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Abstract: Let G = (V,E) be a graph. A subset S of V is called a domi-
nating set if each vertex of V −S has at least one neighbor in S. The dom-
ination number γ(G) equals the minimum cardinality of a dominating set
in G. A minus dominating function on G is a function f : V → {−1, 0, 1}
such that f(N [v]) =

∑
u∈N [v] f(u) ≥ 1 for each v ∈ V , where N [v] is

the closed neighborhood of v. The minus domination number of G is
γ−(G) = min{

∑
v∈V f(v) | f is a minus dominating function on G}. It

was incorrectly shown in [X. Yang, Q. Hou, X. Huang, H. Xuan, The differ-
ence between the domination number and minus domination number of a
cubic graph, Applied Mathematics Letters 16(2003) 1089-1093] that there
is an infinite family of cubic graphs in which the difference γ − γ− can be
made arbitrary large. This note corrects the mistakes in the proof and poses
a new problem on the upper bound for γ − γ− in cubic graphs.
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1. Introduction

All the graphs considered in this paper are finite simple graphs without loops. Let
G = (V (G), E(G)) be a graph. The neighborhood N(v) of a vertex v is the set of
vertices adjacent to v in G and N [v] = N(v) ∪ {v}. The degree of a vertex v is
d(v) = |N(v)|. The minimum degree of G is denoted by δ(G). For S ⊆ V (G), G[S]
denotes the subgraph induced by S in G. If each vertex of V (G) − S has at least one
neighbor in S, then we call S a dominating set. The domination number γ(G) equals
the minimum cardinality of a dominating set in G. A minus dominating function on
G is a function f : V (G) → {−1, 0, 1} such that f(N [v]) =

∑
u∈N [v] f(u) ≥ 1 for each

v ∈ V . The minus domination number of G is γ−(G) = min{
∑

v∈V (G) f(v) | f is a
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minus dominating function on G}. The concept of minus domination was introduced
by Dunbar et al. in [1]. A star of order n is denoted by Sn. Let K4(1) be the graph
obtained from a complete graph K4 on four vertices by subdividing one edge once. The
head of the graph K4(1) is the only vertex of degree 2.

It is easy to see that γ−(G) ≤ γ(G). Hedetniemi (see [2]) once asked the following
question: Does there exist a cubic graph G for which γ−(G) < γ(G)? In [2], Henning
et al. answered the question in the affirmative by constructing a graph of order 52 with
γ− = 14 and γ = 15. However, it is not known that whether the difference γ − γ− can
be made arbitrary large for cubic graphs.
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Figure 1.

Let G1, G2, . . . , Gk be k copies of S4. Mark the vertices of each Gi (1 ≤ i ≤ k)
as shown in Figure 1. Let T be the tree obtained from G1, G2, . . . , Gk by identifying
yi and xi+1 for 1 ≤ i ≤ k − 1. It is easy to see that T contains k vertices of degree
three, k − 1 vertices of degree two and k + 2 vertices of degree one. In [3], Yang et al.
constructed an infinite family of cubic graphs G(k) as follows: For a vertex v of T , if
dT (v) = 1, then take two copies of K4(1) and connect v to the heads of them, and if
dT (v) = 2, then take one copy of K4(1) and connect v to the head of it. Obviously,
G(k) contains 3k + 3 copies of K4(1), say H1,H2, . . . ,H3k+3. Let vi be a vertex of Hi

as shown in Figure 1 and set V0 = {vi | 1 ≤ i ≤ 3k + 3}. Furthermore, Yang et al.
defined a “minus domination function” g on V (G(k)) as follows:

g(v) =


1, if v ∈ V0 or v ∈ V (T ) and dT (v) 6= 3,

−1, if v ∈ V (T ) and dT (v) = 3,

0, otherwise.

They proved that γ−(G(k)) ≤
∑

v∈V (G(k)) g(v) = 4k + 4 and γ(G(k)) = 5k + 4, and
then claimed that the difference γ − γ− can be made arbitrary large for cubic graphs.
However, since

∑
u∈N [v] g(u) = −1 if dT (v) = 2, g is not a minus domination function
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and hence the proof is incorrect. We do not know whether the graph G(k) can show
the result mentioned above. In this work we will show that the difference γ − γ− can
be made arbitrary large by constructing a new infinite family of cubic graphs, and pose
a new problem on the upper bound for γ − γ− in cubic graphs.

2. Our Examples

Let t be a positive integer, n = 9t, and C1 = u1u2 · · ·un and C2 = v1v2 · · · vn two
cycles of length n. Define

• Ai = {aij | 1 ≤ j ≤ t} for i = 1, 2,
• Bi = {ul, vl | l ≡ i (mod 3)} for 0 ≤ i ≤ 2,
• X = {xi | 1 ≤ i ≤ n and i ≡ 0 (mod 3)}, and
• Y = {yi | 1 ≤ i ≤ n and i ≡ 0 (mod 3)}.

Set A = A1 ∪ A2 and B = ∪2
i=0Bi. Let H(n) be the graph with V (H(n)) =

A ∪B ∪X ∪ Y and E(H(n)) = E(C1) ∪ E(C2) ∪ E1 ∪ E2 ∪ E3, where

• E1 = {uivi | ui, vi ∈ B1 and 1 ≤ i ≤ n},
• E2 = {uixi, xiyi, yivi | ui, vi ∈ B0 and 1 ≤ i ≤ n}, and
• E3 = {a1iuj , a2ivj | 1 ≤ i ≤ t, uj , vj ∈ B2 and 9(i− 1) + 2 ≤ j ≤ 9(i− 1) + 8}.

The graph H(18) is shown in Figure 2.
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Lemma 1. Let H = H(n)[A∪B] and S be a subset of V (H). If S dominates A∪B−B0,
then |S| ≥ 5n/9.

Proof. Suppose S is a minimum subset of V (H) that dominates A ∪ B − B0. Let
S ∩ B0 = S1 and S − S1 = S2. Choose S such that |S1| is as small as possible. Set
B0j = {ui, vi | ui, vi ∈ B0 and i ≡ 3(j − 1) (mod 9)}, where 1 ≤ j ≤ 3.

Claim 1. For any u ∈ S1 and v ∈ N [u], N(v) ∩ S2 = ∅.

Proof. Let u ∈ S1 and N(u) = {u′, u′′}. Obviously, u′, u′′ /∈ B0. If u′ ∈ S2 or
N(u′)∩S2 6= ∅, then S∪{u′′}−{u} dominates A∪B−B0, which contradicts the choice
of S. Thus we have N(v) ∩ S2 = ∅ for any u ∈ S1 and v ∈ N [u].

Claim 2. S ∩B02 = ∅.

Proof. By symmetry, we need only to show that u3 /∈ S. If u3 ∈ S, then by Claim 1
we have u2, u4, u5, a11 /∈ S. Since N(u5) = {u4, u6, a11} and N(a11) = {u2, u5, u8}, in
order to dominate u5 and a11, we have u6, u8 ∈ S, which contradicts Claim 1.

Claim 3. S ∩B03 = ∅.

Proof. By symmetry, we need only to show that u6 /∈ S. If u6 ∈ S, then by Claim 1
we have u4, u5, u7, u8, v7, a11 /∈ S. In order to dominate u4, by Claim 2 we have v4 ∈ S,
which implies v6 /∈ S by Claim 1. Since N(v7) = {v6, u7, v8}, we have v8 ∈ S in order
to dominate v7. In this case, S ∪ {u4, a21, u7} − {u6, v4, v8} dominates A ∪ B − B0,
which contradicts the choice of S.

Claim 4. S ∩B01 = ∅.

Proof. Let U = {a11, a21} ∪ {ui, vi | i = 1, 2, 4, 5, 7, 8}. Similarly, we need only to show
that u9 /∈ S. If u9 ∈ S, then by Claim 1 we have a11, u7, u8 /∈ S. By Claim 2, we
have v7 ∈ S in order to dominate u7. By Claim 1, v9 /∈ S. If v8 ∈ S or a21 ∈ S, then
S∪{u7}−{v7} dominates A∪B−B0, which contradicts Claim 1 and hence a21, v8 /∈ S.
Since a11, a21 /∈ S, by Claims 2 and 3, we have |S ∩{u1, u2}| ≥ 1, |S ∩{v1, v2}| ≥ 1 and
|S ∩ {u4, u5, v4, v5}| ≥ 2 in order to dominate u2, v2, u5, v5. Thus we have |S ∩ U | ≥ 5.
Obviously, S′ = (S − U) ∪ {a11, a21, u1, u4, u7} dominates A ∪B −B0. Since |S′| = |S|
and u7, u9 ∈ S′, by Claim 1, this is a contradiction.

By Claims 2-4, we have S ⊆ A ∪ B − B0. Let P3(6) be the graph obtained from
three paths of order 6 by identifying their start vertices and end vertices, respectively.
It is easy to see that H[A ∪ B − B0] is the disjoint union of t copies of P3(6). Since
γ(P3(6)) = 5, we have |S| ≥ 5t = 5n/9.

We now begin to construct our examples G(3, n). For each v ∈ X ∪ Y , we let H[v]
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be a graph that is isomorphic to K4(1) and w(v) a given vertex of H(v) that is not
adjacent to the head of H[v]. Set W = {w(v) | v ∈ X ∪ Y }. Let G(3, n) be the graph
obtained from H(n) by connecting v to the head of H(v) for each v ∈ X ∪ Y . Set
F [v] = G(3, n)[V (H[v]) ∪ {v}] and F = ∪v∈X∪Y V (F [v]).

Lemma 2. γ(G(3, n)) = 17n/9.

Proof. Let S be a minimum dominating set of G(3, n) and S ∩ F = S1. It is easy
to see that |S ∩ F [v]| ≥ 2 for each v ∈ X ∪ Y , and hence |S1| ≥ 4n/3. Since S1

cannot dominate any vertex of A ∪B −B0, in order to dominate A ∪B −B0, we have
|S ∩ (A ∪ B)| ≥ 5n/9 by Lemma 1. Thus we have γ(G(3, n)) ≥ 4n/3 + 5n/9 = 17n/9.
On the other hand, since S′ = A ∪ X ∪ Y ∪ W ∪ {ui | ui ∈ B1 and 1 ≤ i ≤ n} is a
dominating set of G(3, n) and |S′| = 17n/9, we have γ(G(3, n)) ≤ 17n/9, and hence
γ(G(3, n)) = 17n/9.

The following lemma was established independently by Dunbar et al. in [4] and
Zelinka in [5].

Lemma 3. Let G be a cubic graph of order n. Then γ−(G) ≥ n/4.

By the definitions of minus domination function and minus domination number,
it is easy to show that the equality in Lemma 3 holds if and only if n ≡ 0 (mod 4),
and there is a minus domination function f on G such that

∑
u∈N [v] f(u) = 1 for each

v ∈ V (G).

Lemma 4. γ−(G(3, n)) = 14n/9.

Proof. Let f be a function on V (G(3, n)) defined as follows:

f(v) =


1, if v ∈ A ∪B1 ∪X ∪ Y ∪W,

−1, if v ∈ B0,

0, otherwise.

It is easy to check that
∑

u∈N [v] f(u) = 1 for each v ∈ V (G(3, n)), and hence f is a minus
domination function of G(3, n). Since

∑
v∈V (G(3,n)) f(v) = 4n/3 + 2n/9 = 14n/9, we

have γ−(G(3, n)) ≤ 14n/9. On the other hand, noting that G(3, n) is a graph of order
56n/9, we have γ−(G(3, n)) ≥ 14n/9 by Lemma 3, and hence γ−(G(3, n)) = 14n/9.

Remark. From the proof of Lemma 4, we see that the lower bound of γ− in Lemma
3 is the best possible.

Theorem 1. For any positive k, there is a cubic graph G such that γ(G)−γ−(G) ≥ k.

Proof. Take G = G(3, n). By Lemmas 2 and 4, we have γ(G) − γ−(G) = n/3. Since
n/3 →∞ as n →∞, we see that the conclusion holds.
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3. Problem

Let G be a graph of order n. It is well known that γ(G) ≤ n/2. Reed [6, 7] proved
that γ(G) ≤ 3n/8 if δ(G) ≥ 3, and conjectured γ(G) ≤ dn/3e if G is cubic. For the
difference γ(G) − γ−(G), it was shown in [1] that γ(G) − γ−(G) ≤ (n − 4)/5 if G is
a tree and the upper bound is sharp. If G is cubic, then by Lemma 3 and Reed’s
result, we have γ(G) − γ−(G) ≤ n/8. Furthermore, if Reed’s conjecture is true, then
γ(G)− γ−(G) ≤ n/12. Our problem is the following.

Problem 1. For a cubic graph G of order n, what is the best possible upper bound
for γ(G)− γ−(G)?

The graph G(3, n) shows that the upper bound of γ(G)− γ−(G) is at least 3n/56.
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