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Abstract 

Process industry consumes tremendous amounts of electricity for production. 

Electric load forecasting could be conducive to managing the electricity consumption, 

determining the optimal production scheduling, and planning the maintenance schedule, 

which could improve the energy efficiency and reduce the production cost. This paper 

proposed a short term electric load forecasting model based on the hybrid GA-PSO-

BPNN algorithm. The GA-PSO algorithm is used in a short-term electric load 

forecasting model to optimize the parameters of BPNN. The forecasting model avoids 

the shortcoming that the prediction result is easy to fall into local optimum. The 

papermaking process, as one of the most representative process industries, is selected 

as the study case. The real-time production data from two different papermaking 

enterprises is collected to verify the proposed model. Besides the proposed GA-PSO-

BPNN model, the GA-BPNN and PSO-BPNN based electric load forecasting models 

are also studied as the contrasting cases. The verification results reveal that the GA-

PSO-BPNN model is superior to the other two hybrid forecasting models for future 

application in the papermaking process since its MAPE is only 0.77%.  

Keywords: electric load forecasting; modeling and simulation; papermaking process; 

energy saving; energy consumption 
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Nomenclature 

α Crossover variable 

σ The standard deviation 

𝜇  Mean value 

𝜔 The inertia weight 

𝑏𝑘  Bias value 

𝑐1, 𝑐2 Acceleration constants 

d Population size 

𝑓′  The partial derivative of f 

f The activation function of the hidden layer 

𝑓(𝑥𝑖)  The fitness value of the particle 

𝑔𝑏𝑒𝑠𝑡𝑛  The global best position 

i The iteration number 

k The particle’s index 

L The number of training samples size 

l The dimension of the output variables 

n The length of the sequence 

oik The input value of the hidden layer 

p The position of the particle in the search space 

𝑝𝑏𝑒𝑠𝑡𝑖𝑛  The local best position 

𝑃𝑖  the probability of selecting the particle 

r Correlation coefficient 

𝑟𝑎𝑛𝑑()  The random variables in the range of [0, 1] 

t Time 

𝑣𝑖𝑛
𝑘   The particle’s velocity 

wij The connection weights of the input and hidden layers 

wjk The connection weights of the hidden and output layers 

𝑤′
𝑘𝑗, 𝑏′

𝑗 The updated connection weight and bias 

𝑋̅, 𝑌̅ The average value 



4 

Xi , Yi Two different sequences 

x A data sequence 

xi The input value of the input layer 

𝑥𝑖𝑛
𝑘   The particle’s position 

𝑥𝑡+1
𝑖 , 𝑥𝑡+1

𝑗
 New individuals 

𝑦𝑘  The output value of the output layer 

𝑦𝑖𝑗  The forecasting value 

𝑦̂𝑖𝑗  The real value 

BPNN Back Propagation Neural Networks 

GA Genetic Algorithm 

MAPE Mean absolute percent error 

MAFRE Maximum forecasting relative error 

MIFRE Minimum forecasting relative error 

PSO Particle Swarm Optimization 

RE Relative error 
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1. Introduction 

Process industry consumes massive amounts of electricity for production. In China, 

the electricity consumption of process industrial enterprises accounts for about 70% of 

the total electricity consumption of the whole society [1]. Forecasting future electric load 

for large-scale process industrial enterprises could be conducive to managing the 

electricity consumption, determining the optimal production scheduling, and planning 

the maintenance schedule, etc., which could improve the energy efficiency and reduce 

the production cost. The electricity load for the large-scale process industrial enterprises 

could be affected by many different kinds of factors, such as the production scale, 

product types, the number and characteristics of electric equipment, and regional 

policies, etc. [2]. The accuracy and robustness of electric load forecasting is difficult to 

ensure due to these complicated impact factors. 

The paper manufacturing is a typical process industry, and it is the fourth largest 

energy-intensive industrial sector in the world as well. The energy consumption of 

papermaking industry accounts for nearly 7% of the total industrial energy consumption 

in the world [3]. In the papermaking process, the electricity consumption accounts for 

about 40%-50% of the total energy consumption in the papermaking process [4]. For 

industry users, the electricity prices during peak and off-peak period are different. The 

price for peak period is almost two times higher than that for off-peak period in most 

areas in China [5]. Since there are a large number of intermittent electric equipment in 

the papermaking process, optimizing the startup and shutdown plans of these 

intermittent electric equipment could shift the electricity load from peak to off-peak 
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period, which could reduce the production cost. In China, the industrial enterprises have 

to purchase the electric load quota before consuming. Currently in practice, the 

papermaking enterprises usually purchase electric load quota by experience. This 

method often results in the problem of excessive or insufficient electric load plan, which 

increases the production cost with the needless wastage. Accurate short-term electric 

load forecasting method could guide papermaking process to determine the optimal and 

rational production scheduling, such as setting up the day-ahead power generation plan, 

the electricity purchase plan, the rational production scheduling that shift the 

intermittent electric equipment from peak to off-peak period, and the electricity 

consumption anomaly detection, etc. [6-7]. Those scheduling plans help to reduce 

unnecessary energy consumption. Therefore, to forecast the electric load with an 

efficient and accurate method could help optimizing the production scheduling and 

electricity consumption for the papermaking enterprises. It is a convenient way to 

improve the economic benefits and enhance production stability by adopting the electric 

load forecasting during production process. 

In recent years, many studies on electric load forecasting have been presented. The 

first category is linear forecasting method based on time series, such as trend 

extrapolation [8], linear regression (LR) [9], and autoregressive integral moving average 

model (ARIMA) [10]. However, the embedded drawback is that they could hardly deal 

with the complicated nonlinear characteristics of electric load series, as a result, the 

forecasting performance is usually unsatisfied for these complicated industrial cases [11]. 

To overcome these defects of the linear forecasting methods, intelligent algorithms with 
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learning capabilities are applied: Jetcheva et al. proposed a neural network-based 

integration model for daily construction-level electric load forecasting, which reduced 

50% of the error in comparison with the ARIMA model [12]. Ding et al. established a 

new gray forecasting model to forecast the total electricity consumption and industrial 

electricity consumption in China from 2015 to 2020, and achieved satisfactory results 

[13]. Egrioglu et al. added seasonal trend effects to linear models, and proposed a new 

hybrid approach based on SARIMA algorithm and partial high order bivariate fuzzy 

time series forecasting model [14]. Tarsitano et al. used two-stage seasonal ARIMA to 

forecast hourly electricity loads in six macro regions of Italy [15]. However, the model 

based on single algorithm still has some defects that needs to be improved. For example, 

single algorithm based on forecasting models often fall into local optimum, and the 

convergence time is much longer than the requirement of the industry. Therefore, the 

hybrid forecasting model based on multiple algorithms has been widely studied and 

applied in recent years [16-18]. For example, Safari et al. proposed a hybrid forecasting 

model based on the exponential smoothing model (ESM), ARIMA model and nonlinear 

autoregressive (NAR) neural network to forecast oil prices. This hybrid model solved 

the problems in accurate diagnosis of linear and nonlinear patterns in economic and 

financial time series [19]. Oliveira et al. proposed a bagging ARIMA and exponential 

smoothing method to forecast the mid-long term electric energy consumption in 

different countries. The error of their forecasting results is much better than the single 

algorithm based forecasting model [20]. 

Recently, a large number of metaheuristic methods have been developed to provide 
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more accurate and realistic estimation model through altering the way by which the 

weighting factors are determined [21]. genetic algorithm (GA) [22], particle swarm 

optimization (PSO) [23], rain-fall optimization algorithm (RFO) [24], gene expression 

programming (GEP) [21][25], artificial corporative search (ACS) [26], backtracking search 

algorithm (BSA) [27] and other metaheuristic optimization algorithms have been 

satisfactorily applied in the field of power, petroleum, steel and chemical industry. To 

improve the accuracy of the model, combinatorial metaheuristic methods have been 

developed to eliminate the disadvantages of the single optimization algorithm. For 

example, Particle Swarm Optimization and Ant Colony Optimization (ACO-PSO) [28], 

sub-gradient combined with harmony search algorithms (MSG-HS) [29], GA-PSO [30] 

and etc. 

All these works of course facilitate the development of the electric load forecasting 

methods. However, the current research mainly aim at the power demand of the 

electricity grid with relatively stable electricity load, or the industrial sectors such as 

steel and petrochemical with relatively stable electricity consumption. For industrial 

processes with enormous fluctuations and aperiodicity in electric loads, there still lacks 

the adaptable forecasting model. 

 In order to solve those problems, this study proposes a short-term electric load 

forecasting model based on GA-PSO-BPNN (Genetic Algorithm - Particle Swarm 

Optimization - Back Propagation Neural Networks), combining the local search 

advantage of GA and the global search advantage of PSO to eliminate the drawback 

that BPNN is easy to fall into local optimum. The novelty of this study is that the 
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proposed model fills the gap of electric load forecasting applications for process 

industry, especially papermaking process. Since the electric load of papermaking 

process has the characters of enormous fluctuation ranges and frequency and aperiodic 

changes, the proposed electric load forecasting model will have highly extensive 

application scenarios. 

 

2. Short term electric load forecasting model 

In this study, a hybrid BPNN model with GA and PSO algorithm is established for 

enhancing the accuracy of short-term electric load forecasting. The technical route of 

the proposed model includes four sections: data collection, data preprocessing, model 

training, and forecasting and model evaluation. The moving average filter method is 

applied in the data preprocessing section. The hybrid optimization model based on GA 

and PSO algorithm is adapted to optimize the weights and thresholds of the BPNN 

algorithm. The hybrid PSO-BPNN model and the hybrid GA-BPNN model are adopted 

as the contrasting cases for the proposed GA-PSO-BPNN electric load forecasting 

model. Fig. 1 shows the flow chart of the technical route for this work. 
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Fig. 1. The flow chart of the proposed GA-PSO-BPNN electric load forecasting model 

 

Section 1 introduces data acquisition and input variable selection for the 

forecasting model. The real-time load data of the electric equipment that have high 

correlation with the total electric power are selected as the input variables, as well as 

the temperature and the relative humidity of the production environment. Section 2 is 

data preprocessing. All the production data are derived from online real-time data 

collection database. Due to the interruption of communication in the online collection, 

the interaction between the electric equipment and the impact loads generated during 

the intermittent equipment booting, the electric load data could exceed the actual range, 

namely outliers. These outliers could not reflect the actual production process and 

would decrease the accuracy of the forecasting model. Thus, the outliers need to be 

preprocessed to filter the abnormal data before modeling. The raw data are firstly 

classified by different production scheduling, then the outliers are removed by the 3σ 

method. The removed outliers could be filled up by the nearest neighbor interpolation 

method. Finally, the moving average filter is used for data de-noising to remove the 

high frequency component of electric load data. In Section 3, three different algorithms, 
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GA-PSO, PSO and GA, are adopted to optimize the weights and thresholds of BPNN. 

PSO-BPNN and GA-BPNN models are used as the contrasting case to analyze the 

accuracy and convergence rate of the proposed GA-PSO-BPNN model. In Section 4, 

the forecasting results from the GA-PSO-BPNN model are verified in two different 

industrial cases. And the feasibility of a prediction model is verified by the economic 

analysis of a papermaking enterprise in Hubei province. 

2.1. Data preparation and preprocessing 

In this work, two different papermaking processes are taken as the study cases. All 

the real-time production data are collected from these two papermaking mills. As 

mentioned above, the electric load data could sometimes exceed the actual range 

because of the interruption of data communication, the equipment interaction, and the 

impact loads generated during the intermittent equipment booting. However, apart from 

these outliers, the unscheduled paper-machine downtime due to paper break, the voltage 

fluctuations, and the shifting of paper products factors. These kinds of the data reflect 

the actual electric load and they cannot be regarded as the outliers. Therefore, the 

working conditions of the production process need to be analyzed before preprocessing 

data. Different products, products shifting time, scheduled and unscheduled paper-

machine downtimes are recognized by shutdown signals from the DCS (Distributed 

Control System) and production schedules of the papermaking enterprises. After that, 

data preprocessing is performed to identify invalid data. 

The most widely used method to remove outliers is the 3σ method. The first step is 

to determine whether the data satisfies the normal or approximate normal distribution 
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by using Eq. (1) [31]. 

𝑓(𝑥) =
1

√2×𝜋×𝜎
× 𝑒

−
(𝑥−𝜇)2

2×𝜎2         (1) 

where μ is the mean value of the data sequence and σ is the standard deviation. For the 

data sequence that satisfies the normal or approximate normal distribution, the 3σ 

method defines that the probability of a numerical distribution in (μ-3σ, μ+3σ) is 0.9974 

[31], and the possibility of exceeding this interval is less than 0.3%. That means the data 

distributed beyond (μ-3σ, μ+3σ) could be considered as outliers and need to be removed. 

After removing the outliers, the remaining data sequence faces a problem of data 

missing in the time series. The incomplete data sets could affect the accuracy of 

forecasting models [32] [33]. Therefore, the missing data needs to be re-filled before 

modeling. The details of the missing data re-filling method are shown in the Appendix 

A. 

For the production process, it is inevitable to introduce erroneous data, redundant 

data and measurement noise when converting electrical signals of power consumption 

equipment into digital signals [34]. These kinds of data also have great influence on the 

accuracy of electric load forecasting model. Since the low-quality data could not be 

effectively identified by the 3σ method, data filtering method is introduced. In this work, 

the preprocessed data are filtered by the moving average filtering method and the 

Kalman filtering method. A brief description of two filtering methods is provided in the 

Appendix B. 

2.2. Electric load forecasting model based on hybrid GA-PSO-BPNN algorithm 

There are two key elements of the proposed hybrid GA-PSO-BPNN algorithm 
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based electric load forecasting model: 

(1) The basic short-term electric load forecasting model is developed by BPNN 

algorithm. 

(2) The weights and thresholds of BPNN algorithm are optimized by a hybrid GA-

PSO optimization algorithm. 

The electricity consumption of papermaking process is irregular and not cyclical. 

There are many factors that could affect the total electricity consumption, such as the 

electricity consumption of high-power electric equipment, production scheduling, etc. 

If the traditional prediction model is adopted, the prediction accuracy cannot satisfy the 

requirement of papermaking process. Therefore, a multiple inputs and single output 

forecasting model needs to be developed based on the electric equipment load and the 

production scheduling. BPNN algorithm is an optimal option to tackle the large 

amounts of non-linear real-time production data in papermaking process. 

However, the forecasting model based on BPNN algorithm needs to be optimized 

because of the overfitting problem. The electricity consumption of papermaking 

process changes rapidly. It is suitable to directly train and test the electric load data 

instead of discretizing and encoding them. The PSO algorithm is sophisticated for real-

value processing [35]. However, the PSO algorithm could not achieve complete global 

optimization. It is easy for the results of multi-peak problems to fall into local optimum 

[36]. To solve this problem, GA, a classic global optimization algorithm, is selected in 

the forecasting model to enhance the global search ability. The hybrid forecasting model 

introduces GA into the PSO algorithm by the selection, crossover and mutation 
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processes. The hybrid GA-PSO algorithm is used to optimize the weights and 

thresholds of BPNN, which could improve the global search ability and avoid the 

problem of local optimum.  

The crossover process is the operation of replacing the partial structure of two 

parent individuals to generate new individuals, thus improving the search ability of the 

genetic algorithm. The algorithm used in this study is real-valued encoding. Therefore, 

crossover in genetic operations is achieved by arithmetic crossover operators. The 

formula of crossover at time t is shown as follows [37]: 

𝑥𝑡+1
𝑖 = 𝛼 × 𝑥𝑡

𝑗
+ (1 − 𝛼) × 𝑥𝑛

𝑖       (2) 

𝑥𝑡+1
𝑗

= 𝛼 × 𝑥𝑡
𝑖 + (1 − 𝛼) × 𝑥𝑛

𝑗
      (3) 

where α is a crossover variable, 𝑥𝑡+1
𝑖 ，𝑥𝑡+1

𝑗
 are two new individuals generated at time 

t+1 after crossover calculation at time t, i≠j. 

The core formula of variation process is [37]: 

∆𝑥𝑚𝑎𝑥,𝑡
𝑖 = ∆𝑥𝑚𝑎𝑥,𝑡−1

𝑖 +
(∆𝑥𝑚𝑎𝑥,𝑡

𝑖 − ∆𝑥𝑚𝑎𝑥,𝑡−1
𝑖 )

𝑛⁄    (4) 

Combine the Eqs. (2) - (4), the updated formula of the GA-PSO algorithm can be 

written as [37]: 

∆𝑥𝑚𝑎𝑥,𝑡+1
𝑖 = ∆𝑥𝑚𝑎𝑥,𝑡

𝑖 + 𝑐1 × 𝑟𝑎𝑛𝑑( ) × (∆𝑥𝑚𝑎𝑥
𝑖 − 𝑥𝑖𝑛

𝑘−1) + 

𝑐2 × 𝑟𝑎𝑛𝑑() × (∆𝑥𝑚𝑎𝑥
𝑗

− 𝑥𝑖𝑛
𝑘−1)      (5) 

𝑥𝑖𝑛
𝑘 = 𝑥𝑖𝑛

𝑘−1 + ∆𝑥𝑚𝑎𝑥,𝑡+1
𝑖        (6) 

The framework of the proposed hybrid forecasting model in this study is given in 

Fig. 2. 
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Fig. 2. Flow chart of the proposed GA-PSO-BPNN based forecasting model 

 

The detailed steps of the hybrid algorithm are shown as follows to: 

(1) Select the input and output variables by the correlation analysis, and then 

preprocess the raw data. 

(2) Divide the input and output data sets into training and testing data set. 

(3) Initialize the weights and thresholds of the BPNN. The parameters for the 

BPNN include the neural number of input layer, the neural number of hidden layers, 

the neural number of output layers, the maximum number of training (1000), BPNN 

convergence value (0.001), and learning rate (0.1). 

(4) Initialize the parameters for the GA-PSO, including learning coefficients c1 and 
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c2 (2), population scale N (30), inertia weights wmax and wmin, (0.9 and 0.4), maximum 

number of iteration (100), maximum particle velocity Vmax (0.5), crossover rate (0.5), 

mutation rate (0.1), upper bound of position Bmax,and lower bound of position Bmin. 

(5) Train BPNN and calculate the fitness of each particle. Sort the fitness size, and 

use each particle as the local best of the current population in the particle group, denoted 

as Ppbest. The particle with the least fitness is regarded as the global optimal in the global 

group, denoted as Pgbest. 

(6) Set the current iteration number i, and update the velocity and position of the 

particle by using Eq. (5), (6). 

(7) Encode the resulting population, and perform the population selection, the 

genetic crossover and mutation operations on the particles. 

(8) Recalculate the fitness value of the particles, and sort the fitness size. The 

particles with the best fitness in the current particle is taken as the local optimum, 

denoted as Gpbest. The particle with the best fitness in the particle population is taken as 

the global optimum, denoted as Ggbest. 

(9) Compare the size of Ppbest and Gpbest, Pgbest and Ggbest, select the best local 

optimum, denoted as GPpbest, and the best global optimal, denoted as GPgbest. 

(10) Update the velocity and position of the particle according to Eq. (5), (6) and 

determine them whether satisfy the end condition (the end condition judgement is 

whether the upper and lower bounds are exceeded). If not, the number of iterations will 

be increased by 1 and repeat Step (4)-(8) until the end condition is satisfied. 

(11) Set the optimized weights and thresholds of the BPNN, and training the BPNN 
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model. 

(12) Input the processed testing variables, and output the forecasting results. 

2.2.1. Variable Selection 

The accuracy of the input variables can directly affect the accuracy of the 

forecasting model. The total effective electric power is the sum of the electric 

equipment used in the whole papermaking process. How to select input variables from 

these large number of factors is an important issue. According to the electricity 

consumption characteristics of papermaking process, the input variables are divided 

into two parts: one is from the papermaking production process, and the other one is 

from external environment. For the production process, the correlation analysis is 

conducted between the total effective electric power and the electric equipment by Eq. 

(7) [38]. The electric equipment is recognized as the input variables when their absolute 

correlation coefficient is higher than 0.6. For the external environment, the temperature 

and relative humidity during production process are selected as the input variables.  

𝑟 =
∑ (𝑋𝑖−𝑋̅)×(𝑌𝑖−𝑌̅)𝑛

𝑖=1

√∑ (𝑋𝑖−𝑋̅)𝑛
𝑖=1 ×√∑ (𝑌𝑖−𝑌̅)𝑛

𝑖=1

       (7) 

where r is the correlation coefficient, Xi and Yi are the ith number of the two different 

sequences, 𝑋̅ and 𝑌̅ are the average of two different sequences, and n is the length of 

the sequence. 

2.2.2. The algorithm descriptions 

The core algorithms used in the electric load forecasting model are described.  

BPNN algorithm 

BPNN is a multi-layer feed forward network trained by the back propagation of 
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error to optimize artificial neural networks. Its learning rule is to use the steepest 

descent method to continuously adjust the weights and thresholds of the neural network 

by the back propagation of the error until the square of the error of the network cannot 

be further minimized. The objective function is [39]: 

E =
1

2×𝐿
∑ ∑ (𝑦𝑖𝑗 − 𝑦̂𝑖𝑗)2𝑙

𝑗=1
𝑛
𝑖=1       (8) 

where L is the number of training samples size, l is the dimension of the output variable 

y, 𝑦𝑖𝑗 is the forecasting value, and 𝑦̂𝑖𝑗 is the real value. 

The BP neural network model topology includes input layers, hidden layers and 

output layers. The construction of BPNN is shown in Fig. 3. 

x1

xi

xm

bk

o1

oj

on

wij wjk

y1

yk

ys

Input layer Hidden layer Output layer

 

Fig.3 The construction of BPNN 

 

This study chooses the typical BPNN algorithm, which has three–layer structure, 

including one output layer, one input layer and one hidden layer. The input layer, the 

hidden layer, and the output layer are supposed to have m neurons, n neurons, and s 

neurons, respectively. Then the output function is as follows: 

𝑦𝑘 = 𝑓(𝑤1𝑘 × 𝑜1 +··· +𝑤𝑗𝑘 × 𝑜𝑗 +··· +𝑤𝑛𝑘 × 𝑜𝑛 + 𝑏𝑘)    (9) 

where xi represents the input value of the input layer, 𝑦𝑘 is the output value of the 

output layer, f represents the activation function of the hidden layer, sigmoid function 

is used as the activation function in this study, oik represents the input value of the 
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hidden layer, wij represents the connection weights of the input and hidden layers, and 

wjk represents the connection weights of the hidden and output layers, 𝑏𝑘 represent 

bias value. 

The functions of weights of hidden layers and the biases are as follows: 

𝑤′
𝑗𝑘 = 𝑤𝑗𝑘 − 𝛼 ×

1

𝑠
× ∑ ∆𝑘 × 𝑜𝑗

𝑠
𝑘=1       (10) 

𝑏′
𝑗 = 𝑏𝑗 −×

1

𝑠
× ∑ ∆𝑘

𝑠
𝑘=1         (11) 

where 𝑤′
𝑗𝑘 , 𝑏′

𝑗  is the updated connection weight and bias respectively, and ∆𝑘=

(𝑦𝑘 − 𝑦̂𝑘) × 𝑓′, 𝑓′ is the partial derivative of the sigmoid function. 

PSO algorithm 

The PSO algorithm moves the individuals in a group to find the best areas based 

on the fitness of the group. It can be illustrated as a particle in the swarm. Each particle 

moves in the search space to look for the most favorable flight path. Therefore, each 

particle is specified by its position and velocity in the search space which updates them 

based on its personal and its neighbor experiences. The velocity and positional variation 

are updated using the following equations [40]: 

𝑣𝑖𝑝
𝑘 = 𝜔 × 𝑣𝑖𝑝

𝑘−1 + 𝑐1 × 𝑟𝑎𝑛𝑑( ) × (𝑝𝑏𝑒𝑠𝑡𝑖𝑝 − 𝑥𝑖𝑝
𝑘−1) + 

𝑐2 × 𝑟𝑎𝑛𝑑() × (𝑔𝑏𝑒𝑠𝑡𝑝 − 𝑥𝑖𝑝
𝑘−1)       (12) 

𝑥𝑖𝑝
𝑘 = 𝑥𝑖𝑝

𝑘−1+𝑣𝑖𝑝
𝑘−1        (13) 

where, 𝑥𝑖𝑝
𝑘  and 𝑣𝑖𝑝

𝑘  represent the particle’s position and velocity, 𝑝𝑏𝑒𝑠𝑡𝑖𝑛 is the local 

best position, 𝑔𝑏𝑒𝑠𝑡𝑛 is the global best position, 𝑐1 and 𝑐2 adjust the maximum step 

size of learning, which are the constants called ‘acceleration constants’, 𝑟𝑎𝑛𝑑() are the 

random variables in the range of [0, 1], 𝜔 is used to evaluate the effect of the previous 
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velocities on the current velocity, which is called ‘the inertia weight’, p indicates the 

position of the particle in the search space, k is the particle’s index, and i is the iteration 

number. 

GA 

Genetic algorithm is a kind of random search method that learns from the natural 

biological evolution (the survival of the fittest, Genetic mechanism of superiority) [41]. 

The basic steps of the genetic algorithm are expressed as follows: 

(1) Initialization of the optimization parameters: crossover rate, mutation rate, 

population size, etc. 

(2) Calculation of fitness function: The fitness of each chromosome in the 

generation is assessed by the different of original and forecasting electricity load. 

(3) Selection: Calculate the selection rate by Roulette Wheel Selection. As shown 

in Eq. (14) [42]. And the chromosomes are chosen according to their fitness and used as 

parents. The larger the fitness value of the particle is, the greater the rate would be 

selected. 

𝑃𝑖 =
𝑓(𝑥𝑖)

∑ 𝑓(𝑥𝑗)𝑑
𝑗=1

        (14) 

Where 𝑃𝑖 is the probability of selecting the ith particle, d is population size, 𝑓(𝑥𝑖) is 

the fitness of the ith particle. 

(4) Crossover: exchanging partial data of two different chromosomes to produce a 

new chromosome, and the new chromosome contains the characteristics of the two 

original exchanged chromosomes, 

(5) Mutation: a randomly change in one gene value of a chromosome from its 
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initial state to produce a new chromosome, 

(6) Output: it is decided whether the end condition is satisfied. If not, repeat step 

(3)-(5). Otherwise, end the program and output the optimization goal. 

 

3. Industrial verification of the model 

The mean absolute percent error (MAPE) and relative error (RE) are used to 

evaluate the performance of proposed forecasting model. RE and MAPE are defined as 

follows [43][44]: 

RE𝑖 =
(𝑦𝑖𝑗 − 𝑦̂𝑖𝑗)

𝑦𝑜𝑖
⁄ × 100%      (15) 

MAPE =
∑ |

𝑦𝑖𝑗−𝑦̂𝑖𝑗

𝑦̂𝑖𝑗
|𝑛

𝑖=𝑖

𝑛
⁄

× 100%      (16) 

The number of electric equipment and the installation of the meter in different 

papermaking enterprises could be totally different. In order to broad the applicability 

of the proposed model, the data from two different papermaking enterprises are selected 

to verify the forecasting model. Furthermore, the performances of the proposed 

forecasting model are compared with the other two hybrid forecasting models, GA-

BPNN algorithm and PSO-BPNN algorithm based model. 

3.1. Case 1 

In the experiment of Case 1, the data are obtained from a real-world paper mill in 

Guangdong, China. Thirty three sampling locations in this paper mill are selected and 

remained for 60 days. The acquisition frequency is one per 30 min. The raw data is 

preprocessed by the method described in Section 2.1. The processed data of the 

effective electric load for Case 1 is shown in Fig. 4. The input variables are selected by 
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the method described in Section 2.2.1. The input variables include the real-time electric 

load data of 7 sampling positions, the production planning and the relative humidity, as 

shown in Table 1. 

Table 1. Input variables list 

No. Input variables Unit 

1 The effective electric power of refiner kWh 

2 The effective electric power of pulper kWh 

3 The effective electric power of vacuum pump kWh 

4 The effective electric power of drive side kWh 

5 The effective electric power of lightening kWh 

6 The total effective electric power of pulp production kWh 

7 The total effective electric power of paper production kWh 

8 Production planning T 

9 Relative humidity % 

 

 

Fig. 4. The preprocessed original data 

 

The first 59 days of the processed data are used for training, and the data on the 

60th day are used to verify the forecasting performance. The parameters for GA-PSO-

BPNN are set as follows: position upper limit, i.e., max(Pload); position lower limit, i.e., 
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i.e., 15; and the neural number of output layer, i.e., 1. The parameters of GA-BPNN and 

PSO-BPNN are set as the same as the GA-PSO-BPNN. The forecasting results are 

shown in Fig. 5. Fig. 5(a) reveals a comparison of the forecasting performance between 

three different models, and Fig. 5(b) shows the relative error for them. The forecasting 

result shows that the GA-PSO-BPNN based forecasting model achieve the highest 

accuracy and the smallest error when compared with the other two employed models in 

Case 1. 

 

(a) Forecasting results 

 

(b) Relative error 

Fig. 5. Forecasting results comparison of the three models for Case 1 
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3.2. Case 2  

In the experiment of Case 2, the data are obtained from a paper mill in Hubei, 

China. Seventeen sampling locations in this paper mill are selected and remained for 

60 days. And the data acquisition frequency is one per 30 min. The raw data is 

preprocessed by the method described in Section 2.1. The processed data of effective 

electric load for Case 2 is shown in Fig. 6. The input variables are selected by the 

method described in Section 2.2.1. The input variables include the real-time electric 

load data of 5 sampling positions, the production planning and the relative humidity, as 

shown in Table 2.  

Table 2. Input variables list  

No. Input variables Unit 

1 The effective electric power of refiner kWh 

2 The effective electric power of pulper kWh 

3 The effective electric power of duster kWh 

4 The effective electric power of drive side kWh 

5 The effective electric power of air compressor kWh 

6 Production planning T 

7 Relative humidity % 

 

 
Fig. 6. The preprocessed original data 
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The first 59 days of the processed data are used for training, and the data on the 

60th day are used to verify the forecasting performance. The parameters for GA-PSO-

BPNN are set as follows: upper limit of position, i.e., max( Pload), lower limit of position, 

i.e., min( Pload), the neural number of input layer, i.e., 7, the neural number of hidden 

Layer, i.e., 10, the neural number of output layer, i.e., 1. And the parameters of GA-

BPNN and PSO-BPNN are set as the same as the GA-PSO-BPNN. The forecasting 

results are shown in Fig. 7. Fig. 7(a) is a comparison of the forecasting performance 

between three different models, and Fig. 7(b) is the relative error for them. The 

forecasting result shows that the GA-PSO-BPNN based forecasting model achieve the 

highest accuracy and the smallest error when compared with the other two employed 

models in Case 2. 

 

(a) Forecasting result 
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(b) Relative error 

Fig.7. Forecasting results comparison of the three models for Case 2 
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error [-1.5%, 1.5%] are 81 and 53 in Case 1 and Case 2 respectively. In the case of GA-

BPNN model, the number of time points, which lies within the forecasting error [-1.5%, 

1.5%] are only 22 and 58 in Case 1 and Case 2 respectively. This clearly reveals that 

the GA-PSO-BPNN model has the best consistent performance among all the employed 

models. 

The generated forecasting error of GA-BPNN, PSO-BPNN and proposed GA-

PSO-BPNN models for the two cases are presented in Table 3. The MAPE of the GA-

PSO-BPNN model in Case 1 is 2 times less than that of GA-BPNN, and 0.2% lower 

than that of PSO-BPNN. In Case 2, the MAPE of the GA-PSO-BPNN model is reduced 

by 45.6% compared with GA-BPNN, and by 12.8% compared with PSO-BPNN. The 

verification results using industrial data show that the proposed GA-PSO-BPNN model 

achieve a higher accuracy than the compared models in all the cases. 

Table 3. The forecasting performance analysis 

Cases 

GA-BPNN PSO-BPNN GA-PSO-BPNN 

MAFRE 

(%) 

MIFRE 

(%) 

MAPE 

(%) 

MAFRE 

(%) 

MIFRE 

(%) 

MAPE 

(%) 

MAFRE 

(%) 

MIFRE 

(%) 

MAPE 

(%) 

Case 

1 
-4.55 -0.09 1.88 -4.05 0.03 0.95 -1.86 0.04 0.77 

Case 

2 
3.36 -0.08 1.82 -3.56 0.00 1.41 -3.55 -0.01 1.25 

Note: MAFRE represents Maximum Forecasting Relative Error, and MIFRE represents Minimum 

Forecasting Relative Error. 

In order to show the advantages of the proposed model in the state-of-the-art 

studies, this study compares the proposed method with respect to the accuracy and the 

characteristics of the predicted objects in different fields. The results are shown in Table 

4. Table 4 shows that compared with recent researches, the method proposed in this 
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paper shows a wider range of applications and higher accuracy. 

 

Table 4. Summary of studies on load forecasting for different application scenarios via AI-based 

algorithms 

Application 

scenario 
Core algorithms 

The electric load 

characters 

MAPE 

(%) 
Period References 

Processing 

industry 
GA-PSO-BPNN Unstable and aperiodicity 0.77 

Short 

term 

This study 

Power grids 

CS-WNN Stable and periodicity 1.39 [45] 

GPSO-ANN Stable and periodicity >1 [46] 

DMD Unstable and periodicity 1.11 [50] 

SDPSO-ELM Unstable and aperiodicity 2.18 [40] 

EMD-FOA-GRNN Stable and aperiodicity 0.81 [49] 

GOA-SVM Stable and periodicity 1.39 [18] 

Wind 

SSA-BFGS-CS-

WNN 
Stable and aperiodicity 1.19 [45] 

CSV-MOSBO-

ENN 
Stable and aperiodicity 1.57 [52] 

MWDO-CEEMD-

BP 
Unstable and aperiodicity 3.11 [53] 

Building SWEMD-ELM Unstable and periodicity 2.14 [48] 

Electricity 

price 

CS-WNN Unstable and aperiodicity 8.0 [45] 

ICEEMDAN-

VMD-MOGWO-

ENN 

Unstable and aperiodicity 3.4 [54] 

Asphalt 

pavements 
SOS-LSSVR - 12.9 [47] 

Traffic EMD-SAE Unstable and periodicity 8.9 [51] 

Energy 

ACS Stable and aperiodicity 0.74~1.46 
Long 

term 

[26] 

GEP-BSA Stable and aperiodicity 2.89 [21] 

GEP-MLP Stable and aperiodicity 3~23.2 [25] 

 

5. Economic benefits analysis 

In China, to calculate the electricity cost for industrial electricity consumption is 

according to peak and off-peak electricity consumption. Taking Hubei Province as an 

instance, the electricity price for peak period (10:00-11:59; 18:00-21:59) is 1.0906 

RMB/kWh, day period (08:00-09:59; 12:00-17:59; 22:00-23:59) is 0.9086 RMB / kWh 



29 

and night period (00:00-07:59) is 0.4246 RMB / kWh. In comparison with the 

electricity price for peak hours, the electricity price for the day and night was decreased 

by 17% and 61%. Reasonable use of the electricity according to the electricity price of 

peak period and off-peak period (for example, mitigate the peak power demand and 

increase the off-peak power demand) could effectively reduce the production cost and 

alleviate the pressure of electricity consumption of the electricity grid at peak hours. 

The papermaking process has a large amount of intermittent electric equipment. 

In order to shift peak load to off-peak period, the operating hours of intermittent 

equipment and production planning need to be adjusted. Based on the electric load 

forecasting, the operating hours of the intermittent equipment can be rescheduled. This 

study takes Case 2 as the case study to calculate the economic benefits from the electric 

load forecasting.  

In Case 2, the annual production of the paper mill is 100,000 tons. The electricity 

consumption of this paper mill for one week is taken as the instance for the economic 

analysis. In the papermaking process, pulp beating and pulping processes are the batch 

processes. Fig. 8 (a) shows the trend of effective electric power of pulp beating and 

pulping process for one week, and Fig. 8 (b) shows the trend of effective electric power 

for the first day of the week. Fig. 9 and Fig. 10 show the electricity consumption of the 

refiner and pulper in the peak and off-peak periods in this week respectively. Combining 

these four figures, it can be found that the ratio of electricity consumption for different 

refiners and pulpers is close to 1:1:1. The electricity consumption of the refiner is more 

than twice as much as that of the pulpers. According to Fig. 10, the refiners and pulpers 
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have the longest operating hours in the day period, the peak period is second, and the 

night period is the shortest. However, the total operating hours of the pulper is much 

smaller than that of the refiner. Since the capacity the pulping tank in this paper mill is 

100 m3, the required pulp could be made and stored in the night period. According to 

the forecasting results, the operating hours of the refiners could be adjusted to decrease 

the energy consumption during the peak period. The electric load forecasting results 

based on the optimized production schedule is shown in Fig. 11. The electricity cost of 

optimized production schedule based on the electric load forecasting results can save 

400,000 RMB per year. 

 

 

(a) Effective electric power for beating and pulping in one week 
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(b) Effective electric power for beating and pulping in the first day  

Fig. 8. The chart of Effective electric power for beating and pulping 

 

 

Fig.9. Total effective electric power of beating and pulping in peak and off-peak periods for a 

week 
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Fig.10. Total hours of beating and pulping in peak and off-peak periods 

 

 

Fig.11. The electric load trend before and after optimization 
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hybrid GA-PSO-BPNN algorithm for papermaking industry. The model is structured 

based on the major highly correlated electric equipment and the environmental factors. 

The industrial real-time data from two different papermaking enterprises are taken as 

the study cases for training and testing the model.  

Compared with two employed contrast forecasting models (GA-BPNN and PSO-

BPNN), the forecasting performance shows that the proposed GA-PSO-BPNN model 

has the highest accuracy. It is also revealed that the GA-PSO-BPNN model is superior 

to the other two hybrid forecasting models for future application in the papermaking 

process since its MAPE is only 0.77%. The MAPE of the GA-PSO-BPNN model could 

be 2 times less than that of GA-BPNN and could be reduced by 12.8% compared with 

PSO-BPNN. Compared with some state-of-the-art studies, the proposed model also 

shows good reliability and high accuracy of the forecasting performance. The electric 

load forecasting results could help the papermaking enterprises to optimize the 

production schedule. As a case study, a medium scale tissue paper enterprise with 

100,000 tons annual production capacity could save 400,000 RMB per year on the cost 

of electricity. 

 

Acknowledgements 

This work is supported by the Fund of State Key Laboratory of Pulp and Paper 

Engineering (No. 201830), the Fundamental Research Funds for the Central 

Universities (No. 2017BQ023), the Science and Technology Project of Guangdong 

Province (2015B010110004 & 2015A010104004), and the Nature Science Funds of 



34 

Guangdong Province (No.2017A030310562). 

 

Appendix 

A. Interpolation method selection 

After removing the low-quality data and outliers, the remaining data have a 

problem of data missing in the time series. It is necessary to add reasonable data to re-

fill the data set. Because the raw data set used in this work is too large, here a 4 day 

data sample from the total data set is intercepted as an illustration, as shown in Fig. A.1. 

In this study, four different interpolation methods are used to fill the missing data. They 

are: nearest neighbor interpolation method, linear interpolation method, cubic spline 

interpolation method, and Hermite interpolation method.  

(1) Nearest neighbor interpolation 

It is a method of assigning the gray value of the nearest pixel point of the original 

pixel point to the original pixel point in the changed image. That is, the point closest to 

the position where interpolation is required is used as the point to interpolate. 

(2) Linear interpolation 

Suppose that the removing data exists on a certain straight line, the function is 

y=a×x+b, and the position x of the missing data could be used to find the needed value 

of y. 

(3) Cubic spline interpolation 

Suppose S(x) is a piecewise function, and it is a cubic polynomial between each 

interval [xj,xj+1], where a =x0 <···< xn=b is a given set of nodes, S(x) is the cubic spline 
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function on nodes x0，x1，···，xn. If the function value Yj= f (Xj) is given on the node 

xj, ( j =0，1，···，n), and S(xj) =yj is established, ( j= 0，1，···，n), then S(x) is defined 

as a cubic spline interpolation function, and the removing data in the interval [a,b] can 

be interpolated using the function S(x). 

(4) Hermite interpolation 

It satisfies that the interpolation on the node is equal to the value of the given 

function, and the derivative value on the node is also equal to the given derivative value 

at the same time. In the case of higher derivatives, the Hermitian interpolation method 

is more complicated. In the real word situation, it is often the case that the function 

value and the first derivative are given. In this case, the expressions of the Hermitian 

interpolation of n nodes x1，x2，…，xn are as follows[55]: 

𝐻(𝑥) = ∑ ℎ𝑖 × [(𝑥𝑖 − 𝑥) × (2 × 𝑎𝑖 × 𝑦𝑖
′) + 𝑦𝑖]

𝑛
𝑖=1    (A.1) 

where yi=y(xi), 𝑦𝑖
′ is the derivative of yi, ℎ𝑖 = ∏ (

𝑥−𝑥𝑗

𝑥𝑖−𝑥𝑗
)2𝑛

𝑗=1
𝑗≠𝑖

,𝑎𝑖 = ∑
1

𝑥𝑖−𝑥𝑗

𝑛
𝑗=1
𝑗≠𝑖

. 

 

Fig. A.1. The relationship between energy consumption and time 
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result shows that except for the poor effect of cubic spline interpolation, the other three 

interpolation methods work well, so the nearest neighbor interpolation which is more 

convenient to calculate is selected to fill the removing data in this study. 

 

Fig. A.2. The comparison chart of four interpolation methods 
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𝑓(𝑡) =
 ∑ 𝑦(𝑖)𝑡+𝑛

𝑖=𝑡
𝑛⁄          (A.2) 

where f(t) is the filter result at time t, y(i) is the sampling data at time i, and n is the 

filter step size. 

(2) Kalman filter 

Kalman filtering is an algorithm that uses the linear system state equation to 

estimate the state of the system through the input and output observed data of the system. 

Due to the observed data includes the effects of noise and interference in the system, 

the optimal estimate could be seen as the process of filtering. The formula for the whole 

process is as follows [56]: 

𝑋(𝑘|𝑘 − 1) = 𝐴 × 𝑋(𝑘 − 1|𝑘 − 1) + 𝐵 × 𝑈(𝑘)   (B.1) 

𝐹(𝑘|𝑘 − 1) = 𝐴 × 𝐹(𝑘 − 1|𝑘 − 1) × A′ + Q            (B.2) 

𝑋(𝑘|𝑘) =  𝑋(𝑘|𝑘 − 1) + 𝐾𝑔(𝑘) ∗ (𝑍(𝑘) − 𝐻 × 𝑋(𝑘|𝑘 − 1))      (B.3) 

K𝑔(𝑘) =  𝑃(𝑘|𝑘 − 1) × 𝐻′

(𝐻 × 𝐹(𝑘|𝑘 − 1) × 𝐻′⁄          (B.4) 

𝐹(𝑘|𝑘) = （𝐼 − K𝑔(𝑘) × 𝐻） × 𝐹(𝑘|𝑘 − 1)           (B.5) 

where 𝑋(𝑘|𝑘 − 1) is the previous state forecasting result, and 𝑋(𝑘 − 1|𝑘 − 1) is the 

previous state optimization result, 𝑈(𝑘) is the control quantity of the current state. If 

there is no control quantity, its value will be 0, F represents the covariance, A represents 

a state transition matrix, Q is the covariance of the system process, 𝑍(𝑘) is the average 

of the observed values, Kg is the Kalman gain. 

After filling data, the data set need to be filtered. The result is shown in Fig.B.1. 

Due to the result of Kalman filter still contains low-quality data generated by noise or 

interference, the data obtained by moving average filter is smoother and more stable. 
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Therefore, this study uses the moving average method to filter the data. 

 

Fig. B.1. The comparison chart of two filters 
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