𝑚 − 1
(𝑿 − �̅�)𝑇(𝑿 − �̅�) 345

�̅� =
1

𝑚
∑ 𝑥𝑖

𝑚

𝑖=1

 346

2. Select λ with the highest values to calculate the eigenvectors. The calculated 𝑁 347

eigenvectors are considered as 𝑾 for 𝑯: 348

|𝑺 − λ𝑰| = 0 349

(𝑺 − λ𝑰)𝑾 = 0 350

b) Take ∅ of 𝑿 and 𝑾 to generate 𝑯: 351

𝑯 = ∅(𝑿𝑾) 352

c) Determine the 𝜷 matrix of p×q: 353

𝜷 = (𝑯𝑻𝑯)−𝟏𝑯𝑻𝒀 354

d) Calculate �̂�: 355

�̂� = 𝑯𝜷 356

e) Calculate 𝐸: 357

𝐸 =
1

𝑚
∑(�̂�𝑖 − 𝒀𝑖)

2
𝑚

𝑖=1

 358

f) Combine the columns of 𝑯 with 𝑿: 359

𝑿 = (𝑿, 𝑯) 360

g) increase the number of 𝑯 by 𝑁′ in the proceeding hidden layers such that p ≤ n: 361

 𝑁 = 𝑁 + 𝑁′ 362

end 363

4. Experimental study 364

The comparative study of the proposed algorithm CPCLS with state-of-the-art machine 365

learning algorithms was conducted to demonstrate its effectiveness. The experimental 366

work was performed in Netmaker v0.9.5.2 and Anaconda Spyder Python v3.2.6. The 367

experimental work of CPCLS, BPNN, and self-adaptive extreme learning machine 368

(SaELM) (Wang et al. 2016) were performed in Python, whereas, the CasCor work was 369

performed in the built-in powerful Netmaker C-programming code. Generally speaking, 370

experimental work in the two programming codes will not affect the comparative study 371

because C programming is considered much faster than Python. The dataset was 372

normalized in the range [0,1] for both input and output and sigmoid activation function 373

∅(𝑧) = 1/(1 + 𝑒−𝑧) was used in the hidden units of the algorithms. 374

The experimental work was divided into three parts: real-world applications 375

prediction, energy applications prediction and studying the CPCLS hidden units and 376

layers characteristics followed by further discussion. Table 1 shows the most popular and 377

widely used dataset in machine learning extracted from UCI (Dua and Graff 2019). The 378

number of hidden units in hidden layers of the CPCLS was set to (2,2), (4,3), (2,1), (2,2), 379

(5,5) for real-world applications such as abalone, airfoil self-noise, forest fires, breast 380

cancer, wine respectively, and (2,2), (2,7), (1,1) for energy applications such as combined 381

cycle power plant, occupancy detection, seismic bumps respectively. The number of 382

CasCor candidate units was set to 3 Nos. The number of hidden units for stochastic 383

gradient descent BPNN was decided by a trial and error approach in the range 5-25 and 384

the hidden units with optimal results are reported. The minimum, maximum and interval 385

hidden units for SaELM was set to 5, 500 and 10 respectively with width factor 𝑄=2 and 386

scale factor 𝐿=4. 387

Tables 2, 3 and 4 show the average best results of 25 trials obtained by the machine 388

learning algorithms. The testing RMSE/accuracy represents the generalization 389

performance, and the learning time represents the learning speed of the algorithms, while 390

the mean and stdev in the table refer to the average and standard deviation results of 25 391

trials. The performance criteria for regression problems and classification problems are 392

RMSE and percentage accuracy respectively. 393

4.1 Real-world applications prediction 394

Table 2 shows the prediction results of real-world applications. The proposed CPCLS 395

algorithm was able to achieve a better generalization performance and learning speed in 396

all cases as compared to CasCor, BPNN, and SaELM. The best results in terms of 397

generalization and learning speed are highlighted in bold and underlined in Table 2. For 398

an in-depth understanding of the convergence rate during each hidden layer, Figure 3 399

illustrates the CPCLS convergence rate of 25 trials for the Abalone dataset. It can be 400

observed that the convergence rate of CPCLS during each hidden layer addition is smooth 401

and stable. 402

CPCLS performance comparison has also been made with CasCor variants to 403

demonstrate its effectiveness. Due to the limitation caused by the unavailability of the 404

original programming code of OLSCN and FCNN, the simulation results of selected real-405

world problems representing both algorithms are taken from their original source papers. 406

To make the comparison more valuable and to get better insights, the CPCLS simulation 407

is carried out by considering all test conditions mentioned in the original paper of OLSCN 408

and FCNN. Table 3 shows the dataset description, algorithms comparison in terms of 409

generalization performance and learning speed. It can be observed that CPCLS 410

generalization performance and learning speed averaged over 25 trials are better with 411

more improved results compared to FCNN and OLSCN. 412

4.2 Energy applications prediction 413

To further validate the performance, a comparative study was performed on energy-based 414

problems. The most demanding energy applications are: 415

(1) Combined cycle power plant: A combined cycle power plant is used to generate 416

electricity from gas turbines and consequently uses the waste energy in a steam 417

turbine to improve the efficiency of the electrical output. The attributes that 418

considerably affect the performance of gas turbine are atmospheric pressure 419

(millibar), temperature (°C) and relative humidity (%), whereas, the attributes that 420

affect the performance of the steam turbine are exhaust steam pressure (cm Hg). 421

The dataset contains an hourly average of attributes (atmospheric pressure, 422

temperature and relative humidity, exhaust steam pressure) to predict the net 423

hourly electrical energy (MW) of the powerplant. 424

(2) Seismic bumps: Seismic hazard prediction is a challenging application area in 425

coal mining. The purpose is to detect the possibilities of the occurrence of rock 426

bursts from seismic activity. The task is to classify high energy seismic bumps as 427

“hazardous” and “non-hazardous” from attributes such as possible seismic hazard, 428

seismic energy, pulses, energy deviation, number of seismic bumps with different 429

energy levels, total and maximum energy recorded for seismic bumps. 430

(3) Occupancy detection: Predicting occupancy detection in an office building is 431

attracting significant interest in reducing energy consumption. Various 432

measurements of light energy (Lux), temperature (°C), relative humidity (%), 433

humidity ratio (kgwater-vapor/kg/air), and CO2 (ppm) along with the time are 434

used to classify whether the room is occupied or not. 435

Table 4 shows the performance of various machine learning algorithms for energy 436

application prediction. For the combined cycle power plant, CPCLS was able to achieve 437

a better performance of 0.0545 RMSE in a learning time of 2.96s compared to CasCor of 438

0.0573 in 29.69s, BPNN of 0.0577 in 59.54s, and SaELM of 0.0547 in 7.09s. For seismic 439

bumps, the generalization accuracy of CPCLS and BPNN is the same with the advantage 440

of CPCLS in that it took 0.01s compared to BPNN of 1.06s. The CPCLS demonstrated 441

its effectiveness by achieving a performance accuracy of 93.83% in a learning time of 442

0.01s compared to CasCor of 92.98% in 29.86s, BPNN of 93.83% in 1.06s, and SaELM 443

of 93.44% in 1.87s respectively. Similar to the combined cycle power plant and seismic 444

bumps, CPCLS also efficiently predicted occupancy detection. CPCLS achieved a better 445

performance accuracy of 99.05% in learning time of 3.95s compared to CasCor of 98.97% 446

in 31.54s, BPNN of 98.98% in 75.33s, and SaELM of 99.03% in 17.64s respectively. The 447

standard deviation of the generalization performance and learning time are also lower 448

which demonstrates the stable results of CPCLS. 449

4.3 Connecting hidden layers to the output layer and varying hidden unit size in 450

the hidden layer of CPCLS 451

4.3.1 Varying hidden unit sizes in the hidden layers 452

For CPCLS, the selection of hidden units in the first hidden layer and proceeding hidden 453

layers is only a single hyperparameter that needs to be defined based on the eigenvalue 454

and corresponding eigenvector. For illustration, experimental work has been performed 455

by taking the example of the abalone dataset. The abalone dataset consists of 9 input 456

attributes with bias. This implies that a lower and higher combination can be (1,1) and 457

(9,9) respectively with a total of 81 combinations. 458

Figures 4, 5 and 6 show the generalization performance, learning speed and 459

number of hidden layers for different combinations. The horizontal axis concerns the 460

addition of hidden units in the first layer and the right legend concerns the addition of 461

hidden units in the proceeding layers. Figure 4 illustrates that the generalization 462

performance is stable for a maximum number of combinations. The minimum 463

0.0748RMSE and maximum 0.0774RMSE were achieved by (5,2) and (4,2) 464

combinations respectively. Furthermore, a lower combination (1,1) achieved 465

0.0765RMSE and higher combination (9,9) achieved 0.0755RMSE. The (5,2), (4,2), (1,1) 466

and (9,9) hidden units are generated from the eigenvalue CPV of (99.65%,96.94%), 467

(99.19%,96.94%), (71.26%,72.92%) and (100%,100%) respectively. The minimum and 468

maximum RMSE combination, and lower and higher hidden unit combinations give 469

insight that hidden units generated based on eigenvalue explaining CPV 𝜆 > 70% are 470

helpful in achieving better generalization performance. However, as shown in Figure 5, 471

the learning time was 2.03s with (1,1) as compared to 0.03s for (9,9). The increase in 472

learning time happens because of the higher computational burden by hidden layers. 473

Figure 6 illustrates that hidden layers reach to 45 Nos. for lower combination (1,1) 474

compared to 4 Nos. for higher combination (9,9). The findings support the existing work 475

and recommend generating hidden units in the layers having eigenvalue explaining CPV 476

𝜆 > 70%. Based on our experimental work, it is recommended that the CPV should not 477

be greater than 99% because many of the last few eigenvalues may have approximately 478

zero variability. The zero variability eigenvalues may create a problem of overfitting 479

which needs to be avoided. 480

4.3.2 The effect of hidden layers connection to the output layer 481

Experimental work has been performed to study the effect of hidden layers connection to 482

output layer by considering both cases for CPCLS: 483

(1) Connecting the last hidden layer to the output layer (LHL) 484

(2) Connect all hidden layers to the output layer (AHL) 485

The work was performed on artificial nonlinear SinC function regression task, 486

generating 4,000 observations in the range [-20,20], by changing the data random state 487

from 0 to 100 with an interval of 5 and data test size from 30% to 70% with an interval 488

of 5%. This makes a total of 21 trials with different random states and 9 trials with 489

different test sizes. The 21 trials with different random states were performed by keeping 490

the constraint of test size equal to 50%. The best result by the random state was selected 491

to perform 9 trials by varying the test sizes. 492

Table 5 shows the generalization performance and learning speed of both cases. 493

Figures 7 and 8 illustrate the generalization performance and learning speed of both cases 494

for each random state and for each test size respectively. Both figures show that the 495

generalization performance becomes worse in most cases for AHL. Compared to AHL, 496

the generalization results of LHL are more stable with minimal deviation. Similarly, the 497

learning time increases for AHL compared to LHL. To avoid an increase in further 498

learning time, the algorithm for AHL needs to stop early when there is no further decrease 499

in error, and the training time is about five times more than LHL. 500

The difference in Figure 9 illustrates that AHL is unable to correctly predict the 501

SinC function, whereas LHL, (the original CPCLS), has predicted accurately all data 502

points of the function. 503

4.4 Further discussion 504

The better generalization performance and faster learning speed of CPCLS on real-world 505

and energy problems compared to CasCor, BPNN, SaELM, OLSCN, and FCNN 506

demonstrate its effectiveness. However, comparison with state-of-the-art machine 507

learning algorithms is important to build greater confidence in the application of CPCLS. 508

Table 6 shows the comparison of CPCLS with popular machine learning algorithms. The 509

comparative study gives an important insight that CPCLS generalization performance in 510

solving various real-world and energy problems is better compared to other machine 511

learning results, that are published recently in the literature. This finding supports that 512

CPCLS is a promising machine learning tool that can be practiced in general to improve 513

various operations of production research. 514

In real practice, the work is beneficial in numerous manners. Taking the example 515

of breast cancer, the CPCLS correctly classified its class as malignant or benign. It is 516

important to avoid misclassification of malignant cancer as benign because it can cause 517

human death. In engineering, the aviation sector works on zero-defect philosophy. Better 518

prediction of airfoils noise by CPCLS can facilitate in improving aircraft efficiency and 519

reduce environmental pollution. CPCLS efficiently prediction of marine species ages 520

rather than a microscope measurement can facilitate in avoiding subjective judgment and 521

fatigue. Besides, the application of CPCLS in predicting possible future hazards can help 522

to protect food products and the wastage of natural resources. 523

The better prediction results of CPCLS for energy applications such as predicting 524

electrical energy of powerplant and reducing energy consumption by accurately 525

predicting building occupancy detection can help in designing better energy management 526

systems. Moreover, predicting seismic hazards by CPCLS as hazardous and non-527

hazardous can prevent fatal accidents. 528

5. Conclusions 529

In this paper, a novel learning algorithm called CPCLS is proposed. Unlike other cascade 530

algorithms, in this approach, hidden units are linearly generated by orthogonal linear 531

transformation and only the last hidden layer is connected to the output layer. It was 532

theoretically and experimentally verified that the hidden units generated in the respective 533

hidden layer are inevitable (i.e. linearly independent) which guarantees CPCLS 534

convergence. Connecting only the last hidden layer to the output layer eventually 535

improves the performance and increase the learning speed because all the hidden units 536

are orthogonal. 537

Compared to the state-of-the-art machine learning algorithms, the proposed 538

CPCLS achieved better generalization performance and learning speed in various 539

prediction tasks. Experimental work also demonstrated that connecting only the last 540

hidden layer rather than all the hidden layers to the output layer creates less burden on 541

the network and significantly improves convergence. 542

The major contributions and findings are: i) The CPCLS provides new insight into 543

existing algorithms by analytically calculating connection weights on both sides of the 544

network rather than gradient iteration or random generation, ii) In CPCLS, the generated 545

hidden units are inevitable ensuring that convergence will be optimal, iii) CPCLS 546

initialize with small number of hyperparameters, such as only defining number of hidden 547

units in the layer, iv) Compared to the existing works, this study provides insight that 548

avoiding direct linear connection of the input layer to the output layer and connecting 549

only newly added hidden layer to the output layer reduces network burden and improves 550

convergence, and v) In current practice, majority of research or models are proposed for 551

specific applications. The better performance of CPCLS, on various applications, in 552

comparison with state-of-the-art machine learning algorithms demonstrate that CPCLS 553

can be practiced in general for prediction of regression and classification tasks to make 554

better-informed decisions. 555

The implications are: i) In the proposed CPCLS, the experimental work was 556

performed on the OLT of the covariance matrix. Other than the covariance matrix, single 557

value decomposition and the correlation matrix can also be applied for OLT. Future work 558

may include studying the application of single value decomposition and correlation 559

matrix and their performance on the CPCLS, ii) Besides, the experimental work is limited 560

to the application of commonly used sigmoid activation function. Other than sigmoid 561

function, the effect of various other activation functions on the performance of CPCLS 562

needs to be explored in future work. 563

References 564

Aljarah, I., H. Faris, and S. Mirjalili. 2018. “Optimizing connection weights in neural 565

networks using the whale optimization algorithm.” Soft Computing 22 (1): 1-15. 566

doi: 10.1007/s00500-016-2442-1. 567

Banerjee, P., V. S. Singh, K. Chatttopadhyay, P. C. Chandra, and B. Singh. 2011. 568

"Artificial neural network model as a potential alternative for groundwater 569

salinity forecasting." Journal of Hydrology 398 (3-4):212-20. 570

Bansal, P., S. Gupta, S. Kumar, S. Sharma, and S. Sharma. 2019. “MLP-LOA: A 571

metaheuristic approach to design an optimal multilayer perceptron.” Soft 572

Computing 23 (23): 12331-45. 573

Candanedo, L. M., and V. Feldheim. 2016. “Accurate occupancy detection of an office 574

room from light, temperature, humidity and CO2 measurements using statistical 575

learning models.” Energy and Buildings 112: 28-39. 576

Chien, C. F., Y. S. Lin, and S. K. Lin. 2020. “Deep Reinforcement Learning for 577

Selecting Demand Forecast Models to Empower Industry 3.5 and an Empirical 578

Study for a Semiconductor Component Distributor.” International Journal of 579

Production Research (in press) doi: 10.1080/00207543.2020.1733125. 580

Chung, S. H., H. L. Ma, and H. K. Chan. 2017. "Cascading delay risk of airline 581

workforce deployments with crew pairing and schedule optimization." Risk 582

Analysis 37 (8):1443-58. doi: 10.1111/risa.12746. 583

Deng, C., J. Miao, Y. Ma, B. Wei, and Y. Feng. 2019. "Reliability analysis of chatter 584

stability for milling process system with uncertainties based on neural network 585

and fourth moment method." International Journal of Production Research (in 586

press). doi: 10.1080/00207543.2019.1636327. 587

Dua, D., and C. Graff. 2019. "UCI Machine Learning Repository." Accessed 2019-03-588

28. http://archive.ics.uci.edu/ml. 589

Ertuğrul, Ö. F. 2018. “A novel type of activation function in artificial neural networks: 590

Trained activation function.” Neural Networks 99: 148-57. 591

Fahlman, S. E., and C. Lebiere. 1990. The cascade-correlation learning architecture. 592

Paper presented at the Advances in neural information processing systems. 593

Fahlman, S. E. 1988. "An empirical study of learning speed in back-propagation 594

networks." In. Pittsburgh PA 15213: School of Computer Science, Carnegie 595

Mellon University. 596

Goldberger, A. S. 1964. "Classical linear regression." In Econometric theory, 156-212. 597

New York: John Wiley & Sons. 598

Grasso, F., A. Luchetta, and S. Manetti. 2018. “A multi-valued neuron based complex 599

ELM neural network.” Neural Processing Letters 48 (1): 389-401. 600

Hecht-Nielsen, R. 1989. Theory of the backpropagation neural network. Paper 601

presented at the International Joint Conference on Neural Networks. 602

Heidari, A., V. G. Agelidis, J. Pou, J. Aghaei, and A. M. Y. M. Ghias. 2018. "Reliability 603

worth analysis of distribution systems using cascade correlation neural 604

networks." IEEE Transactions on Power Systems 33 (1):412-20. 605

Huang, G., S. Song, and C. Wu. 2012. "Orthogonal least squares algorithm for training 606

cascade neural networks." IEEE Transactions on Circuits and Systems I: 607

Regular Papers 59 (11):2629-37. 608

Huang, G. B., Q. Y. Zhu, and C. K. Siew. 2006. "Extreme learning machine: theory and 609

applications." Neurocomputing 70 (1-3):489-501. 610

Hunter, D., H. Yu, M. S. Pukish III, J. Kolbusz, and B. M. Wilamowski. 2012. 611

"Selection of proper neural network sizes and architectures—A comparative 612

study." IEEE Transactions on Industrial Informatics 8 (2):228-40. 613

Hwarng, H. B. 2005. "Simultaneous identification of mean shift and correlation change 614

in AR(1) processes." International Journal of Production Research 43 615

(9):1761-83. doi: 10.1080/00207540512331311822. 616

Jolliffe, I. T., and J. Cadima. 2016. "Principal component analysis: a review and recent 617

developments." Philosophical Transactions of the Royal Society A: 618

Mathematical, Physical and Engineering Sciences 374 (2065):20150202. 619

Jolliffe, I. T. 2002. Principal component analysis. New York: Springer-Verlag. 620

Kapanova, K. G., I. Dimov, and J. M. Sellier. 2018. "A genetic approach to automatic 621

neural network architecture optimization." Neural Computing and Applications 622

29 (5):1481-92. 623

Khan, W. A., S. H. Chung, M. U. Awan, and X. Wen. 2019a. “Machine learning 624

facilitated business intelligence (Part I): Neural networks learning algorithms 625

and applications.” Industrial Management & Data Systems 120 (1):164-95. 626

Khan, W. A., S. H. Chung, M. U. Awan, and X. Wen. 2019b. “Machine learning 627

facilitated business intelligence (Part II): Neural networks optimization 628

techniques and applications.” Industrial Management & Data Systems 120 629

(1):128-63. 630

Khan, W. A., S. H. Chung, and C. Y. Chan. 2018. Cascade Principal Component Least 631

Squares Neural Network Learning Algorithm. Paper presented at the 2018 24th 632

International Conference on Automation and Computing (ICAC). 633

Kim, B., Y. S. Jeong, S. H. Tong, and M. K. Jeong. 2019. “A generalised uncertain 634

decision tree for defect classification of multiple wafer maps.” International 635

Journal of Production Research (in press). doi: 10.1080/00207543.2019.1637035. 636

Kumar, S., J. Singh, and O. Singh. 2020. “Ensemble-based extreme learning machine 637

model for occupancy detection with ambient attributes.” International Journal of 638

System Assurance Engineering and Management (in press). 639

Kuo, Y. H., and A. Kusiak. 2019. “From data to big data in production research: The 640

past and future trends.” International Journal of Production Research 57 (15-16): 641

4828-53. doi: 10.1080/00207543.2018.1443230. 642

Kusiak, A. 2020. “Convolutional and generative adversarial neural networks in 643

manufacturing.” International Journal of Production Research 58 (5): 1594-1604. 644

doi: 10.1080/00207543.2019.1662133. 645

Kwok, T. Y., and D. Y. Yeung. 1997. "Constructive algorithms for structure learning in 646

feedforward neural networks for regression problems." IEEE Transactions on 647

Neural Networks 8 (3):630-45. 648

Liew, S. S., M. Khalil-Hani, and R. Bakhteri. 2016. "An optimized second order 649

stochastic learning algorithm for neural network training." Neurocomputing 650

186:74-89. 651

Liu, Q., H. Zhang, J. Leng, and X. Chen. 2019. “Digital Twin-Driven Rapid 652

Individualised Designing of Automated Flow-Shop Manufacturing System.” 653

International Journal of Production Research 57 (12): 3903–19. doi: 654

10.1080/00207543.2018.1471243. 655

Liu, Y., L. Wang, X. V. Wang, X. Xu, and L. Zhang. 2019. “Scheduling in Cloud 656

Manufacturing: State-of-the-Art and Research Challenges.” International 657

Journal of Production Research 57 (15–16): 4854–79. doi: 658

10.1080/00207543.2018.1449978. 659

Lorencin, I., N. Anđelić, V. Mrzljak, and Z. Car. 2019. “Genetic algorithm approach to 660

design of multi-layer perceptron for combined cycle power plant electrical 661

power output estimation.” Energies 12 (22): 435201-26. 662

Lv, J., T. Peng, Y. Zhang, and Y. Wang. 2020. “A novel method to forecast energy 663

consumption of selective laser melting processes.” International Journal of 664

Production Research (in press). doi: 10.1080/00207543.2020.1733126. 665

Mantas, C. J., J. G. Castellano, S. M. García, and J. Abellán. 2019. “A comparison of 666

random forest based algorithms: Random credal random forest versus oblique 667

random forest.” Soft Computing 23 (21): 10739-54. 668

Nayyeri, M., H. S. Yazdi, A. Maskooki, and M. Rouhani. 2018. “Universal 669

approximation by using the correntropy objective function.” IEEE Transactions 670

on Neural Networks and Learning Systems 29 (9): 4515-21. 671

Qiao, J., F. Li, H. Han, and W. Li. 2016. "Constructive algorithm for fully connected 672

cascade feedforward neural networks." Neurocomputing 182:154-64. doi: 673

10.1016/j.neucom.2015.12.003. 674

Rumelhart, D. E., G. E. Hinton, and R. J. Williams. 1986. "Learning representations by 675

back-propagating errors." Nature 323 (6088):533-6. doi: 10.1038/323533a0. 676

Solimanpur, M., P. Vrat, and R. Shankar. 2004. “Feasibility and Robustness of 677

Transiently Chaotic Neural Networks Applied to the Cell Formation Problem.” 678

International Journal of Production Research 42 (6): 1065–82. doi: 679

10.1080/00207543.2004.10750072. 680

Tortorella, G. L., G. A. Marodin, D. D. C. Fettermann, and F. S. Fogliatto. 2016. 681

"Relationships between lean product development enablers and problems." 682

International Journal of Production Research 54 (10):2837-55. 683

Wang, G. G., M. Lu, Y. Q. Dong, and X. J. Zhao. 2016. "Self-adaptive extreme learning 684

machine." Neural Computing and Applications 27 (2):291-303. 685

Wang, H., S. Ding, D. Wu, Y. Zhang, and S. Yang. 2018. "Smart connected electronic 686

gastroscope system for gastric cancer screening using multi-column 687

convolutional neural networks." International Journal of Production Research 688

(in press). doi: 10.1080/00207543.2018.1464232. 689

Wang, Z., H. Ma, H. Chen, B. Yan, and X. Chu. 2019. “Performance degradation 690

assessment of rolling bearing based on convolutional neural network and deep 691

long-short term memory network.” International Journal of Production Research 692

(in press). doi: 10.1080/00207543.2019.1636325. 693

Zou, W., F. Yao, B. Zhang, and Z. Guan. 2018. “Improved meta-ELM with error 694

feedback incremental ELM as hidden nodes.” Neural Computing and 695

Applications 30 (11): 3363-70. 696

