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ABSTRACT  5 

Automated worker action recognition helps to understand the states of workers, enabling effective 6 

management of work performance in terms of productivity, safety, and health issues. A wristband 7 

equipped with an accelerometer (e.g., activity tracker) allows us to collect the data related to 8 

workers’ hand activities without interfering with their ongoing work. Considering that many 9 

construction activities involve unique hand movements, the use of acceleration data from a 10 

wristband has great potential for action recognition of construction activities. In this context, the 11 

authors examine the feasibility of the wrist-worn accelerometer embedded activity tracker for 12 

automated action recognition. Specifically, masonry work was conducted to collect acceleration 13 

data in a laboratory. The classification accuracy of four classifiers, such as the k-nearest neighbor, 14 

multi-layer perceptron, decision tree, and multi-class support vector machine, was analyzed with 15 

different window sizes to investigate classification performance, and it was found that the multi-16 

class support vector machine with a 4-second window size showed the best accuracy (88.1%) to 17 

classify 4 different sub-tasks of masonry work. The present study makes one noteworthy 18 
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contributions to the current body of knowledge. First, the study allows for automatic action 19 

recognition not interfering with workers’ ongoing work only with a wrist worn sensor, which can 20 

be widely deployed to construction sites. Second, a variability of movement between subject and 21 

experience group were examined; so that consideration of abundant and relevant data acquisition 22 

is suggested. Finally, the use of a single sensor greatly reduces a burden to carry multiple sensors 23 

as well as computational cost and memory. 24 

Keywords: Construction management, Worker, Automation, Accelerometer, Action recognition, 25 

Machine learning, Data analysis, Wearable device.   26 

 27 

INTRODUCTION  28 

Construction, which is among the most labor-intensive industries, involves heavy manual lifting, 29 

and repetitive, physically demanding tasks (Arndt et al., 2005; Seo et al., 2016). As a result, 30 

construction workers are suffering from low productivity, and also are frequently exposed to safety 31 

and health risks (Cheng et al., 2013; Gatti et al., 2014). A comprehensive field data collection on 32 

the workers’ activities is not only essential for evaluating and improving productivity, but also for 33 

identifying any potential issues in safety and health. However, the current practice, which heavily 34 

relies on manual approaches (e.g., work sampling) to collect data on workers’ activities, suffers 35 

from several limitations including time-consuming and expensive procedures, and error-prone due 36 

to the subjective judgement from observer (Golparvar-Fard et al., 2013; Taneja et al., 2010).  37 

Recently, the use of sensors has gained attention for its potential to replace human 38 

observers with automated monitoring technologies. The advancement of sensing technologies, 39 

such as computer vision, global positioning system (GPS), radio-frequency identification (RFID), 40 

and inertial measurement units (IMUs), enable us to monitor workers with automatically collected 41 
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data on their activities (Akhavian & Behzadan, 2016). Among these sensors, a body-worn 42 

accelerometer that measures inertial body motions in three axes (i.e., X, Y and Z axes) has 43 

demonstrated great potential for automated activity monitoring, as it provides information-rich 44 

data on workers' activities, and data processing is also computationally inexpensive (Joshua & 45 

Varghese, 2010). As each activity creates unique acceleration signal patterns, machine learning 46 

algorithms are commonly used to differentiate diverse activities by learning the signal patterns. In 47 

addition, this approach enables continuous data collection, regardless of site conditions, by 48 

attaching a small, light-weight sensor on the human body (Joshua & Varghese, 2010). With these 49 

benefits, action recognition using accelerometers has been studied in the context of automatic 50 

worker monitoring (Chernbumroong et al., 2011; Joshua & Varghese, 2010; Lim et al., 2015; Tsai 51 

2014).  52 

Previous studies have recommended the attachment of an accelerometer on a worker’s 53 

waist or back, as it can reflect movements of the center of gravity of the body and can minimize 54 

discomfort due to the attachment of a sensor on the body (Bouten et al. 1997; Joshua & Varghese, 55 

2010; Jebelli et al. 2014, 2015, 2016, 2018; Kim et al. 2018). However, it would be challenging to 56 

differentiate upper-limb dominant activities such as hand brushing as the accelerometer attached 57 

on waist or back is difficult to capture acceleration signals generated by hand movements (Ravi et 58 

al. 2005). In particular, construction tasks involve a large portion of hand and upper-limb dominant 59 

activities such as manual tool and material handling, and all construction tasks somehow require 60 

unique arm movement. Therefore, accelerometer placed on wrist can directly capture hand and 61 

upper-arm movement acceleration signals resulting in better-reflecting construction activities 62 

including many upper-limb movements. Recently, with the availability and affordability of a 63 

lightweight commodity wristband-type activity tracker equipped with an accelerometer, 64 
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acceleration signals from hand movements can be easily collected. Considering all, acceleration 65 

signals directly collected from upper limbs possess immense potential to be used to recognize 66 

many construction activities with low cost and high accuracy.  67 

In this regard, the authors investigated the feasibility of automatic activity recognition by 68 

analyzing acceleration signals collected from a wristband-type activity tracker. Considering that 69 

construction activities mostly includes hand and upper-body movement (CPWR 2013), the 70 

underlying hypothesis of this research is able to be posited as follow: acceleration signals 71 

generated from wrist are possible to differentiate diverse construction activities by forming unique 72 

patterns that can represent both upper-limb dominant and whole-body movement. To test the 73 

feasibility, the authors collected acceleration data while conducting masonry work with ten masons 74 

by using a wristband-type activity tracker, and applied machine learning algorithms for 75 

recognizing sub-tasks for masonry work. With special consideration for disparities in worker 76 

performance, the effect of the human variability of workers’ motions on the classification 77 

performance was also investigated. Based on the testing results, the feasibility of the proposed 78 

approach and its potential application areas are discussed. 79 

 80 

LITERATURE REVIEW 81 

Automated worker activity monitoring by using sensing techniques 82 

In recent years, automated construction-worker activity recognition, using both vision-based and 83 

sensor-based technologies, has drawn attention because it provides continuous data collection and 84 

understanding of current activities. Computer vision technologies, which identify and categorize 85 

actions by using pictures and videos from a single or multiple cameras, have been widely 86 

investigated for analyzing the productivity of construction workers and monitoring their safety and 87 
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health (Brilakis et al., 2011; Escorcia et al., 2012; Han et al., 2013; Weerasinghe & Ruwanpura, 88 

2009). Peddi et al. (2009) proposed a human pose analyzing algorithm, using a video camera for 89 

construction-productivity estimation. Han and Lee (2013) suggested a motion-capture approach 90 

with 2-D images obtained from multiple cameras for behavior-based safety management. 91 

Computer vision-based approaches have also been applied to identify any potential ergonomic 92 

risks by detecting awkward postures on recorded images (Seo et al., 2015). Previous vision-based 93 

activity recognition studies have shown its advantages, such as providing a rich set of information 94 

with less intrusively collected data even though this approach can be adversely affected by lighting 95 

conditions and occlusions, and needs tedious post-processing (Seo et al., 2015).  96 

Location sensor-based approaches have also been widely explored to automatically collect 97 

worker-activity-related data. One of the widely-explored applications in construction is a real-time 98 

location tracking technology, such as GPS, RFID, and ultra-wideband (UWB) (Cheng et al., 2012). 99 

Location-related data collected using such sensors has been used to monitor workers' job status 100 

(Jaselskis & El-Misalami 2003; Montaser & Moselhi 2014) or to manage construction-worker 101 

safety (Carbonari et al. 2011). Furthermore, Cheng et al. (2012 and 2013) proposed a system for 102 

analyzing construction-worker productivity and ergonomics, based on real-time location data 103 

combined with physiological status monitoring technologies. However, detailed activity 104 

monitoring is not available with this approach, as the location information is not enough to 105 

distinguish between different activities conducted in the same position (Seo et al., 2015).  106 

The use of body-worn sensors integrating accelerometer, gyroscope, and magnetometer, in 107 

so-called IMUs for construction activity monitoring has gained great attention, especially, for 108 

ergonomic assessment. In particular, with a capability of collecting acceleration, velocity, and 109 

orientation, the body-worn sensors enable to measure workers’ posture and motions in various 110 
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construction activities. Valero et al. (2016) developed a system to detect basic unsafe postures of 111 

construction workers (i.e., stooping and squatting with back bending) using wearable IMU suit. In 112 

their following study (Valero et al., 2017), inadequate working postures of bricklaying work were 113 

assessed using the IMU-based system with standardized rules defined by International 114 

Organization for Standardization (ISO). Finally, Umer et al. (2016) assessed biomechanical 115 

characteristics in truck during simulated rebar tying work by using the combination of IMUs and 116 

surface electromyography electrodes. The addressed research efforts showed great potential to use 117 

motion data for unsafe activity monitoring; however, most of the approach requires workers to 118 

wear or attach multiple sensors, which results in more computational cost in data processing.  119 

Compared with these approaches, the use of an accelerometer for activity monitoring can 120 

have several advantages. An accelerometer provides real values for acceleration data containing 121 

reliable body motion information that can be used to recognize different construction activities 122 

(Lim et al., 2015; Ryu et al., 2016). In addition, advanced sensing technologies enable small-sized 123 

and low-cost microelectromechanical (MEMS) accelerometers to be equipped with various 124 

wearable devices, such as activity trackers and smartphones. Thus, today’s wearable devices with 125 

an accelerometer allow for detailed data collection on construction workers’ activities from 126 

individual workers, regardless of the construction site conditions. 127 

 128 

Previous studies on accelerometer-based action recognition 129 

Accelerometer-based action recognition, which aims to identify physical actions from a set of 130 

acceleration signals, can be achieved by utilizing machine-learning techniques. The overall process 131 

is as follows: first of all, raw acceleration data is collected and then labeled to pre-determined 132 

actions. The labeled data is segmented into a specific window size to extract a set of features 133 
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representing the unique patterns of acceleration signals. According to Figo et al. (2010), three 134 

different signal-processing techniques for feature extraction are available, based on the domain 135 

involved: the time domain, frequency domain, or discrete representation domain. Then, 136 

classification algorithms learn different actions from labeled training datasets to identify the 137 

actions from new acceleration signals (i.e., testing datasets) (Preece et al., 2009). For example, 138 

support vector machine (SVM), multilayer perceptron, and decision tree classifications have often 139 

been used in accelerometer-based action recognition (Chernbumroong et al., 2011; Joshua & 140 

Varghese, 2010; Yang & Hsu, 2010). 141 

In the last decade, accelerometer-based action recognition has been applied for 142 

occupational tasks in various industries, such as for identifying assembly tasks in manufacturing 143 

industries (Koskimaki et al., 2009; Lukowicz et al., 2003) and for classifying activities by 144 

automotive workers (Zappi et al., 2007), like sawing, drilling, and hammering. In construction, 145 

this approach has also been applied in several applications, such as the activity analysis of 146 

construction workers (Joshua & Varghese, 2010; 2014) and equipment (Ahn et al., 2013; Akhavian 147 

& Behzadan, 2014), and fall risk detection (Lim et al., 2015; Tsai, 2014; Yang et al., 2015). In 148 

particular, Joshua and Varghese (2010) attached wired accelerometers to a mason’s waist to 149 

investigate accelerometer-based action recognition for productivity analysis. In the study, they 150 

classified three actions (i.e., fetching and spreading mortar, fetching and laying bricks, and filling 151 

joints), and obtained the best performance of 79.83% with two accelerometers attached on the right 152 

and left side of waist.  153 

Previous research efforts have revealed that sensor placement on the body can 154 

significantly affect action recognition performance because acceleration signal patterns from the 155 

same activities may vary depending on the position of sensors (Bao et al., 2004). Generally, the 156 
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waist has been considered to be a promising location for accelerometer-based action recognition 157 

because it is close to the center of the whole-body mass (Yang & Hsu, 2010), and thus the sensor 158 

signal from the waist better represents the major body motions. However, waist-oriented 159 

acceleration signals could have a limitation to reflect hand and arm movement, so it is hard to 160 

differentiate activities including these movements (Ravi et al., 2005). On the other hand, 161 

accelerometer, particularly using a single module, placed on the dominant wrist better-162 

discriminates activities which involve hand and upper-limb movement (Bao & Intille, 2004). Many 163 

previous studies reported the acceptable performance to classify physical activities using a wrist-164 

worn accelerometer in different domains (e.g., healthcare, sport, and manufacturing industry). 165 

Chernbumroong et al. (2011) used a single wrist-worn sensor to classify daily activities, such as 166 

walking, running, standing, sitting, and lying, and achieved 94.13% as the best accuracy. Shoaib 167 

et al. (2016) classified more complex daily activities (e.g., cycling, ascent and descent stairs, eating, 168 

typing, and drinking coffee) using mobile phone placed at right wrist and pocket. Yang et al. (2008), 169 

also, used a single accelerometer on the dominant wrist to classify domestic activities including 170 

standing, sitting, walking, running, vacuuming, scrubbing, brushing teeth, and working at 171 

computer, with overall recognition accuracy of 95%. Furthermore, in the industry domain, 172 

Koskimaki et al. (2009) classified basic tasks in an assembly line, which are hammering, screwing, 173 

spanner use, power drilling, and showed 88.2 of overall classification accuracy.  174 

As such, using a single accelerometer placed on wrist also has a significant potential to 175 

for automated recognizing construction activities. However, the feasibility of wrist-oriented 176 

acceleration signals to classify complex construction activities, involving whole body movement 177 

and unique hand movement patterns in terms of direction, speed, and range, has not been fully 178 

investigated. In the presented study, unique patterns from acceleration data collected from 179 
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lightweight commodity wristband-type activity tracker are analyzed to recognize construction 180 

actions containing both whole-body and upper-limb dominant movements.  181 

 182 

RESEARCH METHODOLOGY 183 

The objective of this research is to test the feasibility of the use of a wrist-worn accelerometer as 184 

a means for construction workers’ action recognition. In particular, masonry work was selected as 185 

a case-study. Masonry tasks involve typically both whole-body movement and upper-limb 186 

dominant moments, such as repetitive back-bending and material/tool handling, so that the case 187 

study allows the authors to see how the proposed approach can handle both movements. Figure 1 188 

shows the overall research methodology that consists of: 1) data collection; 2) data preprocessing 189 

including data labeling and segmentation; 3) feature extraction; 4) classification; and 5) validation. 190 
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 191 
Figure 1. Research methodology  192 

Data collection and acceleration data labeling 193 

Using a wrist-worn accelerometer embedded activity tracker, workers’ acceleration signal were 194 

collected. The sensor was firmly attached on the wearer’s dominant wrist to collect well-reflected 195 

acceleration data of movement. Recent commodity wristband-type activity tracker enables to 196 



11 
 

provide sensor data wirelessly via Bluetooth connection so that the data can be collected without 197 

interrupted the ongoing work during experiment.   198 

The obtained acceleration signals were then labeled based on predetermined actions. 199 

According to Everett and Slocum (1994), a construction project can be divided into seven levels 200 

(i.e., project, division, activity, basic task, elemental motion, orthopedics, and cell). Among those 201 

levels, the basic tasks are the fundamental actions of construction field work, which represents a 202 

series of steps that comprise of an activity.  203 

Feature extraction 204 

The labeled data was divided into specific time segments (i.e., window sizes). Then, features 205 

representing each of the segments were extracted to be used for action classification. After an 206 

initial analysis and comparing the performance of different windowing approaches (e.g., activity-207 

defined windows, event-defined-window, and sliding window), the authors selected sliding 208 

window approach, which is the most widely employed segmentation technique in activity 209 

classification due to the simplicity and less effort of preprocessing (Banos et al., 2014). 210 

Determining optimal window size is critical to use sliding window approach. According to the 211 

Preece et al. (2009), previous studies have used a range of window sizes from 0.25 to 6.7 seconds, 212 

depending on types of actions to be recognized Within a wide range of window size, the optimal 213 

window size can be determined by whether segment length is long enough and the sampling 214 

frequency is high enough to reflect unique signal patterns of each action. Banos et al. (2014) 215 

reported that the window size for optimal recognition ranged between 0.5 and 6.5 seconds, and, 216 

especially, for the activities involving the movement of all body part achieved the best performance 217 

with raging of between 0.5 and 4 seconds window size.  Also, the overlap size was selected as 50% 218 

of the window size, which has demonstrated success in a previous study (Bao & Intille, 2004).  219 
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Afterward, features that characterize segmented data were extracted with respect to both 220 

time- and frequency- domain. Time- and frequency- domain features represent various useful 221 

context characterizing information in the selected segment (Preece et al., 2009). Time-domain 222 

features, which are statistical measures, are directly computed from the segmented data with four 223 

different window sizes respectively. Frequency-domain features are computed by using the fast 224 

Fourier Transform (FFT) to represent the frequency components (Preece et al., 2009). Since the 225 

input length of the FFT function is required to be a power of two, the next smallest exponents of 226 

each segment were selected for the frequency-domain features. For example, the 32 data points 227 

were used for extracting frequency domain features in a 1-second window size instead of 22 data 228 

points. Then, 10 different features (8 for time domain features and 2 for frequent domain features), 229 

which have been widely used in accelerometer-based activity recognition studies and have 230 

emerged as typical principle components, were selected (Beak et al., 2004; Figo et al., 2010; Joshua 231 

& Varghese, 2010; Koskimaki et al., 2009; Ravi et al., 2005). The selected features were extracted 232 

for acceleration signals in x-, y-, and z-axes, respectively, so the total number of potential features 233 

considered was 30. The time domain features include: 1) mean, an average value of acceleration 234 

data over the window; 2) standard deviation of acceleration values in each window; 3) maximum;  235 

4) minimum; 5) range (difference between maximum and minimum values); 6) skewness (a degree 236 

of asymmetry in the distribution of acceleration data); 7) kurtosis (a sharpness of the peak in 237 

acceleration data); and 8) correlation, a variation in acceleration across each paired axis (x and y, 238 

y and z, x and z axis) (Beak at al., 2004). The features in the frequency domain are 9) energy and 239 

10) entropy that have been used to capture periodicity of the data (Figo et al., 2010). Energy and 240 

entropy features have also been used to identify the states of movement and differentiate actions 241 

that have a similar energy level, respectively (Figo et al., 2010).  242 
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According to Hall (1999), theoretically, the use of more features can produce a better 243 

distinction, but empirical studies have shown the less relevant features can add noises, and degrade 244 

classification performance. In this study, the ReliefF algorithm was used as a feature selection 245 

method from the potential set of 30, because it is not only one of the most used algorithms for 246 

feature selection but also robust to noise and redundancy (Menai et al., 2013). The algorithm 247 

iteratively determines k nearest features of the same and different classes from randomly sampled 248 

instances in training dataset; also, it measures and updates the importance weight by averaging 249 

their contribution (Hall 1999). According to Robnik-Šikonja and Kononenko (2003), the parameter 250 

k, relating to the distance of estimations, can be determined heuristically and safely set to 10 for 251 

most purposes. The importance weight of each feature indicates how well it distinguishes the 252 

classes so that a larger feature weight represents a more important feature, and the algorithm 253 

imposes a rank on each feature based on the weight (Hall 1999). 254 

Learning and recognizing different actions through machine learning  255 

Machine learning techniques were applied to learn acceleration signal patterns of different sub-256 

tasks by using extracted features from training data, and then classifying types of sub-tasks from 257 

testing data. The authors selected four machine learning classifiers that have been widely used for 258 

action recognition, and compared their performance. Those are: 1) k-nearest neighbors (k-NN) 259 

(Koskimaki et al., 2009); 2) Multilayer Perceptron (Joshua & Varghese, 2010); 3) Decision Tree 260 

(J48) (Chernbumroong et al., 2011; Joshua & Varghese, 2010); and Multi-Class Support Vector 261 

Machine (Multiclass-SVM) (Qian et al. 2010).  262 

k-NN is a non-parametric method for a classification based on the k-closest training dataset, 263 

vectors in a feature space (Ke et al., 2013). The algorithm predicts the label of the unlabeled data 264 

by picking the k-closest data points in n-dimensional feature space and determining the most 265 
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frequent label among the k nearest training samples (Sutton, 2012). It is simple, robust, and 266 

efficient with relatively short computational time (Ke et al., 2013). Multilayer perceptron is a 267 

neural network classification model that maps a set of input data onto a set of appropriate outputs, 268 

where each connection of input and output has weight measuring the degree of correlation of 269 

connections (Pal & Mitra, 1992). The neural networks have advantages of not only providing a 270 

better performance with complex movements, but also having potentially high tolerance for noisy 271 

data (Joshua & Varghese, 2010). Decision Tree (J48) is a tree-based classifier that predicts 272 

responses by following the decisions from an internal node (i.e., input features) down to leaf node 273 

(i.e., a response of the labeled class). C4.5 is one of the widely-used decision tree classifiers, and 274 

J 48 is the implementation of the C4.5 decision tree algorithm.  SVM is a binary discriminative 275 

classifier that defines the optimal separating hyperplane which categorizes two different classes 276 

(Suykens and Vandewalle 1999). Multiclass SVM is a more general form of SVM, applicable to 277 

many real world problems, where there are more than two labels. Multiclass SVM trains a classifier 278 

and defines optimum separating hyperplanes for each possible pair of classes (Hsu and Lin 2002). 279 

Waikato Environment for Knowledge Analysis (WEKA) workbench, which is "a 280 

collection of state-of-the-art machine learning algorithms and data preprocessing tools" (Witten & 281 

Frank, 2005), was used to perform the first three classification algorithms. A custom software 282 

written in MATLAB (version 8.1.0.604, The Math Works Inc., USA) is used for multiclass-SVM 283 

modeling and calculations. To evaluate the performance of the classifier, a 10-folds cross-284 

validation, which is a model validation technique to assess the accuracy and validity of statistical 285 

models, was used. In the 10-folds cross-validation, the dataset is randomly split into 10 286 

approximately equal size exclusive subsets. Then, each part is reserved as the test set, and the 287 

remaining parts are performed as training data set with a particular classifier (Kohavi, 1995). 288 
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According to Refaeilzadeh et al. (2009), 10-fold cross validation is reliable to estimate the 289 

performance of classifiers because it makes predictions with 90% of the dataset, which can be 290 

generalizable to the full dataset.  291 

 292 

CASE STUDY ON MASONRY WORK 293 

The proposed framework is applied to an indoor masonry work as a case study to test feasibility 294 

of the wrist-worn accelerometer embedded activity tracker for automated action recognition. 295 

Considering possible human variability in masonry work techniques, ten healthy masons with 296 

different years of work experiences were recruited to collect the acceleration data, and each was 297 

asked to perform identical masonry work that builds a concrete block wall with 45 blocks at the 298 

Ontario Masonry Training Centre (Waterloo, Canada). Each subject performed this work for 20 to 299 

40 minutes, with the firmly-worn accelerometer embedded wristband on their dominant wrist. 300 

Figure 2 shows the workstation with a test setup. 301 

 302 

The eZ430-Chronos sports watch from Texas Instruments was selected to collect raw 303 

acceleration data. The device contains a three-axis accelerometer with a range of ±2G and a 304 

sampling rate of 22 Hz, and it is based on the CC430F6137 microcontroller with 915 MHz wireless 305 

transceiver which allows wireless transfer the raw acceleration data to the PC through USB RF 306 

X 

Y 

Z 

Figure 2. Test setup and the subject’s performance with detail of wearable device 
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access points (Texas Instrument 2010). All subjects responded that the wearable device was 307 

comfortable and did not interfere with their ongoing actions after the completion of their work. 308 

The collected acceleration data from masonry work was labeled as four sub-tasks at the 309 

basic task level, such as: 1) spreading mortar; 2) bring and laying blocks; 3) adjusting blocks; and 310 

4) removing remaining mortar. Labeling of acceleration signals was done manually by observing 311 

video recordings, and the transitional signals, such as taking a rest and walking to grasp a tool, 312 

were removed.  313 

Considering that the average cycle-time of four sub-tasks of each participant ranged 314 

between approximately 1 second and 4 seconds, window sizes of 1, 2, 3 and 4 seconds were tested 315 

respectively to determine the optimal window size for the best recognition performance. Figure 3 316 

shows the average and standard deviation cycle-time of each action of Subject #1. While the 317 

“adjusting blocks” and “removing mortar” actions were completed in relatively shorter time, the 318 

other two actions took more time to finish. The “laying blocks” action had not only the longest 319 

performing time but also larger standard deviation, because it contained more complex process, 320 

such as picking up blocks, moving to the lead wall, and placing blocks. 321 
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Figure 3. Average cycle-time of actions  322 

 323 

Then, the segmented signals were processed following the process of research 324 

methodology addressed above including: 1) time- and frequency domain features extraction, 2) 325 

relevant feature selection, 3) classification and validation.  326 

RESULTS  327 

 The present study evaluates the performance of the proposed approach for recognizing sub-tasks 328 

of masonry work in two ways. First, the data from all ten-masons was used for action recognition 329 

to determine the best combination of classifiers and window sizes. Second, given the best 330 

combination of a classifier and a window size, the classification accuracy was tested when using 331 

data from each subject for both training and testing data, and when grouping data according to 332 

subjects’ working experiences. From this exercise, it was observed that the way to build the 333 

concrete block wall varied among masons in terms of movement speed or direction even though 334 

all participants performed the exact same work. Thus, the second test was to investigate whether 335 
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the proposed approach is reliable for human variability. 336 

Classification accuracy according to types of classifiers and window sizes 337 

To determine the best combination of types of classifiers and window sizes, 10-folds cross 338 

validation was performed by using data from all subjects. The accuracy was then calculated by 339 

dividing the number of correctly classified actions by the total number of instances in the dataset.  340 

Before determining the optimal classifier and window size, firstly, the ReliefF algorithm 341 

was used to see whether all selected features are robust for action recognition as described in the 342 

previous “Feature extraction” section. While this algorithm selects highly relevant features, it does 343 

not remove redundant features (Atallah et al., 2011). Thus, the threshold values were selected by 344 

comparing feature importance weights determined through the algorithm. The feature importance 345 

weight from each window size and average weight are shown in Figure 4. For all window sizes, 346 

the importance weights were lower than the averaged importance weights for the first 18 features. 347 

To only select highly relevant features for classification performance, therefore, upper 18 features 348 

were selected for the minimum threshold in this study. Also, considering more features can 349 

produce a better result, upper 21, 24, 27, and 30 features, which are corresponding 70%, 80%, 90%, 350 

and 100% of the features respectively, were also used as thresholds. 351 

 352 

 353 
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 354 

Figure 4. Feature importance weight  355 

 356 

Then, Figure 5 shows the classification accuracy according to the number of selected 357 

features and the classifiers when using data from all four window sizes (each classification 358 

accuracy represents the average of the classification accuracy using all window sizes). The line 359 

graph at the top of the bar graph shows the highest accuracy. Given the average and highest 360 

accuracy, all four classifiers showed the best performance when using all 30 extracted features. 361 

Therefore, all the extracted features were used in the subsequent analysis. 362 

 363 
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 364 
Figure 5. Average accuracy of classifications with selected features 365 

 366 

Then, Figure 6 shows the overall accuracy for classifying four sub-tasks with all extracted 367 

features. It was found that classifiers with the larger window size tend to show higher accuracy. 368 

The accuracies of the multiclass SVM or multilayer perception classifier showed the highest 369 

among the four classifiers for each window size, except for the 1 second window size. The highest 370 

accuracy was 88.1% from the multilayer perceptron classifier with a 4 second window size and 371 

the lowest accuracy was 77.4 % from the decision tree with a 1 second window size.   372 
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 373 
Figure 6. Accuracy of classifications with different window sizes using all features 374 

 375 

To investigate the detailed classification result, the confusion matrices from the two most 376 

accurate results when using the multilayer perceptron and multi-class SVM with a 4-seconds 377 

window size are shown in Table 1. In the confusion matrix, each row represents actual classes 378 

while each column corresponds to predicted classes. Also, precision indicates that the ratio of the 379 

number of correct prediction to the total number of instances classified as positive. On the other 380 

hand, recall represents that the ratio of the number of correct predictions to the total number of 381 

positive instances. The “removing mortar” and “adjusting blocks” actions achieved relatively 382 

lower precision and recall, which means not only that most of the instances were classified as other 383 

classes, but also selected instances were less relevant. These errors were likely caused by the 384 

difference in action durations. For example, the “removing mortar” and “adjusting blocks” actions 385 

were completed in a relatively shorter time length than the other two actions. Furthermore, signal 386 

patterns in a shorten window size have a limitation to differentiate between actions because the 387 

similar acceleration patters can be generated within shorter segments. 388 
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Table 1.  Confusion matrices of two tops classifiers (Multilayer perceptron and multiclass-SVM) 389 

using 4 seconds window and all features. 390 

Multilayer 
perceptron A B C D Recall 

A=Spreading mortar 917 34 20 2 0.942 
B=Laying blocks 49 648 24 7 0.890 
C=Adjusting blocks 33 35 89 2 0.560 
D=Removing mortar 22 20 15 5 0.081 

Precision  0.898 0.879 0.601 0.313 Accuracy: 0.863 
Multiclass 

SVM A B C D Recall 

A=Spreading mortar 903 70 0 0 0.928 
B=Laying blocks 44 684 0 0 0.939 
C=Adjusting blocks 50 26 83 0 0.522 
D=Removing mortar 19 20 0 23 0.371 

Precision  0.888 0.855 1 1 Accuracy: 0.881 
 391 

Classification accuracy according to individual subject and work experience 392 

To examine the variability of movement between subjects, the accuracy was compared, for all 393 

subjects, when the training and testing data only contain data for a specific subject. The 394 

classification accuracy of each subject was calculated by performing the cross validation for each 395 

subject, respectively. Again, multilayer perceptron and multiclass SVM classifiers with 4-seconds 396 

window size were used for this analysis because these two showed the best performance in 397 

calculating overall accuracy. As shown in Figure 7, training the classifiers only with the individual 398 

subjects’ data lead to significantly lower prediction accuracy using Multiclass SVM algorithm 399 

compared to Multi-Layer Perceptron. This suggests that Multi-class SVM requires a larger dataset 400 

to optimize the classifier parameters. As a result, the authors suggest the use of Multilayer 401 

perceptron algorithm for the smaller datasets. It is noteworthy to mention that while applying 402 

Multilayer perceptron, classification accuracy varies according to subjects, and in general, is 403 
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higher than the overall accuracy (86.3%) that was obtained when using data from all subjects, 404 

except Subject #4 and #5. This result indicates that there are both within-subject and between-405 

subject variation on working techniques (e.g., direction and speed of movements when performing 406 

tasks) even though they performed exactly the same tasks. For example, Subject# 9 shows the best 407 

accuracy, implicitly indicating that he performed the tasks by using a more consistent working 408 

technique. On the other hand, Subject #5 had a large variation in working techniques, resulting in 409 

low accuracy. Therefore, it was revealed that a variability of movement between subject and 410 

experience group (e.g., working styles and skills). Furthermore, abundant and relevant training 411 

dataset (i.e., a similar level of experience or work-training) are required to be deployed to other 412 

construction trade.  413 

 414 
 415 

Figure 7. Average classification accuracy of different individual subjects’ data sets 416 

 417 

The ten subjects who participated in this study have various work experience from the 418 

novice who had no work experience to journeymen who had more than five years of work 419 
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experience. To investigate the effect of difference on working techniques according to work 420 

experience, data from subjects were grouped into two: 1) an experienced group that included 421 

subjects with work experience more than 1 year and 2) a non-experienced group involving subjects 422 

who had no work experience. Among the ten subjects, the experienced group included eight 423 

subjects, and two subjects (i.e., Subject #4 and #9) were recruited for the non-experienced group.  424 

Despite, the small number of subjects in non-experienced group may be a constraint; however, 425 

enough the acceleration data were collected to train and test the different classifiers. According to 426 

the previous studies, the different levels in work experience can impact the way that the workers 427 

perform the same task (Alwasel et al., 2017a; Alwasel et al., 2017b). Classification accuracy was 428 

compared by splitting data according to groups for training and testing sets as shown in Figure 8. 429 

When using only data from the experienced group for both training and testing, the accuracy 430 

(89.2%) was higher than the accuracy (88.1%) from all data combined. It can be concluded that 431 

there is smaller variation among experienced workers in terms of working techniques, indicating 432 

that the work experience can affect regularized repetitive actions. It is not surprising that the 433 

accuracy (83.3%) when using data from the non-experienced group becomes lower because it is 434 

expected for non-experienced workers to perform the tasks with less consistent working techniques. 435 

Especially, it is found that there are significant differences on working techniques between the 436 

experienced and non-experienced group because the classifier learned by using data (i.e., training 437 

data) from the experienced group showed relatively low accuracy (71.0%) to classify data (i.e. 438 

testing data) from the non-experienced group and vice versa. 439 
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 440 

Figure 8. Classification Accuracy using different training and testing data sets 441 

 442 

DISCUSSION   443 

In the current study, indoors masonry work was conducted as a case study to test the feasibility of 444 

action recognition by using acceleration data from the dominant wrist. The best result from the 445 

case study was 88.10% classification accuracy, demonstrating that the acceleration signals 446 

generated by hand movements show unique patterns according to the types of tasks, enough to 447 

recognize construction activities. From the result, it can be concluded that the proposed approach 448 

has considerable potential as a means for automated and non-intrusive action recognition for 449 

masonry tasks which involve complex whole-body and upper-limb dominant movement. 450 

Furthermore, considering that a number of similar actions exist in construction tasks (i.e., material 451 

lifting and tool handling), the proposed approach is possible to be deployed to other construction 452 

trades. 453 

 However, the classification accuracy is significantly different depending on classification 454 

methods (e.g., types of classifier and window sizes) and subjects. Around and over 80% 455 
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classification accuracy is achieved by a different combination of classifier and window sizes, and 456 

the highest accuracy is 88.10% using multiclass-SVM classifier with a 4 seconds window size 457 

while classifying all the subjects. Furthermore, the accuracy of each individual classification is 458 

higher by applying a multilayer perceptron classifier. The classification accuracy of the 459 

experienced group was also better than the non-experienced group. The following subsections 460 

examine the details of the analysis and limitations of the current study. 461 

Performance of classifications methods 462 

In this study, the range of overall accuracy is from 82.9 % to 88.1 % depending on types of 463 

classifiers using 4 seconds window size and all extracted features. Among the classifiers, 464 

Multiclass SVM classifier shows slightly better performance. It may be because the classifier 465 

produces desirable accuracy by maximizing the distance between constructed hyperplane and 466 

nearest point, and then repeatedly optimizing classifier’s parameters in training phase. (Weston 467 

and Watkins 1998; Franc and Hlavác 2002). Comparing the reported classification accuracy on 468 

recognizing masonry activities using accelerometers, the best result was 79.8 % (Joshua & 469 

Varghese, 2010), the performance of classifiers is competitive.   470 

Feature selection algorithms are widely used in activity classification studies to improve 471 

classification performance and reduce computational effort by descarding irrelevant features (Hall 472 

1999; Menai et al., 2013). In this study, the ReliefF algorithm was used for feature selection, which 473 

was also used in the previous accelerometer-based activity recognition study (Atallah et al., 2011; 474 

Gupta and Dallas 2014). As shown in Figure 3, which tested five different threshold values, similar 475 

accuracy values were found from the top 80% or more of features considered. However, all 476 

classifiers showed the highest accuracy when using all extracted features.  477 

The accuracy with a 4-second window size was better than other smaller window sizes, but there 478 
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was relatively large error classifying shorter-length action, “removing mortar.” As shown in Figure 479 

3, each action has various cycle-time, such as the average cycle-time of “removing mortar” action 480 

is 0.5 second, but “laying blocks” action is 4.9 second. As such, the classification accuracy is 481 

varied depending on window sizes as shown in Figure 6. Table 2 shows a confusion matrix of 482 

multiclass SVM and multilayer perceptron classifiers with 1-second window size. It can be seen 483 

from the precision and recall in Table 2 that smaller window size is better to detect shorter cycle-484 

time actions, such as "removing mortar" and "adjusting blocks," than using larger window sizes, 485 

which the accuracy is shown in table 1. At the same time, however, classifying longer cycle-time 486 

actions (i.e., "lifting blocks" and "spreading mortar") with shorter window size results in worse 487 

performance. Finally, the result in Table 2 indicates that smaller window size is difficult to reflect 488 

the longer cycle-time actions' information and generates noises, resulting in decreasing overall 489 

classification accuracy. Sun et al. (2010), also, indicated that shorter window size may be 490 

insufficient to have features and information to describe actions. Therefore, determining optimal 491 

window size, which well reflects characteristics of each action is critical. Specifically, for actions 492 

with various cycle times, selecting a window size that fully reflects actions with a relatively long 493 

cycle-time can minimize the missed information of actions so that a better classification 494 

performance can be produced. Also, generating different window segment length by actions can 495 

achieve better classification accuracy (Hyunh & Schiele 2005; Laguna et al., 2011). In particular, 496 

Laguna et al., (2011) proposed a dynamic sliding window model. In the model, different window 497 

lengths were established by events. In the study, test comparing average precision and recall 498 

between static and dynamic sliding window model, they showed higher precision and recall using 499 

the dynamic window size model (93.05% and 91.38%, respectively) than the static sliding window 500 

approach (80.55% and 80.08%, respectively) (Laguna et al., 2011). Thus, dynamically adjusting 501 
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and shifting window segment size is worth exploring in feature research.  502 

 503 

Table 2.  Confusion matrix of the two best classifiers with 1 second window size 504 

Multilayer 
Perceptron A B C D Recall 

A=Spreading mortar 3470 142 83 139 0.905 
B=Laying blocks 276 2255 32 51 0.863 
C=Adjusting blocks 140 43 471 18 0.701 
D=Removing mortar 351 58 20 142 0.249 

Precision  0.819 0.903 0.777 0.406 Accuracy: 0.824 

Multiclass 
SVM A B C D Recall 

A=Spreading mortar 3578 240 1 15 0.933 
B=Laying blocks 601 2010 0 3 0.768 
C=Adjusting blocks 156 0 516 0 0.767 
D=Removing mortar 377 14 1 179 0.3135 

Precision  0.759 0.887 0.996 0.909 Accuracy: 0.817 
 505 

Influence of human variances  506 

With the investigation of individual and all subject dataset analysis, the multiclass SVM 507 

failed to reach a high classification accuracy while classifying actions for each individual. On the 508 

other hand, the multilayer perceptron classifier led to higher classification accuracy for each 509 

individual compared with training the model on all subject groups. This shows individual 510 

differences in worker performance while doing the same work. The differences can be attributed 511 

to the variation in working techniques, which can potentially affect classification performance. In 512 

particular, various movements, such as lifting blocks with one or both hands, create different 513 

patterns of the acceleration signal resulting in generating different features for the same action 514 

class. Furthermore, the difference in direction and speed of actions, such as performing with the 515 

right hand or left hand and moving faster or slower, can have a significant impact on classification 516 



29 
 

accuracy with fixed window size approach, because variation in cycle-time can serve as noise. To 517 

address the issue of variability of the same actions being differently performed, Bulling et al., 518 

(2014) suggested: first, increasing the amount of training data to capture a large range of variability 519 

and second, developing person-independent features to increase robustness to the variability. Also, 520 

it is possible to collect and group the data based on similar working styles and skills for obtaining 521 

constant features and reducing noise. 522 

Regarding the classification accuracy test on work experience, the classification result in 523 

the experienced group achieves higher accuracy than with the non-experienced group as shown in 524 

Figure 8. Furthermore, the classification result between two groups is considerably different. Such 525 

results are significant in at least two major aspects. First, a worker’s cumulative work experience 526 

can be closely related to forming a regularized movement pattern for the same task, which 527 

consequently affects the action classification performance (Alwasel et al., 2017). On the other hand, 528 

non-experienced workers perform relatively less consistent movement patterns resulting in a lower 529 

classification accuracy. In addition, performing the action classification on a new subject should 530 

take into account the characteristics of the training dataset. In other words, it is important to use a 531 

training dataset that involves characteristics similar to a new dataset, because classification 532 

performance on the newly collected data can be influenced by the training dataset. For example, 533 

the classifier which was trained by the experienced group had a low accuracy to classify the non-534 

experienced group, whereas the performance of classifying the same-working-experience group 535 

was relatively better. These findings, therefore, explain that a training dataset taking into account 536 

the characteristics of workers can lead to a different classification accuracy on the newly collected 537 

data. Furthermore, the authors recommend to train with the abundant and relevant dataset before 538 

deploying the proposed approach to other construction trades. A drawback of the classification 539 
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accuracy test between the experienced and non-experienced group in this study is that the small 540 

number of subjects in the non-experienced group. Thus, it is recommended to collect more data on 541 

non-experienced subjects in future studies.  542 

 543 

Challenges and opportunities 544 

A single tri-axial accelerometer located on the dominant wrist demonstrated a promising 545 

result in classifying construction actions. Compared with previous classification results using 546 

accelerometers located at the waist, for which was 79.83% was the highest accuracy (Joshua & 547 

Varghese, 2010), the current study showed a higher classification accuracy, which presents the 548 

potential of using a wristband-type activity tracker for the classification of construction tasks 549 

involving upper body movements. However, it should be noted that there are several challenges to 550 

apply this approach in practice. First, the actions to be classified must be pre-determined and 551 

labeled. In this study, masonry work was conducted in a semi-controlled environment as the case 552 

study. Therefore, standardized and repeated actions were easily identified and applied to the 553 

proposed approach. However, a number of unstandardized actions may have existed in actual 554 

construction work, which would require more effort for pre-processing. Particularly, in this 555 

experiment, the other common actions, such as take a rest and walking were excluded, except for 556 

the pre-labeled four actions. Thus, it has a limitation to test how robust the labeled actions are to 557 

other common actions using the proposed approach. To address this problem, labeling other 558 

actions as “transaction actions” to test the robustness for other common actions. Furthermore, 559 

grouping actions based on purpose of use (e.g., productivity analysis) can be recommended to 560 

reduce effort determining the number of actions and enable a broader application area. Joshua and 561 

Varghese (2014) proposed work sampling analysis based categorizing (i.e., effective work, 562 
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contributory work, and ineffective work). Thus, grouping construction actions on the basis of 563 

analysis types, such as the activity analysis category type or the safe and unsafe category type, can 564 

broaden the applicable area of accelerometer-based action recognition. 565 

Action recognition using a wrist-worn accelerometer can be combined with other types of 566 

sensors, such as a physiological sensor, to expand to other applications for construction workers. 567 

Given that heart rate is an especially reliable indicator of physical demand (Hwang et al., 2016b), 568 

it is fortuitous that many activity trackers including accelerometers and heart-rate measuring 569 

sensors are widely available on the market. Hwang et al., (2016a and 2016b) studied physical 570 

demand measurement and feasibility of heart rate monitoring for construction workers using a 571 

heart rate measurement sensor included in a wristband-type activity tracker. In the studies, they 572 

showed the significant potential of heart rate monitoring and physical demand measurement using 573 

wearable activity trackers for construction workers. Thus, action recognition with a wrist-worn 574 

accelerometer can be enhanced by integrating with heart rate monitoring for in-depth 575 

understanding of physical conditions (e.g., heart rate variability and physical demands based on 576 

different tasks).   577 

 578 

CONCLUSION 579 

The current study tested the feasibility of using a wristband-type activity tracker embedding an 580 

accelerometer to automatically collect field data for classifying construction workers’ activities. 581 

The case study was implemented to classify actions in masonry work that was conducted in a 582 

training facility by 10 masons. Also, current study is based the authors’ earlier preliminary works 583 

(Ryu et al., 2016) and investigated the feasibility with considering various aspects in more details, 584 

in terms of classification performance and influence of human variances. The best classification 585 
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accuracy of 88.1% was achieved using a multiclass SVM classifier with 4-s window size. 586 

Furthermore, the impact of human variation on the performance of classification was also 587 

investigated by comparing the accuracy between individual subjects as well as between an 588 

experienced and non-experienced group. Classification accuracy using the individuals’ datasets 589 

was higher than the combined data set. Also, the performance of the classifier to classify testing 590 

dataset is affected by the characteristics of training dataset, such as degree of experience.   591 

The findings from this study make important contributions to the current literature. First, 592 

it recognizes construction workers’ action, especially, involving both whole-body and upper-limb 593 

movement using a single accelerometer on workers' dominant wrist. Particularly, by conducting 594 

masons' actions, which contain typical those movements, the feasibility of the approach was 595 

investigated. The reported results imply that each masonry construction activity is somehow hand-596 

dominant and involves whole-body movement with unique hand movements, such that 597 

acceleration signals from a wrist are data-rich enough to classify construction activities. Second, 598 

by investigating classification accuracy according to individual subject and experience level, a 599 

variability of movement between subject and experience group were examined. As the finding in 600 

the result, the proposed approach has a potential to be deployed to other construction trades with 601 

consideration of abundant and relevant training dataset (i.e., a similar level of experience or work-602 

training). Finally, the proposed approach uses only a wrist-worn single sensor, which will not only 603 

enable to continued data collection without interfering workers’ ongoing work but also reduce 604 

burdens to carry multiple sensors. Also using one single sensor is expected to decrease the 605 

computational challenges of using multiple sensors (e.g., decreasing computational time, memory 606 

usage, and mitigating challenges in multisensory data synchronization in time and space). Thus, 607 

the proposed approach can be applied in a variety of ways for construction workers, such as 608 
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detailed productivity tracking or automated unsafe action monitoring, regardless of construction 609 

site conditions or workers' activities. However, ethics of all potential applications must be taken 610 

into consideration because not only privacy laws differ by jurisdiction but also incorrect 611 

application may demotivate workers.  612 
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