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Abstract 

Forecasting accuracy electricity load can help industrial enterprises optimise 

production scheduling based on peak and off-peak electricity prices. The electricity load 

forecasting results can be provided to an electricity system to improve electricity 

generation efficiency and minimize energy consumption by developing electricity 

generation plans in advance and by avoiding over or under the generation of electricity. 

However, because of the different informatization levels in different industries, few 

reliable intelligent electricity management systems are applied on the power supply side. 

Based on industrial big data and machine learning algorithms, this study proposes an 

integrated model to forecast short-term electricity load. The hybrid model based on the 

hybrid mode decomposition algorithms is proposed to decompose the total electricity 

load signal. To improve the generalisation ability of the forecasting model, a dynamic 

forecasting model is proposed based on the improved hybrid intelligent algorithm to 

forecast the short-term electricity load. The results show that the accuracy of the 

proposed dynamic integrated electricity load forecasting model is as high as 99%. The 

integrated framework could forecast abnormal electricity consumption in time and 

provide reliable evidence for production process scheduling. 

 

Keywords: electricity load; dynamic forecasting model; energy system analysis; 

energy system optimisation; artificial intelligence 

 

Nomenclature 

a  A Lagrangian multiplier 

A  The electricity load data 

b  The bias 

c  The penalty coefficient 

𝑐1  Personal learning elements 

𝑐2  Social learning elements 
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di  The regression coefficient 

F(sq) The fitness function 

g  The regression coefficient 

gbestq The best place that all particles in the group have experienced 

h  A new signal 

H(t)  The analytic signal 

I  The identity matrix 

IQR  Interquartile distance 

k  The lag order 

m  The integer representing the length of the comparison vector 

m1  The mean values of the upper and lower envelope lines 

n  The sample step length 

N  Maximum dimension 

o(t)  The original signal 

p  A real number representing the measure of similarity 

pbestq The best place that each individual has experienced 

Q1  The 1st quartiles 

Q3  The 3rd quartiles 

𝑟𝑘  The lag k autocorrelation coefficient 

𝑅𝑒𝑚𝑝 The error control function 

Rn  An n-dimensional vector 

sq  The position of the qth particle 
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S  The population scale 

t  Sampling time point 

T  Time 

u(t)  The mode 

Vi  The velocity of particle i 

𝑣𝑖𝑛
𝑘𝑘  The nnth component of the velocity of the granule q at the kth iteration 

𝑤  The weight coefficient 

𝑤𝑇  Transposed matrix of 𝑤 

‖𝑤‖2 The complexity of the function 

X(l)  The original signal 

z(l)  An n-dimensional time-series 

Z(o)  The n-dimensional reconstruction combination vector  

α  Quadratic penalty factor 

𝛽  The kernel parameter 

𝛾  The centre frequency of each IMF component 

δ(t)  Dirac distribution 

λ(t)  Lagrange multiplier 

εi  The quadratic term of error 

μ  The average value  

σ  The standard deviation 

𝜑(𝑥) Nonlinear function 

ω  The centre frequency 
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Abbreviations 

ACF Autocorrelation Function 

ApEn Approximate Entropy 

DCS Distributed Control System 

ELF Electricity load forecasting 

EMD Empirical Mode Decomposition 

LSSVM Least-Squares Support Vector Machine 

MAPE Mean Absolute Percent Error 

PLC Programmable Logic Controller 

PSO Particle Swarm Optimisation 

RMSE Root Mean Square Error 

STELF Short Term Electricity Load Forecasting 

VMD Variational Mode Decomposition 

 

Subscript 

i A Lagrangian multiplier 

q The order of particles 

k The decomposition order 

kk Number of iterations 

m Dimension 
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1 Introduction 

To achieve the goal of the Paris Agreement, the United Nations Environment 

Programme (UNEP) reported that global carbon emissions need to be reduced by 2.7% 

per year between 2020 and 2030 [1]. Research shows that carbon emission is directly 

related to energy consumption, and the optimal use of energy can assist in controlling 

carbon emissions [2]. In recent years, terminal energy consumption is increasing rapidly, 

wherein the proportion of electricity consumption has seen a sharp rise [3]. In 2018, the 

proportion of electricity consumption accounted for 25.5% of the total terminal energy 

consumption [4]. Industrial enterprises comprise the largest proportion of the total 

electricity consumption, accounting for 70.3% of that in China [4]. However, China has 

proposed to reduce 18% and 22% of energy consumption and carbon emission for the 

major industrial enterprises, respectively [5]. Thus, industrial enterprises need to ensure 

cleaner and sustainable production.  

Efficiency improvement is the most economical approach to minimize energy 

consumption. However, the electricity load curve of the electricity system often 

fluctuates greatly and frequently when a considerable number of industrial production 

and operation processes are unsteady. With the adjustment of the economic structure, 

the total electricity consumption in peak periods is increasingly higher than that in the 

off-peak periods. Low peak shaving capacity leads to the low efficiency of electricity 

system operation and a large amount of energy waste. Currently, electricity cannot be 

stored in large quantities because of the real-time production process. Thus, to improve 

the operational efficiency of the electricity system and save energy and reduce 

emissions, a key method is to maintain the balance between the supply and demand of 

electricity generation and electricity consumption at all times, thereby avoiding 

insufficient or excess power supply problems. To achieve the above goals, the 

electricity system needs to identify changes in the electricity load on the electricity 

consumption side in advance. Thus, it is very important to realise accurate electricity 

load forecasting (ELF). 

Electricity load data are accumulated using some industrial enterprises with a high 
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level of information technology. The electricity consumption management system has 

been established to monitor and count electricity consumption information. However, 

owing to the lack of a study on the big data analysis of the electricity consumption data 

of industrial enterprises, the key data features are hard to extract [6]. Thus, current 

electricity consumption management systems cannot achieve accurate ELF and peak 

load shifting. 

This study proposes an ELF model for the electricity consumption side. The 

electricity scheduling model was proposed using forecasting electricity load data and 

TOU electricity prices. The electricity scheduling model can reduce the operation of 

intermittent electricity devices in peak periods and shift the peak load. Further, 

reporting the accurate forecasts of the electricity load of industrial enterprises to the 

electricity system can help optimise the generation scheduling in advance, and help 

avoid over or under generation. Based on optimised generation scheduling, power 

generation enterprises can use efficient and clean generation devices to minimize the 

carbon emissions of the entire electricity system.  

However, the characteristics of electricity consumption in industrial processes are 

complex. In particular, for the manufacturing industry, the electricity load in peak 

periods has a gap compared to that in the valley periods because of factors such as 

orders, production scheduling, and others. Many factors influence the electricity 

consumption characteristics of different industrial production processes, such as 

industry characteristics, process differences, and enterprise management. 

Electricity load forecasting has obtained great results in power grids [7], renewable 

energy (such as wind power [8], photovoltaic power [9], etc.) generation, building 

energy [10], and other fields. However, the electricity loads of these industries have 

either a periodic character or clear influence factors. Some researches show that using 

environmental temperature as an input variable can help improve the accuracy of the 

forecasting model [11]. However, environmental factors such as environmental 

temperature have little impact on the electricity load of industrial enterprises. The 

electricity load of most industrial enterprises is non-linear, and it has no periodicity 

characteristics. Thus, it is difficult to select key factors as input variables to build an 
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electricity load forecasting model. There are few studies on building forecasting models 

with non-periodic electricity loads. However, the main algorithms of these forecasting 

models are hybrid intelligent algorithms or combination algorithms, and therefore, their 

accuracy is not very high [9]. 

Short-term electricity load forecasting (STELF) models can be divided into 

decomposition algorithm-based forecasting models and non-decomposition algorithm-

based forecasting models [12]. The decomposition algorithm-based forecasting models 

can be considered as adding the decomposition algorithm to non-decomposition 

algorithm-based forecasting models. Many study results showed that the accuracy of 

the decomposition algorithm-based forecasting model is higher than that of the non-

decomposition algorithm-based forecasting model [13]. Moreover, compared with non-

decomposition algorithm-based forecasting models, the decomposition algorithm-

based forecasting model does not suffer from a time delay. Commonly used 

decomposition algorithms are variational mode decomposition (VMD) [14], empirical 

mode decomposition (EMD) [15], and singular spectrum analysis (SSA) [16], wavelet 

transform (WT) [17].  

Given the volatility and instability of industrial process electricity loads, the above 

decomposition models are not always able to accurately extract the complex feature 

correlations that exist in nonlinear and nonstationary data series [18]. To solve the above 

problems, two types of approaches have been proposed: hybrid decomposition 

algorithm-based models and improved classical decomposition models [19]. Although 

the improved classical decomposition model solves the problems of the original 

decomposition model, it introduces new problems. Moreover, some researches show 

that the multiple decomposition algorithm-based integrated models have better results 

than the improved classical decomposition models [20].  

As illustrated in the literature, decomposition algorithms have been introduced to 

forecasting models to improve accuracy for many years. The hybrid decomposition 

algorithm-based models show better signal decomposition performance than other 

decomposition algorithms. Although many hybrid decomposition algorithm-based 

models have been introduced to ELF models, the hybrid decomposition algorithm 
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selection for electricity loads of the industrial process remains a concern. The electricity 

load of the industrial process has the characteristics of enormous fluctuations and 

frequent and aperiodic changes. Thus, the key to proposing an accurate ELF model for 

the industrial process is to choose the right hybrid decomposition algorithm to extract 

the whole signal characteristics. On the other hand, few ELF models have been applied 

in real industrial processes. One reason is that industrial enterprises lack of data 

preprocessing tools. Another reason is that the ELF model can not be used to realise its 

economic value. Thus, it is important to propose an integrated framework for industrial 

process to forecast electricity load accurately, improve the versatility of the ELF model 

and realise the application values. 

This study proposes an integrated framework that can be implemented directly in 

industrial enterprises. The proposed integrated framework can forecast dynamically and 

optimise the production process including data acquisition, data preprocessing, 

electricity load forecasting, and production process optimisation. To propose a general-

purpose for the STELF model for industrial enterprises, this study collects data from an 

industrial enterprise wherein the electricity load has the characteristics of enormous 

fluctuations and frequent and aperiodic changes. The proposed model can be applied to 

industrial processes with little fluctuations and periodicity in electricity loads, industrial 

processes with electricity fluctuations, or industrial processes with aperiodicity in 

electricity loads. The data preparation sub-module includes three parts: outlier 

elimination, data filling, and data filtering. Further, this study proposes a dynamic 

STELF model for industrial enterprises based on empirical mode decomposition, 

variational mode decomposition, particle swarm optimisation and least-squares support 

vector machine (EMD-VMD-PSO-LSSVM). The EMD-VMD-based combined model 

is used to decompose electricity loads. The PSO-LSSVM based hybrid algorithm is 

used to propose the forecasting model. A dynamic period is selected to propose a 

dynamic forecasting model. The production process optimisation sub-module includes 

fault forecasting and electricity consumption optimisation. The electricity consumption 

data from an industrial enterprise were collected to verify the proposed model. In 

addition, four different electricity load forecasting models are studied as contrasting 
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cases. The verification results show that the EMD-VMD-PSO-LSSVM based 

forecasting model has the best forecasting performance. Finally, this study tests the 

production process optimisation layer based on dynamic forecasting results. 

The novelty and contributions of this study are as flows: 

 The integration framework is proposed to address the issue of accurate electricity 

load forecasting and its application value. 

 The EMD-VMD based decomposition model is proposed in the integrated 

framework to extract signals with stability and regularity to improve the accuracy 

of the ELF model. 

 The integrated framework could forecast abnormal electricity consumption in time 

and provide reliable evidence for production process scheduling. 

 The integrated framework can be applied directly in industrial process systems and 

can reduce production costs  

 The proposed integrated framework has been implemented in a real papermaking 

enterprise and gets good results. 

 

2 Methodology: Integrated Framework 

It is very common for industrial enterprises to link to the Internet. Large-scale 

industrial enterprises collect hundreds of millions of data every day. The computational 

complexity of the model increases exponentially when the mathematical model 

develops into an integrated model. General-purpose computers cannot process 

hundreds of millions of data streams in real-time, and therefore, they cannot complete 

the calculation of the integrated model in real-time. Thus, this study proposes an 

integrated framework based on a cloud platform. First, a data acquisition layer is 

designed to collect and transmit electricity data from electricity meters to the cloud 

platform for storage. Then, the data pre-processing layer is built to classify and pre-

process data. Next, this study proposes an ELF model based on the EMD-VMD-PSO-

LSSVM hybrid algorithm. Finally, this study builds a production process optimisation 

layer. The flow chart of the integration framework is shown in Fig. 1. 
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Fig. 1. Flowchart of the integration framework based on the cloud platform 

 

2.1. Data acquisition 

The study collects electricity data from the data acquisition system of industrial 

enterprises. The system includes three main layers: data acquisition, information 

transmission, and data storage. The data acquisition layer is composed of intelligent 

instruments and a programmable logic controller (PLC), which is used to collect real-

time data from electrical devices. The information transmission layer is used to classify 

and transmit the collected data using a distributed control system (DCS). The data 

storage layer is used to save the transmitted electricity data in the database for accessing 

the data conveniently at any time. 

 

2.2. Data pre-processing 

For the production process, transmission signal interruption and unscheduled 

shutdown often occur when transmitting and storing digital signals. The STELF model 

is sensitive to electricity data. Owing to data quality problems such as incomplete and 

inconsistent data, data mining can cause serious consequences, such as increasing the 

uncertainty of system analysis results, which can lead to unreliable outputs, thereby 

reducing the efficiency of data pre-processing and affecting the performance of mining 

algorithms [21]. Thus, data preprocessing is very important. However, missing data is 
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a common problem that occurs after the collection and pre-processing of electricity load 

data, and the validity of forecasting results can be affected by missing data [22]. Thus, 

the data pre-processing layer includes four sub-modules: data acquisition, outliers and 

non-numerical data elimination, data filling, and data filtering. The flowchart of the 

data preprocessing is shown in Fig. 2. The details are as follows:  

(1) Data acquisition: collecting the original electricity consumption data in the 

required time from the database. 

(2) Outliers and non-numerical data elimination: removing outliers using the 

boxplot and non-numerical-type data by screening. 

(3) Data filling: filling the missing data using the least-square fitting interpolation 

method. 

(4) Data filtering: using the twice moving average filtering method to filter the 

electricity load data. 

The boxplot states that the data distributed beyond (Q1-1.5×IQR, Q3+1.5×IQR) 

can be considered outliers and should be removed [23]. Q1 denotes 1st quartiles, Q3 

denotes 3rd quartiles, IQR denotes as interquartile distance. 

The least-square fit algorithm [24] is a fitting polynomial, which is constructed by 

interpolating other discrete points in the interpolation interval. The polynomial 

coefficients are solved using the least squares method. The missing points are filled by 

the least-squares fit algorithm. 

Moving average filtering [25] is defined as 𝐹𝑡 =
∑ 𝐴𝑡−𝑖

𝑛
𝑖=1

𝑛⁄ , and At-i is the 

electricity load data at time t–i, and n is the sample step length. 
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Fig. 2. Data preprocessing flowchart 

 

2.3. Forecasting model 

The accuracy of the ELF model cannot be very high when directly forecasting the 

electricity load data with enormous fluctuations and aperiodicity. The forecasting 

results can have a time delay when using key factors as input variables. To meet the 

accuracy demand of the forecasting model for industrial enterprises, this study proposes 

an EMD-VMD-based combination method to decompose the electricity load signal into 

electricity load components with small fluctuations and periodicity. However, after 

decomposing the electricity load using the EMD-VMD-based model, the increasing 

number of decomposed components will increase the mathematical calculation 

complexity and prediction error of the proposed forecasting model. The approximate 

entropy (ApEn) method can calculate the different complexities of the decomposed 

components. Thus, this study uses the ApEn method to reconstruct the decomposed 

components with similar complexity to reduce the dimension. Currently, a general 

method to select key factors affecting electricity load as input variables is lacking. 

However, some studies have reported that past effective electricity load can affect the 

present effective power [26]. Thus, this study uses the lag autocorrelation function to 
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select the input variables. After decomposition and reconstruction, the components are 

categorized as components with a single trend, components with periodicity, and 

components with stable fluctuation. The PSO-LSSVM algorithm can deal with high-

dimensional and non-linear substances. However, the accuracy of the PSO-LSSVM 

based ELF model will not be high when the component of the electricity load sequence 

has enormous fluctuation. Thus, the study uses the PSO-LSSVM based ELF model to 

predict the components with small fluctuations after decomposition and reorganisation. 

A flowchart of the EMD-VMD-PSO-LSSVM is shown in Fig. 3. 

 

 

Fig. 3. Flowchart of the EMD-VMD-PSO-LSSVM based forecasting model 

 

2.3.1. EMD-VMD based signal decomposition model 

The EMD algorithm and advanced EMD algorithms are introduced into the hybrid 

forecasting model because of their strong adaptive capacity [27]. However, the EMD 
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algorithm and the advanced EMD algorithms have problems with an uncertain number 

of decomposed components and modal mixing, which can affect the signal 

decomposition results. To solve the above problems, the VMD algorithm is introduced 

into the hybrid forecasting model [28]. The decomposition model based on the VMD 

algorithm is used to decompose the electricity load signal. The decomposition results 

can be distorted and irregular when the selected decomposition number is large. The 

main trend can be extracted. However, the fluctuation frequency cannot be reduced 

when the selected decomposition number is too small. Thus, it is not suitable to build a 

forecasting model based on a single VMD algorithm. However, the VMD-based 

decomposition model has the advantage of decomposing signals to regular signals, 

except for the main trend. The EMD-based decomposition model can decompose the 

signal to low-frequency components, i.e., the EMD-based decomposition model has the 

advantage of decomposing signals to stable signals. Thus, this study combines the 

advantages of the EMD algorithm and the VMD algorithm to propose an EMD-VMD 

algorithm-based decomposition model. The proposed combined decomposition model 

can decompose the signal with enormous fluctuations and aperiodicity into a periodic 

and stable signal.  
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Fig. 4. Flowchart of the technical route for the EMD-VMD based decomposition 

model 

 

Fig. 4 shows the flowchart of the technical route for the EMD-VMD-based 

decomposition model. The steps are listed below.  

(1) Decompose the preprocessed electricity load signal in Section 2.2 using the 

EMD algorithm to extract the last decomposed component and add the other 

decomposed components. 
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(2) Initialise the parameters of the VMD algorithm (such as the decomposition 

number is set as 3). Then decompose the added component in step 1 and extract the 

second and third components. 

(3) Repeat steps (1) – (2) when the maximum variation range of the first 

decomposed component obtained using the VMD algorithm is greater than the set value 

(the set value is 100 in the study), otherwise, skip to step 4. 

(4) All extracted components are combined into one dataset. Extract errors 

between the sum of all extracted components and the preprocessed electricity load 

signal in step 1, and input it in the last column of the dataset. 

(5) Output the dataset. 

 

2.3.1.1. EMD algorithm 

The EMD algorithm can decompose a signal with poor performance into a series 

of intrinsic mode functions (IMF) with good performance and residual [29]. The 

calculation steps of the EMD algorithm are as follows [30]: 

(1) Determine all maximum and minimum points of the original signal X(t), fit 

them with a cubic spline function, and obtain the upper and lower envelope lines of X(t). 

The mean values of the upper and lower envelope lines are denoted as m1. Subtract m1 

from X(t) to obtain a new signal h that filters out low-frequency signals, that is, h = X(t) 

− m1. The above process is repeated until h is sufficiently stable to obtain the first-order 

IMF (c1), which represents the highest frequency components of X(t). 

(2) Subtract c1 from X(t) to obtain a new signal r1 without a high-frequency 

component. Decompose r1 to obtain the second-order IMF c2. Repeat step (1) until the 

last signal rn cannot be decomposed. Here, rn represents the trend or mean value of X(t). 

 

2.3.1.2. VMD algorithm 

Variational mode decomposition (VMD) can achieve adaptive signal 

decomposition by searching the optimal solution of the constrained variational model, 

and it can decompose the original signal into a series of modal components with sparse 

characteristics [31]. 
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The calculation steps of the VMD algorithm are as follows: 

(1) For each mode (u(t)), the Hilbert transform [32] is used to compute the related 

analytical signal, the formula is given as  

𝐻(𝑡) = (𝜎(𝑡) +
𝑗

𝜋×𝑡
) ∗ 𝑢(𝑡)                   (1) 

where H(t), δ(t), t, and * represent the analytic signal, Dirac distribution, sampling time 

point, and convolution, respectively. Further, j2 = −1. 

(2) Mix the centre frequency ω with the analytic signal H(t), and shift the centre 

frequency ω pre-estimated for each modal analytical signal  𝜔𝑘  to modulate the 

frequency spectrum of the mixed signal to the corresponding fundamental band, the 

formula [32] is given as 

𝐵(𝑡) = [(𝜎(𝑡) +
𝑗

𝜋×𝑡
) ∗ 𝑢(𝑡)] × 𝑒−𝑗𝜔𝑘𝑡.                  (2) 

(3) Calculate the L2-norm of the gradient square of the fundamental frequency 

band in Eq. (2), and estimate the bandwidth of each mode component. The constrained 

variational method [33] is equated as 

𝑚𝑖𝑛{∑ ‖𝜕𝑡[(𝜎(𝑡) +
𝑗

𝜋×𝑡
) ∗ 𝑢(𝑡)] × 𝑒−𝑗𝜔𝑘𝑡‖

2

2

𝑘 }              (3) 

where 𝑓(𝑡) = ∑ 𝑢(𝑡)𝑘 . 

(4) Introduce the quadratic penalty term and the Lagrange multiplier to obtain an 

unconstrained problem, and finally solve the problem. The formula [33] is given by  

𝐿({𝑢𝑘}, {𝛾𝑘}, 𝜆) = 𝛼 × ∑ ‖𝜕𝑡 × 𝐵(𝑡)‖2
2

𝑘 + ‖𝑜(𝑡) − ∑ 𝑢𝑘(𝑡)𝑘 ‖2
2 + [𝜆(𝑡), 𝑜(𝑡) −

∑ 𝑢𝑘(𝑡)𝑘 ]                          (4) 

where {uk}={u1, u2,···, uk}, {𝛾k}={𝛾1, 𝛾2, ···,𝛾𝑘}, λ(t), α, and o(t) represents the k IMF 

components obtained by decomposing the signal, centre frequency of each IMF 

component, Lagrange multiplier, quadratic penalty factor, and original signal, 

respectively. 

According to the above content, the EMD algorithm can decompose components 

with a single trend, and VMD can decompose components with sparse characteristics. 

Thus, the study proposed a combined decomposition model based on the EMD and 

VMD algorithms to extract components with a single trend or with sparse 

characteristics to improve the accuracy of the ELF model. 
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2.3.2. Approximate entropy 

ApEn is a non-negative number used to represent the complexity of a time series 

[35]. ApEn values are similar when time series have the same trend. Thus, this paper 

uses similar ApEn values to reconstruct decomposed components. The ApEn [35] is 

defined as  

𝐴𝑝𝑒𝑛 = 𝛷𝑛(𝑟) − 𝛷𝑛+1(𝑝)                     (5) 

where 𝛷𝑛(𝑝) = (𝑁 − 𝑛 + 1)−1 × ∑ log (𝐶𝑖
𝑛(𝑝))𝑁−𝑛+1

𝑖=1  , 𝐶𝑖
𝑚(𝑟) =

𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑍(𝑜)𝑠𝑢𝑐ℎ 𝑡ℎ𝑎𝑡 𝑑[𝑍(𝑙),𝑍(𝑜)]≤𝑝

𝑁−𝑚+1
 , and 1≤ l≤ N-m+1. Further, Y(o) denotes the m-

dimensional reconstruction combination vector, i.e., Z(1), Z(2), ···, Z(N-n+1), Z(l)=[z(l), 

z(l+1),···, z(l+n-1)], z(l) denotes an n-dimensional time-series obtained by equal 

sampled time, m denotes an integer representing the length of the comparison vector, 

and p denotes a real number representing the measure of similarity. 

 

2.2.3. Lag autocorrelation function 

The present effective power is affected by the past effective electricity load. To 

determine the influence of the past effective electricity load on the present effective 

power, an autocorrelation function (ACF) is used to guide the selection of information 

feature subsets. The lag ACF is used to choose the input variables. The historical total 

electricity loads are considered the input variables if the absolute lag autocorrelation 

coefficients exceed 0.9. The lag k autocorrelation coefficient r
k
 [36] is defined by  

𝑟𝑘=r(𝑋𝑡, 𝑋𝑡−𝑘) =
∑ (𝑋𝑡−𝑋̅)×(𝑋𝑡−𝑘−𝑋̅)𝑛

𝑡=𝑘+1

∑ (𝑋𝑡−𝑋̅)2𝑛
𝑡=1

                  (6) 

where X is a data set based on a time series X = {X
t
: t∈T}. 

 

2.3.4. LSSVM algorithm 

The least-squares linear system is used by the LSSVM algorithm as a loss function 

instead of the quadratic programming method used by the conventional SVM algorithm. 

The basic principle of LSSVM is to construct an optimal decision function in the 
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selected nonlinear mapping space. The theory of structural risk minimisation is used 

when constructing an optimal decision function. The kernel function of the original 

scope is used instead of using point multiplication in the high-dimensional feature space. 

Assume the sample is an n-dimensional vector where the values of a region in the 

sample are represented as (x1, y1),······,(xj, yj)∈Rn × Rn. 

First, the sample (Ψ(X)) is mapped from the initial space (Rn) to the feature space 

( 𝛹(𝑋) = (𝜑(𝑥1), 𝜑(𝑥2),···, 𝜑(𝑥𝑗)) ) using a nonlinear map. The optimal decision 

function [38] in the nonlinear mapping process is constructed using  

𝑦(𝑥) = 𝑤𝑇 × 𝜑(𝑥) + 𝑏       (7) 

where 𝑤, 𝑤𝑇, 𝜑(𝑥), and b denote the weight coefficient of the samples in the feature 

space, transposed matrix of 𝑤, nonlinear function, and the bias, respectively. 

Based on the structural risk minimisation theory, the constrained optimisation [37] 

is defined as 

𝑅 =
1

2
× ‖𝑤‖2 + 𝑐 × 𝑅𝑒𝑚𝑝                      (8) 

where ‖𝑤‖2  dominates the complexity of the function, and c denotes the penalty 

coefficient. Further, 𝑅𝑒𝑚𝑝 denotes the error control function, which is also called the 

insensitive loss function.  

Widely used loss functions include linear loss functions, quadratic loss functions, 

and hinge loss functions. The variation in the loss function makes the form of the SVM 

different. As the optimisation objective, the loss function of the least-squares linear 

system is the quadratic term of error (εi). The resulting optimisation issue of the LSSVM 

[37] can be formulated as  

min
𝑤,𝑏,𝜀

𝐽(𝑤, 𝜀) =
1

2
× 𝑤𝑇 × 𝑤 + 𝑐 ∑ 𝜀𝑗

2𝑙
𝑖=1      (9) 

where 𝑦𝑖 = 𝜑(𝑥𝑖) × 𝑤𝑇 + 𝑏 + 𝜀𝑖 , 𝑖 = 1,···, 𝑙. 

The Lagrangian [37] is represented by 

𝐿(𝑤, 𝑏, 𝜀; 𝑎) =
1

2
× 𝑤𝑇 × 𝑤 + 𝑐 × ∑ 𝜀𝑖

2𝑙
𝑖=1 − ∑ 𝑎𝑗 × (𝑤𝑇 × 𝜑(𝑥𝑗) + 𝑏 + 𝜀𝑗 − 𝑦𝑗)𝑙

𝑖=1 , 

(10) 

where aj，j=1，···，n, is a Lagrangian multiplier. 
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According to the Lagrangian, the optimisation conditions are given as (11) 

𝜕𝐿

𝜕𝑤
= 0，

𝜕𝐿

𝜕𝑏
= 0，

𝜕𝐿

𝜕𝑎
= 0.      (11) 

Using Eq. (11), the solution is found solving the system of linear equations [37] 

expressed in matrix form as 

[
0 𝐼𝑇

𝐼 Ω + I/y
] [

𝑏
𝑎

] = [
0
𝑦

]        (12) 

where 𝛺𝑖𝑗 = 𝜑(𝑥𝑗)𝑇 × 𝜑(𝑥𝑝) = 𝐾(𝑥𝑗 , 𝑥𝑝), a=[a1,a2,···,aj]
T, y=[y1,y2,···,yj]

T, p=1, 

2, ···, n; I denotes the identity matrix, and the kernel function can be described as 

𝐾(𝑥𝑗 , 𝑥𝑝) = 𝜑(𝑥𝑗) × 𝜑(𝑥𝑝) , and it is a symmetric function conforming to Mercer’s 

condition. 

The regression coefficients di and g are obtained using the least-squares method. 

The LSSVM regression model [37] is defined as 

𝑓(𝑥) = ∑ 𝑑𝑖 × 𝐾(𝑥𝑗 , 𝑥𝑝) + 𝑔𝑙
𝑖=1       (13) 

Because the RBF is a more widely applicable kernel function, it does not require 

a priori knowledge of the dataset. Therefore, this study uses the RBF as the kernel 

function of the LSSVM algorithm. The RBF [37] is defined as 

𝐾(𝑥𝑗 , 𝑥𝑝) = exp (−
‖𝑥𝑗−𝑥𝑝‖

2

2×𝛽2 )      (14) 

where 𝛽 is the kernel parameter. If 𝛽 is large, it is easy to classify all sample points 

into the same class, otherwise, it will cause an overfitting problem. 

The performance of the LSSVM model largely depends on the input variables and 

the parameters. The regularisation parameter c and kernel parameter 𝛽  are usually 

determined based on experience, which readily decreases the accuracy of LSSVM. 

Therefore, PSO is used to find the best-fit parameters of the LSSVM. 

 

2.3.5. PSO algorithm 

The elementary theory of the PSO algorithm was generated by studying the social 

life of fish and birds that live in groups [39]. Instead of assigning functional operations 

to individuals, each individual is treated as a particle (no volume) in the search space 

(N-dimensional), flying at a certain speed (the speed is controlled by its own experience 
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and social experience) in the search field. The position of the qth particle is denoted as 

sq, and sq is substituted into the fitness function F(sq) to obtain the fitness value. The 

best place that each individual has experienced is denoted as pbestq. The best place that 

all particles in the group have experienced is denoted by gbestq. The velocity of particle 

i is regarded as Vi. In general, the range of the positional variation in the nnth (1≤nn

≤N) dimension is limited to [Smin,nn, Smax,nn], and the range of the speed variation is 

limited to [–Vmax,nn, Vmax,n]. For each generation, its velocity and positional variation of 

the nth dimension (1≤nn≤N) is updated using [38]  

𝑣𝑖𝑛
𝑘 = 𝜔 × 𝑣𝑞,𝑛𝑛

𝑘−1 + 𝑐1 × 𝑟𝑎𝑛𝑑() × (𝑝𝑏𝑒𝑠𝑡𝑞,𝑛𝑛 − 𝑠𝑞,𝑛𝑛
𝑘−1 ) + 𝑐2 × 𝑟𝑎𝑛𝑑() × (𝑔𝑏𝑒𝑠𝑡𝑛𝑛 −

𝑠𝑞,𝑛𝑛
𝑘−1) (15) 

𝑠𝑛𝑛
𝑘 = 𝑠𝑞,𝑛𝑛

𝑘−1+𝑣𝑞,𝑛𝑛
𝑘−1       (16) 

where 𝑠𝑛𝑛
𝑘𝑘 is the nnth segment of the position vector of particle q at the kkth iteration, 

𝑣𝑖𝑛
𝑘𝑘 is the nnth component of the velocity of the granule q at the kth iteration, and 𝑐1, 

𝑐2 are personal learning elements and social learning elements, respectively; 𝑟𝑎𝑛𝑑() 

is a random function. 

 

2.4. Production process optimisation 

Frequent unscheduled downtime can affect production scheduling in process 

industries. Moreover, these industries do not focus on electricity consumption in peak 

and off-peak periods, most of which account for nearly 1:1:1. The electricity price in 

the peak periods is more than twice that in the off-peak periods. Thus, industrial 

enterprises can minimize electricity and production costs by reducing unscheduled 

downtime and shifting the peak load. 

The production process optimisation layer forecasts faults and shifts the electricity 

load from peak to off-peak periods for process industries. This layer includes three sub-

modules: display module for forecasting results, fault diagnosis sub-module, and peak 

shifting sub-module. The display sub-module shows the forecasting results and the 

actual results in the form of a line chart, and it sets the warning line based on the size 
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of the electricity load. When the electricity load is below the lower limit of the warning 

line, the fault diagnosis sub-module will transmit a fault warning to remind the 

operators to examine and repair the corresponding electricity device. When the 

electricity load exceeds the upper limit of the warning line, and the time is in the peak 

periods and day periods, and a reminder to reduce the refining and pulping time while 

ensuring the production process is transmitted. The upper limit of the warning line is 

set as μ, and the lower limit of the warning line is set as μ – 2 × σ in this study. Here, μ 

and σ are the average value and the standard deviation of the total electricity 

consumption in one year under normal production, respectively. 

 

3. Results and discussion 

Many evaluation indexes are applied to assess the performance of the forecasting 

model. The study uses the mean absolute percent error (MAPE) and root mean square 

error (RMSE) to assess the performance of the developed STELF model. 

3.1. Case study 

Electricity load data are derived from an actual papermaking enterprise in 

Guangdong, China, and reserved for 60 days. The acquisition frequency was 30 min. 

The acquired data were processed according to the approaches explained in Section 2.2. 

The processed total electricity load data is illustrated in Fig. 5. 

 

 

Fig. 5. Trend graph of Preprocessed total electricity load data 
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The preprocessed electricity load signal is decomposed into eight components 

using the EMD-VMD-based decomposition model. The decomposed components are 

shown in Fig. 6, where Fig. 6(a)–Fig. 6(h) show the decomposed components obtained 

by the EMD-VMD-based model, and Fig. 6(i) shows the residual between the 

preprocessed electricity load signal and the sum of the decomposed components. Fig. 

6(a)- Fig. 6(f) show that the characteristic of decomposed components is regular and 

stable. Fig. 6(g) shows that the VMD algorithm decomposes the overall trend of the 

electricity load. To ensure not losing information, this study preserves the signal filtered 

out by the proposed EMD-VMD model. The results are shown in Fig. 6(h). 

 

   
(a) First decomposed component        (b) Second decomposed component 

   

(c) Third decomposed component        (d) Forth decomposed component 
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(e) Fifth decomposed component          (f) Sixth decomposed component 

   

(g) Seventh decomposed component     (h) Eighth decomposed component 

Fig. 6. Trend graph of the decomposition results 

 

The ApEn method is used to reconstruct similar decomposed components. The 

ApEn values of the eight decomposed components are summarized in Table 1. Table 1 

shows that the smaller the approximate entropy value is, the lower the complexity of 

the signal is. 

 

Table 1. Approximate entropy values of the eight decomposed components 

Entropy Order 

2.19E-04 1 

1.03E-03 6 

4.24E-03 4 

2.52E-02 7 

1.30E-01 2 

2.00E-01 5 
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3.18E-01 3 

8.53E-01 8 

 

This study sets six approximate entropy intervals as follows: [0, 0.001), [0.0001, 

0.05), [0.05, 0.15), [0.15, 0.45), [0.45, 0.75), and [0.75, 2]. Similar decomposed 

components were added according to the six approximate entropy intervals and five 

reconstruction sequences were obtained. The reconstructed components are shown in 

Fig. 7. Fig. 7 shows that all the reconstructed components are still stable. Based on the 

ApEn method, this study decomposes a single trend curve, a trend curve of total 

electricity load without disturbance, and three more regular signals. 

  

(a) First reconstructed component       (b) Second reconstructed component 

   

(c) Third reconstructed component        (d) Forth reconstructed component 
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(e) Fifth reconstructed component 

Fig. 7. Trend chart of the five reconstructed components 

 

The lag autocorrelation method is adopted to choose the input variables of the ELF 

model for each reconstructed component. The input variables of the five reconstructed 

components are listed in Table 2. Table 2 shows that the lower the complexity of the 

component is, the greater the influence of historical information on the present status 

is. 

 

Table 2. Input variables of the five reconstructed components 

Order Input variables Unit 

Reconstructed Component 1 
It-1,1, It-2,1, It-3,1, It-4,1, It-5,1, It-6,1, 

It-7,1, It-8,1, It-9,1, It-10,1 
kWh 

Reconstructed Component 2 
It-1,2, It-2,2, It-3,2, It-4,2, It-5,2, It-6,2, 

It-7,2, It-8,2, It-9,2, It-10,2 
kWh 

Reconstructed Component 3 It-1,3, It-2,3, It-3,3, It-4,3, It-5,3,  kWh 

Reconstructed Component 4 It-1,4, It-2,4, It-3,4, It-4,4, It-5,4 kWh 

Reconstructed Component 5 It-1,5, It-2,5, It-3,5, It-4,5, It-5,5 kWh 

 

The study divides the data set into a training set and a testing set. The ratio of the 

training set to the testing set is 3:1. The forecasting results of each reconstructed 

component are shown in Fig. 8. Fig. 8 shows that the more regular the signal is, the 

more accurate the forecasting results will be. For example, the error at the 149th time 
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point in Fig. 8(d) is 11 times greater than that in Fig. 8(c). 

   

(a) First reconstructed component results (b) Second reconstructed component results 

   

(c) Third reconstructed component results  (d) Forth reconstructed component results 

 

(e) Fifth reconstructed component results 

Fig. 8. Forecasting results of the reconstructed components 

 

The parameters of the PSO algorithm are set as follows: learning coefficients (c1, 

c2), 2; maximum particle velocity (Vmax), 0.5; population scale (S), 30; and the 

maximum number of iterations, 100. The forecasting results are obtained by summing 

the forecasting results of the five reconstructed components. The final forecasting 
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results are shown in Fig. 9. Fig. 9(a) shows the trend chart of the forecasting results, 

and Fig. 9(b) shows the relative error. The evaluation indicators of the proposed model 

are listed in Table 3.  

 

(a) Trend graph of the forecasting results 

 

(b) relative error 

Fig. 9. Final forecasting result 

 

Table 3. Evaluation indicators of the proposed model 

Name MAPE (%) RMSE (kWh) 

Case study 0.66 39.14 

 

Fig. 9 shows that 97.7% of the forecasting results of the proposed model satisfy 

the errors of the industrial requirements between −2% and 2%. The maximum relative 

error of the proposed model is 400 kWh, and the forecasting results do not have a time 

1000

2000

3000

4000

5000

5
0

1
0
0

1
5
0

2
0
0

2
5
0

3
0
0

3
5
0

p
o

w
er

 c
o

n
su

m
p

ti
o

n
 (

k
W

h
)

time (h)

Real-time value

EMD-VMD-PSO-LSSVM



30 
 

delay when forecasting the electricity load with enormous fluctuations. Thus, the test 

results imply that the developed EMD-VMD-PSO-LSSVM based model is suitable for 

forecasting industrial electricity load with enormous fluctuation and aperiodicity. 

However, in Fig. 9(b), comparing the forecast results of the electricity load with 

the two largest fluctuations, the results show that the accuracy of the electricity load 

with the largest fluctuations is 10times lower than that of the smaller ones. The errors 

are mainly derived from Fig. 8(d) and Fig. 8(e). the reason might be that the data set 

has not been updated in time. As time increases, the data characteristics of the model 

cannot fully describe the characteristics of future electricity consumption. Thus, a 

dynamic ELF model has been proposed. The detailed information is shown in Section 

3.3. 

 

3.2. Comparative analysis 

A comparative analysis of the forecasting performance of EMD-VMD-PSO-

LSSVM, VMD-PSO-LSSVM, EMD-PSO-LSSVM, PSO-LSSVM, DT, and LSTM is 

presented in this section. The forecasting results are illustrated in Fig. 10. Fig. 10(a) 

illustrates the forecasting results of the four forecasting models. To illustrate the 

undecomposed and decomposed forecasting results in detail, Fig. 10(a) illustrates the 

enlarged forecasting results on the first day. Fig. 10(b) shows the relative error. A 

benchmark of [−2%, 2%] of the error range is set in Fig. 10(b) to show the accuracy of 

the three forecasting models more intuitively. 

To show the consistency of the different forecasting models, the initial parameters 

of VMD-PSO-LSSVM, EMD-PSO-LSSVM, and PSO-LSSVM are set to be the same 

as those of EMD-VMD-PSO-LSSVM. 
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(b) Relative error 

Fig. 10. Forecasting result contrast of the forecasting model 
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(a) the trend graph of the forecasting results 
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Table 4. Forecasting performance analysis 

Case 1 

Index 

Maximum 

forecasting error (%) 

Minimum 

forecasting error 

(%) 

MAPE 

(%) 

EMD-VMD-PSO-LSSVM 23.71 0.00 0.66 

DT -96.74 0.00 1.56 

LSTM 48.27 0.00 1.51 

PSO-LSSVM 33.88 0.00 0.85 

EMD-PSO-LSSVM −18.62 0.00 0.76 

VMD-PSO-LSSVM −23.49 0.00 0.98 

 

Fig. 10 displays that the proposed EMD-VMD-PSO-LSSVM based forecasting 

model has the most time points within the prediction error [−2%, 2%] (97.5% time 

points from the entire testing time points) when compared with the other three 

forecasting models. The forecasting models based on VMD-PSO-LSSVM, EMD-PSO-

LSSVM, and PSO-LSSVM, DT, LSTM have 96.8%, 86%, 92.7%, 91.4%, and 89.6% 

times points from the total test times points respectively, which lie within the prediction 

error [−2%, 2%]. The results indicate that the EMD-VMD-PSO-LSSVM based 

forecasting model has the best constant capability among all adopted models.  

Table 4 lists the evaluation results of the four models. The maximum error of the 

EMD-VMD-PSO-LSSVM based forecasting model is greater than that of comparative 

decomposition algorithm-based forecasting models, but lower than that of other 

comparative non-decomposition algorithm-based forecasting models. Moreover, the 

ratio of the relative errors of the EMD-VMD-PSO-LSSVM based forecasting model 

without the relative error [−2%, 2%] is 20% less than that of the VMD-PSO-LSSVM 

based ELF model, 82.1% less than that of the EMD-PSO-LSSVM based ELF model, 

65.7% less than that of the PSO-LSSVM based ELF model, 70.9% less than that of DT 

based ELF model, and 75.9% less than that of LSTM based ELF model. The MAPE of 
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the EMD-VMD-PSO-LSSVM based ELF model is 32.6%, 13.2%, 22.3%, 57.7%, and 

56.3% lower than that of the VMD-PSO-LSSVM, EMD-PSO-LSSVM, PSO-LSSVM, 

DT, and LSTM based ELF models, respectively. The forecasting results show that the 

ELF models based on decomposed algorithms do not have a time delay. However, the 

ELF models based on undecomposed algorithms have a time delay. Thus, the developed 

EMD-VMD-PSO-LSSVM based model has higher precision than the contrast models 

and no time delay, which is more suitable for industrial enterprises to forecast electricity 

load compared to the contrast models. 

 

3.3. Dynamic analysis 

The error of the forecasting model can increase when the training dataset of the 

forecasting model is not updated periodically. Thus, this study selects an appropriate 

period to update the training dataset to ensure the stability of the long-term operation 

of the forecasting model. This study tests the dynamic performance of the EMD-VMD-

PSO-LSSVM based forecasting model when the update periods are set as 10, 20, 22, 

23, 24, 25, 30, and 48 respectively. The forecasting results are shown in Fig. 11. Fig. 

11(a) is the forecasting results, Fig. 11(b) is the enlarged graph of the forecasting results 

with enormous fluctuation, and Fig. 11(c) is the error. Table 5 is the evaluation 

indicators of the proposed model with different update periods. 
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(a) the forecasting results 

 

(b) the enlarged graph of the forecasting results with enormous fluctuation 

 

(c) the error 

Fig. 11. the comparative graph of the forecasting results with different periods 
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Table 5. the evaluation indicators of forecasting results with different periods 

Update period 

(30min) 
MAPE (%) 

Maximum forecasting error 

(%) 

RMSE 

(kWh) 

10 0.83 -44.5 70.29 

20 0.88 -36.8 72.18 

22 0.84 -33.8 59.77 

23 0.63 -10.9 32.77 

24 0.79 -24.2 55.93 

25 0.93 -31.7 78.15 

30 0.94 -36.8 69.3 

48 0.87 -44.1 58.18 

 

Fig. 11 shows that the forecasting results of all update periods are consistent with 

the original electricity load when the production process is stable. Fig. 11(b) shows that 

the results of the forecasting model with 23 update periods are closer to the original 

electricity load than those with other update periods. Moreover, Table 5 indicates that 

the accuracy of the results of the forecasting model with 23 update periods is higher 

than that with different update periods. The MAPE of the proposed model was 0.63% 

when the update period was 23, which was 31.7% 39.7%, 33.3%, 25.4%, 47.6%, 49.2%, 

and 38.1% lower than the MAPE of the proposed model when the update period is 10, 

20, 22, 24, 25, 30, and 48, respectively. The RMSE of the forecasting model when the 

update period is 10 is 114.5%, 120.3%, 82.4%, 70.7%, 138.5%, 111.5%, and 77.5% 

lower than the RMSE of the proposed model when the update periods are 10, 20, 22, 

24, 25, 30, and 48, respectively. Thus, this study selects 23 as the update period to 

propose a dynamic electricity load forecasting model. 

 

3.4. Production process optimisation analysis 

This study uses data from a practical case to verify the effectiveness of the 

production process optimisation layer of the proposed integrated framework. Further, 



36 
 

this study uses the proposed dynamic model to optimise the production process 

optimisation layer. The electricity consumption will decrease rapidly when there is an 

unscheduled downtime in the production process. Thus, this study assumed that 

electricity device failure occurs in the production process when the difference between 

the electricity load of forecasting results and the current time is less than μ-2×σ. Fig. 

12 shows the faults forecasting results. The forecasting results show that the fault could 

be forecast 30 min to 1 h in advance. According to the fault forecasting results, the 

process industrial enterprises could have the full time to adjust the production line, 

reduce the time of unscheduled downtimes, and ensure stability to minimize the 

production loss.  

To verify the peak electricity load shaving sub-module, Guangdong Province was 

used as an example. The capacity of the pulping tank in this paper mill is 100 m3. The 

slurry consumption rate is 60 m3 per hour, and refiners and pulpers can produce the 

paper pulp by 70 m3 per hour. When the electricity load exceeds the upper limit of the 

warning line, the production process optimisation layer can stop the operation of the 

refiners and pulpers according to the current operation of those devices to reduce the 

electricity cost. The electricity cost of the optimised production schedule based on the 

proposed integrated framework can save 250,000 RMB per year. 
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Fig. 12. Fault prediction results 

 

4. Conclusions 

Given the serious concern related to energy shortage and environmental 

deterioration, the establishment of electricity load prediction and production process 

optimisation in the electricity management system for industrial enterprises can help 

improve electricity consumption efficiency and achieve the goal of a cleaner and 

sustainable production. 

In this study, an integrated framework that can be directly applied in industrial 

enterprises to forecast short-term electricity load and optimise the production process 

was proposed. This study proposed a signal decomposition model based on the EMD-
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VMD algorithm that can decompose the electricity signal with aperiodicity into 

multiple components with stability, single trend, or periodicity. The model used an 

ApEn method to add components with the same trend to avoid dimension disasters and 

reduce the computational complexity of the forecasting model. The forecasting results 

showed that the dynamic STELF model based on EMD-VMD-PSO-LSSVM was 

superior to the ELF model based on undecomposed algorithms and the ELF model 

based on a single decomposition algorithm. The MAPE of the proposed dynamic 

STELF model was at least 4.5% and 17% lower than that of the ELF model based on 

undecomposed algorithms and the ELF model based on a single decomposition 

algorithm. The proposed ELF model has the advantages of no time delay, high accuracy, 

and high stability. The optimisation results showed that the times of unscheduled 

downtimes would be reduced based on the fault forecasting results, and the electricity 

cost could be minimised based on the peak shifting sub-module. As a case study, a 

medium-scale tissue paper enterprise could save 250,000 RMB per year by using the 

optimised production schedule based on the proposed integrated framework. Thus, the 

proposed model can be used to stabilise the operating process of industrial enterprises, 

improve production efficiency, and reduce electricity consumption and production 

costs. 

The proposed integrated framework in this study opens a new direction for the 

study of intelligent industrial power management systems. Moreover, the proposed 

integrated framework will give industrial enterprises an edge in the competition of the 

centralised declaration of electricity consumption when the future new electricity 

market is formed. The proposed integrated framework can provide reliable data for the 

intelligent electricity consumption management of the power supply side. 
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